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ABSTRACT
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often 
used to quantify the myelin content in multiple sclerosis (MS) lesions and normal 
appearing brain tissues. Also, automated classifiers such as artificial neural networks 
(ANNs) can significantly improve the identification and classification processes of 
MS clinical datasets. 
Objective: We classified patients with relapsing-remitting multiple sclerosis 
(RRMS) from healthy subjects using QMTI and T1 longitudinal relaxation time data 
of brain white matter, then the performance of three ANN-based classifiers have been 
investigated. 
Materials and Methods: The input features of ANN algorithms, includ-
ing multilayer perceptron (MLP), radial basis function (RBF) and ensemble neural 
networks based on Akaike information criterion (ENN-AIC) were extracted in the 
form of QMTI and T1 mean values from parametric maps. The ANNs quantitative 
performance is measured by the standard evaluation of confusion matrix criteria. 
Results: The results indicate that ENN-AIC-based classification method has 
achieved 90% accuracy, 92% sensitivity and 86% precision compared to other ANN 
models. NPV, FPR and FDR values were found to be 0.933, 0.125 and 0.133, respec-
tively, according to the proposed ENN-AIC model. A graphical representation of how 
to track actual data by the predictive values derived from ANN algorithms, was also 
presented.
Conclusion: It has been demonstrated that ENN-AIC as an effective neural 
network improves the quality of classification results compared to MLP and RBF.In 
addition, this research provides a new direction to classify a large amount of quantita-
tive MRI data that can help the physician in a correct MS diagnosis. 
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Introduction

MS is an autoimmune neurological disorder, which affects the 
central nervous system (CNS) and leads to progressive dis-
ability in young adults. The main feature of MS disease is the 

presence of focal demyelinated lesions referred to as plaques and are 
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visualized on conventional MRI images [1, 2]. 
Currently, attention is mainly focused on ad-
vanced MRI techniques by which they more 
accurately reveal the underlying pathological 
substrates occurred in lesions and normal ap-
pearing CNS tissues [3]. The use of methods 
such as diffusion-weighted and diffusion-
tensor imaging (DWI and DTI), proton MRI 
spectroscopy (MRS), quantitative magnetiza-
tion transfer imaging (QMTI), functional MRI 
(fMRI), relaxometry and myelin water frac-
tion (MWF) measurements are considered as 
promising tools with high sensitivity and spec-
ificity to determine the microscopic progres-
sion of pathologies in the brain parenchyma 
and the spinal cord [4-6]. 

QMTI is one of these advanced MRI methods 
based on the interactions between free protons 
in the water environment and protons bound 
to macromolecular structures found mostly in 
the myelin membrane [7]. It has been proven 
that QMTI provides an indirect assessment of 
tissue matrix integrity in the course of disease 
evolution [8, 9].

The ability of this technique to quantify the 
myelin content is mainly expressed by the 
MTR which is a global measurement .It has 
been proven that other MT parameters in-
cluding Ksat and T1sat along with the measure-
ment of T1 longitudinal relaxation time have 
a better performance of the detecting neuron 
degeneration process [10, 11]. Investigating 
the extent of microscopic lesion burden in the 
normal appearing white matter (NAWM) us-
ing QMTI-T1 parameters allows more precise 
monitoring of pathological abnormalities such 
as inflammation, demyelination, gliosis, ede-
ma, remyelination and axonal loss. technique 
allows for a better assessment of therapeutic 
interventions [12, 13].

On the other hand, researchers have al-
ways been interested in discovering patterns 
of prediction and scientific relationships in a 
large volume of data. Data mining by utiliz-
ing methods from statistics, neural networks 
and machine learning on the sophisticated 

database can effectively turn them into func-
tional information [14]. One of the most im-
portant approaches in the field of data min-
ing is the classification of data that has led 
to the introduction of various types of clas-
sifiers including: support vector machines 
(SVM), Bayesian classifier, K-nearest neigh-
bor (KNN) method, artificial neural networks 
and genetic classifiers [15-17].  This way, with 
the given quantitative MRI datasets obtained 
from brain tissues, the need to use automatic 
classification methods is felt more than ever 
[18]. ANNs with the ability to model highly 
nonlinear systems with unknown or complex 
relationships between their inputs can provide 
a classification decision for existing data with 
less sensitivity to noise and outliers [19] The 
objective of this paper is to investigate the util-
ity of three ANN algorithms, including MLP, 
RBF and ENN-AIC to classify RRMS patients 
from healthy subjects. This approach is gener-
ally based on: (1) feature extraction to extract 
QMTI-T1 parameters that distinguish patho-
logical white matter tissues from healthy ones; 
(2) RRMS and healthy subjects’ classification 
to construct three automated classifiers based 
on ANNs along with evaluating and compar-
ing their performance. We also focus mainly 
on the effective neural network model based 
on the AIC, which is used in ENN design to 
optimize this classifier. Although similar stud-
ies have been carried out using ANNs on the 
MRI data of the brain [20, 21] and especially 
in the context of ANNs for MS lesion segmen-
tation [22-24], to the best of our knowledge, 
this is the first work introducing ANN models 
as reliable classifiers in the field of QMTI and 
T1 relaxometry.

Material and Methods
The objective of this research is to determine 

the status of the subjects in terms of RRMS 
and healthy based on QMTI-T1 measurements 
and the use of ANN algorithms. For this pur-
pose, three different types of neural networks 
were used and their performance was com-
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pared with each other to determine the highly 
precise classifier. General analysis flow of this 
ANNs-based classification is divided into five 
main steps: image acquisition, Image pre-pro-
cessing, image processing-feature extraction, 
classification and evaluation (Figure 1).

Patients and MR Data Acquisition
The dataset from MR imaging of healthy 

controls and patients with clinically definite 
RRMS from the neurological research cen-
ter of Tehran University of Medical Science 
were studied. The participants’ demographics 
are also reported in Table 1. The study was ap-
proved by the local ethics committee at Imam 
Hospital, department of radiology and imag-
ing in Tehran, Iran.

MR imaging was performed with a 1.5 
Tesla MR whole body GE-MRI imager us-
ing the standard transmit/receive quadrature 
head coil. Conventional MR imaging pro-
tocols included T1 weighted spin echo (T1-
SE) (400ms/9ms/1 [TR/TE/excitation]) and 
FLAIR (9000ms/95ms/2140ms TR/TE/TI]) 

were obtained. Two series of 3D spoiled gradi-
ent echo in steady state (SPGR) pulse sequenc-
es were acquired with/without MT saturation 
pulse and used for T1 longitudinal relaxation 
time measurement and QMTI analysis. The 
characteristics of these two 3D-SPGR pulse 
sequences are respectively as follows:

Two series of four 3D-SPGR scans with TR/
TE = 27ms/5ms and variable flip angles of 
α = 5°, 15°, 30° and 60°, one with MT pulse 
operation and another one without it were ac-
quired. MT saturation pulse was 1.6 KHz be-
low the free water frequency with the Fermi en-
velope of 8 ms duration and 670° pulse power. 
Both quantitative and clinical MR images cov-
ered the same volume of the brain along the 
axial plane with identical geometric parame-
ters (FOV = 25cm, matrix size 256×192, slice 
thickness = 4mm, without any gap and num-
ber of slices = 27). The information was ob-
tained on a thick slab of the brain parenchyma 
consisting of twenty-seven consecutive slices 
with a thickness of 4mm, covering almost the 
entire brain, especially those areas of white 

Figure 1: A general block diagram of the ANNs based classification procedure
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matter that MS plaques and myelin membrane 
destruction appears predominantly there. The 
total examination time for both clinical and 
quantitative imaging was about 20 minutes.

Image Pre-processing
The image preprocessing was conducted as 

follows: (1) removal of skulls and other tis-
sues from both quantitative and clinical data 
sets (2) the image motion correction by reg-
istering images on a reference pattern. High 
T1 contrast and acceptable SNR in 3D-SPGR 
pulse sequence are obtained when the excita-
tion flip angle is held comparable to TR [25]. 
Therefore, among eight 3D-SPGR data sets, 
the set of 3D-SPGR images with a flip angle 
of 30° and TR=27ms without MT saturation 
pulse was selected as reference images for 
the registration process. Then, all clinical and 
quantitative data sets were registered to this 
reference template using the mutual informa-
tion registration tool in FSL software.

Image Processing
Image Segmentation 
Masks generation representing brain white 

matter, gray matter and CSF was provided 
based on high T1 contrast 3D-SPGR reference 
images under flip angle of 30° and TR=27ms 
without MT saturation pulse. Only white mat-
ter masks were used to calculate QMTI-T1 
mean values from parametric maps (Figure 
2). For patients, MS plaques were identified 
as a region of interest (ROI) by an experi-
enced radiologist on FLAIR and T1-weighted 
scans. Afterwards, the pixels belonging to the 
plaques were removed from the white mater 

masks in each RRMS patient, resulting in a 
pure NAWM volume.

QMTI-T1 Maps Calculation 
T1 and T1sat maps reconstruction on a pixel 

basis approach was performed using 3D-SP-
GR images at flip angles of α = 5°, 15°, 30°, 
60° with constant TR parameter under MT sat-
uration pulse off and on, respectively (Figure 
3 (b, c)). A fitting procedure according to Eqs 
1 and 2 are applied to the 3D-SPGR measured 
signal intensities at different flip angles to es-
timate T1 and T1sat values as follows: 

( )1
0

1
1

1

TR
T

TR
T

SinSI M e
Cos e

α
α

−

−

 
 

= −    −    

 (1)

Male/Female Age Mean EDSS  
Values

Mean Disease 
Duration (years)

Number of MS 
Plaques 

Healthy Controls 9/21 30 (21-41) ------ ------ ------
RRMS Patients 11/19 30.2 (20-45) 2 5 134

Table 1: Participants’ Demographics.

Figure 2: A sample of white matter masks for 
a healthy subject 
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M0 in Eq.1 should be replaced by Msat/M0 
and T1 parameter should be changed to T1sat 
for T1sat map calculation. 

( ) ( )
1

10

1
1

TRS T
sat TR

T
sat

M SinSI e
M Cos e
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−

−

 
 = −  −  

 (2)

MTR maps were calculated using registered 
images with and without MT saturation pulse 
at flip angle 5° according to the following 
equation:

( )0 0/ 100SMTR M M M = − ×               (3)

M0 and MS are the signal intensities of the 
particular pixel in the absence and presence 
of MT saturation pulse, respectively (Figure 3 
(a)). 

Ksat maps (Figure 3 (d)) were derived using a 
pixel by pixel analysis from the MTR and T1sat 
maps with the below expression:

 1SAT
SAT

MTRK T=                                  (4)

Feature Extraction
At first, the average of each of the MT pa-

rameters and T1 relaxation time value was as-
signed to the total volume of segmented white 
matter. Later, the input features of the classifi-
cation algorithms under ANN were calculated 
and extracted in the form of mean values of 
MTR, Ksat, T1sat and T1 relaxation time from 
parametric maps (Table 2).

Using Artificial Neural Networks
An ANN is a mathematical model which 

has the same function as a biological neuron 
and depending on the system complexity, 
is composed of several neuron layers with 
weighted interconnections. These weights 
can be changed and optimized by a training 
algorithm, consequently, the neural network 
behaves appropriately in modelling nonlinear 
statistical data [26, 27]. Since the relationship 
between pathological changes in brain tissue 

and RRMS is nonlinear and unknown, neural 
networks can help diagnose the disease. In this 
study, three kinds of ANNs were utilized as 
classifiers for RRMS diagnosis which will be 
referred as follows:.
Multilayer Perceptron (MLP) Neural 

Network
One of the main existing neural models is 

the MLP model that simulates the behavior of 
the brain network and the propagation of the 
signal in it. MLP algorithm can have several 
hidden layers in addition to the input and out-
put ones for which neurons connected to all 
neurons of previous and subsequent layers in 
each layer; nonetheless, there is no connection 
between neurons of a same layer. It trains a 

Figure 3: QMTI-T1 parametric maps for a 
RRMS patient

 

(a) MTR-map  (b) T1-map 

 (c ) T1sat-map  (d) Ksat -map 
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Sample 
Numbers MTR (%) Ksat (s-1) T1sat (ms) T1 (ms) RRMS and normal Definition for 

ANN modelsRRMS:50Normal: 0
1 55.05 1.495 385.10 635.14 0
2 55.80 1.381 355.38 694.62 0
3 55.09 1.497 361.62 645.50 0
4 52.10 1.095 428.66 760.56 50
5 54.68 1.205 390.55 698.15 50
6 53.35 1.408 496.22 826.52 50
7 54.66 1.182 466.02 774.27 50
8 55.27 1.174 433.15 760.95 50
9 55.52 1.419 394.74 656.10 50

10 54.60 1.089 484.22 775.40 50
11 53.27 1.210 482.05 790.67 50
12 54.78 1.405 458.29 715.42 50
13 54.84 1.333 421.21 724.17 50
14 52.02 1.179 454.94 732.42 50
15 52.42 1.070 388.95 695.55 50
16 52.01 1.090 487.33 780.03 50
17 55.58 1.322 397.88 689.30 50
18 54.88 1.400 392.40 687.29 50
19 53.20 1.202 453.02 772.46 50
20 56.38 1.409 390.74 692.77 0
21 56.18 1.431 384.60 672.85 0
22 55.90 1.493 366.65 644.80 0
23 55.40 1.385 390.85 695.67 0
24 56.41 1.425 358.27 632.17 0
25 56.14 1.430 385.11 645.95 0
26 56.01 1.458 378.80 657.43 0
27 56.02 1.421 387.33 638.75 0
28 56.47 1.478 383.20 660.64 0
29 56.00 1.478 373.80 641.18 0
30 54.75 1.422 379.67 646.99 0
31 54.92 1.271 496.85 788.45 50
32 55.05 1.319 427.60 711.51 50
33 52.05 1.077 425.33 730.78 50
34 52.08 1.0335 396.76 691.20 50
35 54.80 1.320 424.37 692.50 50
36 52.47 1.072 490.40 854.47 50
37 54.82 1.185 455.08 743.68 50

Table 2: Training data set for ANNs modeling.
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38 54.85 1.415 491.41 855.37 50
39 53.30 1.091 493.71 824.51 50
40 52.01 1.315 468.00 727.15 50
41 54.55 1.085 462.05 770.47 50
42 52.12 1.180 450.95 778.62 50
43 55.04 1.276 436.16 714.40 50
44 53.77 1.326 488.45 866.25 50
45 55.00 1.498 359.37 631.82 0
46 55.15 1.388 395.82 690.52 0
47 55.18 1.398 392.74 685.43 0
48 55.27 1.441 375.86 665.63 0
49 55.60 1.448 366.16 630.11 0
50 55.90 1.454 374.82 686.25 0
51 55.56 1.488 384.80 687.20 0
52 55.82 1.391 388.76 688.80 0
53 55.02 1.458 370.58 627.22 0
54 55.47 1.447 352.15 690.25 0
55 55.11 1.459 373.66 659.28 0
56 56.03 1.460 375.68 674.67 0
57 56.06 1.411 360.55 674.82 0
58 55.00 1.427 366.00 675.74 0
59 56.23 1.436 378.75 661.31 0
60 56.05 1.427 383.35 691.65 0

neural network based on a kind of supervised 
learning technique which is known as back 
propagation. MLP is widely used for pattern 
classification, recognition, prediction and ap-
proximation [28].
Radial Basis Function (RBF) Neural 

Network
RBF neural networks have the same pat-

tern as MLP, with a difference in which RBF 
algorithm, neurons as processor elements 
are focused on a particular position which is 
modelled through radial functions. RBF neu-
ral networks often have a quick learning and 
preparation processes and are more regulated 
by focusing neurons on a specific functional 
range. They have many uses, including func-
tion approximation, time series prediction, 
classification and system control [29, 30].

Ensemble Neural Network based on 
Akaike Information Criterion (ENN-
AIC)

An ensemble neural network is made up of a 
limited number of component neural networks 
which are all trained independently; each 
component creates an output data from the in-
put data sets. Afterwards, to get a better result, 
these output data are combined together. In this 
way, the generalization capability for an arti-
ficial neural network model becomes possible. 
ENNs depend on the diversity and accuracy 
of the component networks which can provide 
the correct outputs based on highly non-linear 
experimental data. The main approach of the 
ENN is to reduce the mean square error (MSE) 
of each component neural network, which can 
lead to a complicated ENN and an increase in 
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computing time as well as over-fitting [31, 32]. 
In order to overcome these problems, an en-
semble neural network model can be provided 
based on AIC. The AIC determines an optimal 
model among several competing models and 
estimate its relative quality for a given dataset. 
The AIC application for ENN is such that it 
initially reduces the error of each ANN com-
ponent and then adjusts their contributions to 
the ENN by using the AIC-based weighting 
[33]. Three assumptions are considered as fol-
lows: firstly, datasets extracted from one main 
process, secondly, the sufficient sample size, 
and finally multivariate normal distribution of 
parameter estimators. Based on these criteria, 
AIC looks for a model that more precisely fits 
to the truth [34].
Neural Networks Designing and Train-

ing
A total of 60 samples was collected and ana-

lyzed. Each sample consisted of three mean 
values for QMTI parameters (MTR, Ksat and 
T1sat) and one mean value associated with T1 
longitudinal relaxation time parameter. Da-
tasets were prepared by healthy subjects and 
RRMS patients’ image acquisition and used as 
the ANNs training-testing datasets (Table 2). 
Practically only 50 of 60 samples were used 
in practice to train and test the ANN models. 
The output of the neural network was set to 50 
for the RRMS patients and zero for the healthy 
subjects.

The data were divided into two groups, 
which included data related to the training of 
the neural networks and data related to the 
testing of the neural networks. First, a train-
ing dataset was used to adjust the weights. 
Then, the test dataset was used to evaluate its 
performance. To train the neural network, the 
data obtained from QMTI and T1 relaxometry 
for brain white matter were divided into six 
parts of ten. Then, each time, 5 parts for train-
ing and 1 part for the test were given to the 
neural networks. This process was performed 
for 60 healthy and patient data (Table 3). We 
considered the threshold of 25 for determina-

Partition 
Pairs Training Set Testing Set

1 Partition {1,2,3,4,5} Partition {6}
2 Partition {1,2,3,4,6} Partition {5}
3 Partition {1,2,3,5,6} Partition {4}
4 Partition {1,2,4,5,6} Partition {3}
5 Partition {1,3,4,5,6} Partition {2}
6 Partition {2,3,4,5,6} Partition {1}

Table 3: Training-Testing Partition Pairs.

tion. If the propagation value obtained from 
the neural network was greater than 25, it was 
considered as RRMS patient and if less, it was 
considered healthy.

Results
This research has developed an approach to 

classify RRMS patients from healthy subjects 
by using QMTI-T1 dataset. Initially, features 
were extracted by analyzing QMTI-T1 data 
of normal and pathologic white matter. Then, 
three ANN models including MLP, RBF and 
ENN-AIC were applied to these QMTI-T1 
features derived from each sample. The esti-
mated Output Labels of each model for exist-
ing samples are given in Table 4. 

The performance of the proposed ANN algo-
rithms for the best classification task was eval-
uated in terms of confusion matrix criteria such 
as accuracy, sensitivity and precision together 
with Negative Predictive Value (NPV), False 
Positive Rate (FPR) and False Discovery Rate 
(FDR). Precision is ,moreover, recognized un-
der the name of the Positive Predictive Value 
(PPV). Higher accuracy, sensitivity, precision 
and NPV together with lower FPR and FDR 
indicate good classification of RRMS patients 
from healthy volunteers. The summary of the 
ANNs performance is shown in Table 5. Their 
equations are as follows:

TP TNAccuracy
TP TN FP FN

+
=

+ + +                 (5)
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Sample Numbers MLP RBF ENN-AIC Normal and Patient definition
1 -0.01451 -0.00658 -4.6E-05 0
2 0.00181 0.02574 0.006129 0
3 -0.05406 -0.00960 -0.00062 0
4 -0.02341 0.11096 0.022492 50
5 -0.09248 0.04496 42.68706 50
6 -0.06720 0.19317 38.40058 50
7 -0.05528 0.13914 49.96256 50
8 -0.00923 0.67417 51.84795 50
9 -0.07156 0.32359 39.46159 50

10 50.00000 0.14848 29.73741 50
11 12.50000 36.36364 40.61062 50
12 12.50000 53.63630 15.36948 50
13 50.00000 29.62500 55.06200 50
14 50.00000 36.38080 40.60829 50
15 50.00000 28.63400 43.06204 50
16 12.50000 36.20730 37.20354 50
17 12.50000 29.07280 40.61062 50
18 49.94840 34.60870 34.57622 50
19 12.50000 30.86960 27.73782 50
20 35.21211 28.69410 0.61062 0
21 3.66E-13 2.2E-06 18.22890 0
22 38.55434 -7.9E-07 16.59923 0
23 35.16543 34.84458 31.81818 0
24 42.21847 -7.9E-07 21.68982 0
25 42.21760 44.44444 13.75943 0
26 42.21847 -7.7E-07 12.80289 0
27 42.21847 44.44444 1.935599 0
28 42.21847 42.94037 5.987599 0
29 42.21847 -5.88861 22.68833 0
30 51.38184 44.44441 13.81829 0
31 10.08353 33.75715 50.00000 50
32 30.34264 16.79689 28.57143 50
33 30.34264 20.05657 45.05263 50
34 10.08353 20.05657 21.05263 50
35 30.34264 16.79698 49.99518 50
36 10.08353 19.21221 41.78947 50
37 30.34264 16.79689 28.57370 50
38 50.45523 30.86669 21.05263 50

Table 4: Estimated Output Labels from MLP, RBF and ENN-AIC models for participants 
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TPSnsetivity
TP FN

=
+

                                 (6)

( ) TPPrecision PPV
TP FP

=
+

                       (7)

     
TNNPV

TN FN
=

+
                                    (8)

FPFPR
FP TN

=
+

                                        (9)

FPFDR
FP TP

=
+

                                          (10)

Where, TP is true positive and denote the 
number of patient subjects correctly classified, 
FP is false positive and denotes the number of 
patient subjects that is misclassified as normal, 

TN is true negative and denotes the number of 
normal subjects that are correctly classified as 
not belonging to RRMS class, FN is false neg-
ative and denotes the number of normal sub-
jects that are misclassified as RRMS patients. 
The accuracy value determines the ability of 
ANNs in cases of diagnosis and classification. 
The sensitivity value represents how much the 
ANNs are able to correctly select the RRMS 
patients and the precision value describes the 
reproducibility of predictions made by ANNs 
over time. The performance analysis of the 
proposed classification techniques is also 
down by plotting graphs of accuracy, sensitiv-
ity, precision (PPV), NPV, FPR and FDR (Fig-
ures 4 and 5). 

In Figure 6, the determination graphs are 
given for 60 samples. The yellow line displays 
the actual data for healthy and RRMS subjects. 

Fooladi M. et al

39 51.38184 16.79689 28.57143 50
40 50.00007 33.75715 50.00000 50
41 50.00021 49.98613 47.82543 50
42 50.00007 48.22301 52.05172 50
43 50.00021 47.85065 38.72384 50
44 4.68E-05 52.68255 29.15772 50
45 49.99978 1.862144 1.55265 0
46 49.96495 43.07934 22.05158 0
47 0.44288 43.07933 5.16500 0
48 18.00028 1.86214 17.36665 0
49 0.000238 -1.37591 9.94998 0
50 2.655436 -0.00012 32.05158 0
51 2.598292 0.00620 12.51167 0
52 0.00268 -0.03770 11.66926 0
53 -1.8E-05 0.01030 6.23249 0
54 2.59829 -0.15340 5.11669 0
55 2.59829 -0.06380 6.69258 0
56 -1.8E-05 -0.26530 0.87901 0
57 0.00111 -0.19170 9.25879 0
58 2.59829 -0.15700 15.87901 0
59 2.59829 -0.02220 6.23249 0
60 0.00041 -0.20450 17.90100 0
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It can be seen that the green line associated 
with  ENN-AIC, has been able to track the ac-
tual data and estimates them. The red and blue 
lines, which indicate the performance of the 
RBF and MLP neural networks, are less ac-
curate in real data estimation.

Discussion
In this paper, the diagnosis and classification 

of RRMS patients from healthy subjects based 
on the QMTI-T1 dataset and the use of three 
different ANN algorithms were presented. The 
differences in white matter QMTI parameters 
including MTR, Ksat, T1sat and T1 longitudinal 
relaxation time between healthy subjects and 
patients with RRMS were utilized as selected 
features under supervision of an experienced 
radiologist. Next, these four features are fed 
as inputs to the developed ANN-based clas-
sifiers. The performance of ENN-AIC algo-
rithm, as an effective neural network model is 
also evaluated by comparing its classification 
results with other traditional classifiers which 
use the RBF- and MLP-based algorithms. 

We investigated previous studies on improv-
ing MS diagnosis using MRI data and ANN- 
based classification methods. ANNs have been 
widely used to introduce the best automated 
methods for MS lesion segmentation to mea-
sure lesions load and determine the extent of 
disease burden to brain parenchyma [35-37]. 

Figure 4: Comparative analysis graphs for ac-
curacy, sensitivity and precision (PPV)

Figure 5: Comparative analysis graphs for 
NPV, FPR and FDR

Classification of Relapsing Remitting Multiple Sclerosis Patients

MLP RBF ENN-AIC
RRMS Normal RRMS Normal RRMS Normal

RRMS 16 14 16 14 26 4
Normal 11 19 8 22 2 28
Accuracy 0.583 0.633 0.900
Sensitivity 0.592 0.666 0.928
Precision (PPV) 0.533 0.533 0.866
NPV 0.633 0.733 0.933
FPR 0.424 0.388 0.125
FDR 0.466 0.466 0.133

Table 5: Confusion matrix measurements of three ANN algorithms.
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Temporal connectives processing along with 
the identification and classification of human 
brain regions for decision making in fMRI 
have also been investigated with the help of 
ANN methods [38]. However so far, ANN has 
not been used to diagnose and classify MS pa-
tients based on QMTI-T1 data. 

In general, the performance of ANNs is 
promising, but the results of this study indi-
cate that the ENN-AIC model could identify a 
high percentage of RRMS subjects with more 
precision. The comparison results demon-
strate that ENN-AIC algorithm as an effective 
neural network performed the best among all 
three proposed ANN models in terms of ac-
curacy, sensitivity and precision. According to 
the results obtained in Table 5, it can be seen 
that ENN-AIC has obtained the classifica-
tion accuracy of 0.900 compared with other 
classifiers as the case of RBF giving 0.633 as 
well as in the case of MLP giving 0.583. In 
the case of sensitivity, it was obtained 0.928 
for ENN-AIC, 0.666 for RBF and 0.592 for 
MLP. For precision, the result of ENN-AIC is 
0.866, RBF is 0.533 and 0.533 for MLP. Ta-
ble 5 also reveals NPV, FPR and FDR scores 

for all the evaluated ANN algorithms. As ex-
pected, ENN-AIC performs the best obtaining 
of 0.933, 0.125 and 0.133 for NPV, FPR and 
FDR, respectively. 

The graphical representation for evaluat-
ing the performance of three proposed ANNs 
models in Figure (6), implies that ENN-AIC 
algorithm corresponding to green line is able 
to track and estimate actual data more correct-
ly. After that, RBF and MLP algorithms are ar-
ranged respectively. There are two reasons to 
explain why ENN-AIC model performs better. 
First, AIC determines the best component net-
work weights and second, ranks them within 
ENN. This way, it helps to find the optimal 
ANN architecture [39].    

The findings of previous studies suggest that 
QMTI-T1 parameters can detect the disease 
progression by quantitatively assessing the 
microscopic changes and neural degenerative 
processes in normal appearing white matter. 
However, ANNs improve the RRMS diagnos-
tic precision using these QMTI-T1 measure-
ments.   

In the future, the use of an effective neural 
network model based on QMTI-T1 parame-
ters can be generalized to clinical detection of 
other CNS diseases, such as Alzheimer’s and 
stroke. Decision support systems can also be 
designed in the form of ANN software based 
on the quantitative information obtained from 
various MRI modalities. These systems make 
patient identification more reliable and pro-
mote patient satisfaction.

Conclusion
It was demonstrated that ENN-AIC model 

introduces a more valid classifier for RRMS 
patients from healthy subjects. By increasing 
the accuracy of ANN function, the probabil-
ity of disease false detection is reduced, which 
helps to follow the patient condition using the 
dataset of advanced MRI techniques.
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