Document Type : Review Article

Authors

1 Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

5 School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

6 School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

7 Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

10.31661/jbpe.v0i0.2106-1355

Abstract

Research conducted over the years has established that artificial light at night (ALAN), particularly short wavelengths in the blue region (~400–500 nm), can disrupt the circadian rhythm, cause sleep disturbances, and lead to metabolic dysregulation. With the increasing number of people spending considerable amounts of time at home or work staring at digital screens such as smartphones, tablets, and laptops, the negative impacts of blue light are becoming more apparent. While blue wavelengths during the day can enhance attention and reaction times, they are disruptive at night and are associated with a wide range of health problems such as poor sleep quality, mental health problems, and increased risk of some cancers. The growing global concern over the detrimental effects of ALAN on human health is supported by epidemiological and experimental studies, which suggest that exposure to ALAN is associated with disorders like type 2 diabetes, obesity, and increased risk of breast and prostate cancer. Moreover, several studies have reported a connection between ALAN, night-shift work, reduced cognitive performance, and a higher likelihood of human errors. The purpose of this paper is to review the biological impacts of blue light exposure on human cognitive functions and vision quality. Additionally, studies indicating a potential link between exposure to blue light from digital screens and increased risk of breast cancer are also reviewed. However, more research is needed to fully comprehend the relationship between blue light exposure and adverse health effects, such as the risk of breast cancer.

Highlights

Masoud Haghani (Google Scholar)

Seyed Mohammad Javad Mortazavi (Google Scholar)

Keywords

  1. Edgar RS, Green EW, Zhao Y, Van Ooijen G, Olmedo M, Qin X, et al. Peroxiredoxins are conserved markers of circadian rhythms. 2012;485(7399):459-64. doi: 10.1038/nature11088. PubMed PMID: 22622569. PubMed PMCID: PMC3398137.
  2. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15(suppl_2):R271-7. doi: 10.1093/hmg/ddl207. PubMed PMID: 16987893.
  3. Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci. 2003;23(18):7093-106. doi: 10.1523/JNEUROSCI.23-18-07093.2003. PubMed PMID: 12904470. PubMed PMCID: PMC6740653.
  4. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. 2000;288(5466):682-5. doi: 10.1126/science.288.5466.682. PubMed PMID: 10784453.
  5. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101(15):5339-46. doi: 10.1073/pnas.0308709101. PubMed PMID: 14963227. PubMed PMCID: PMC397382.
  6. Gronfier C. The good blue and chronobiology: light and non-visual functions. International Review of Ophthalmic Optics, N68, Points de Vue; 2013.
  7. Studer P, Brucker JM, Haag C, Van Doren J, Moll GH, Heinrich H, Kratz O. Effects of blue- and red-enriched light on attention and sleep in typically developing adolescents. Physiol Behav. 2019;199:11-19. doi: 10.1016/j.physbeh.2018.10.015. PubMed PMID: 30381244.
  8. Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol. 2002;12(18):1574-83. doi: 10.1016/s0960-9822(02)01145-4. PubMed PMID: 12372249.
  9. Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. 2006;444(7119):610-3. doi: 10.1038/nature05278. PubMed PMID: 17086200.
  10. Nishida M, Pearsall J, Buckner RL, Walker MP. REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex. 2009;19(5):1158-66. doi: 10.1093/cercor/bhn155 PubMed PMID: 18832332. PubMed PMCID: PMC2665156.
  11. Palmer CA, Alfano CA. Sleep and emotion regulation: An organizing, integrative review. Sleep Med Rev. 2017;31:6-16. doi: 10.1016/j.smrv.2015.12.006. PubMed PMID: 26899742.
  12. Metz AJ, Klein SD, Scholkmann F, Wolf U. Continuous coloured light altered human brain haemodynamics and oxygenation assessed by systemic physiology augmented functional near-infrared spectroscopy. Sci Rep. 2017;7(1):10027. doi: 10.1038/s41598-017-09970-z. PubMed PMID: 28855556. PubMed PMCID: PMC5577215.
  13. Cajochen C, Münch M, Kobialka S, Kräuchi K, Steiner R, Oelhafen P, et al. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab. 2005;90(3):1311-6. doi: 10.1210/jc.2004-0957. PubMed PMID: 15585546.
  14. Giudice A, Crispo A, Grimaldi M, Polo A, Bimonte S, Capunzo M, et al. The Effect of Light Exposure at Night (LAN) on Carcinogenesis via Decreased Nocturnal Melatonin Synthesis. 2018;23(6):1308. doi: 10.3390/molecules23061308. PubMed PMID: 29844288. PubMed PMCID: PMC6100442.
  15. Vandewalle G, Maquet P, Dijk DJ. Light as a modulator of cognitive brain function. Trends Cogn Sci. 2009;13(10):429-38. doi: 10.1016/j.tics.2009.07.004. PubMed PMID: 19748817.
  16. Daneault V, Hébert M, Albouy G, Doyon J, Dumont M, Carrier J, Vandewalle G. Aging reduces the stimulating effect of blue light on cognitive brain functions. 2014;37(1):85-96. doi: 10.5665/sleep.3314. PubMed PMID: 24381372. PubMed PMCID: PMC3865352.
  17. Katsuura T, Yasuda T, Shimomura Y, Iwanaga K. Effects of monochromatic light on time sense for short intervals. J Physiol Anthropol. 2007;26(2):95-100. doi: 10.2114/jpa2.26.95. PubMed PMID: 17435350.
  18. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. 2002;295(5557):1065-70. doi: 10.1126/science.1069609. PubMed PMID: 11834834. PubMed PMCID: PMC2885915.
  19. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998;95(1):340-5. doi: 10.1073/pnas.95.1.340. PubMed PMID: 9419377. PubMed PMCID: PMC18217.
  20. Alkozi HA, Wang X, Perez De Lara MJ, Pintor J. Presence of melanopsin in human crystalline lens epithelial cells and its role in melatonin synthesis. Exp Eye Res. 2017;154:168-76. doi: 10.1016/j.exer.2016.11.019. PubMed PMID: 27914990.
  21. Bellingham J, Foster RG. Opsins and mammalian photoentrainment. Cell Tissue Res. 2002;309(1):57-71. doi: 10.1007/s00441-002-0573-4. PubMed PMID: 12111537.
  22. Baver SB, Pickard GE, Sollars PJ, Pickard GE. Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci. 2008;27(7):1763-70. doi: 10.1111/j.1460-9568.2008.06149.x. PubMed PMID: 18371076.
  23. Wurtman RJ, Axelrod J, Phillips LS. Melatonin Synthesis In The Pineal Gland: Control By Light. 1963;142(3595):1071-3. doi: 10.1126/science.142.3595.1071. PubMed PMID: 14068225.
  24. McIntyre IM, Norman TR, Burrows GD, Armstrong SM. Human melatonin suppression by light is intensity dependent. J Pineal Res. 1989;6(2):149-56. doi: 10.1111/j.1600-079x.1989.tb00412.x. PubMed PMID: 2915324.
  25. Rajaratnam SM, Middleton B, Stone BM, Arendt J, Dijk DJ. Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans. J Physiol. 2004;561(Pt 1):339-51. doi: 10.1113/jphysiol.2004.073742. PubMed PMID: 15459246. PubMed PMCID: PMC1665336.
  26. Souman JL, Tinga AM, Te Pas SF, Van Ee R, Vlaskamp BNS. Acute alerting effects of light: A systematic literature review. Behav Brain Res. 2018;337:228-39. doi: 10.1016/j.bbr.2017.09.016. PubMed PMID: 28912014.
  27. Dollins AB, Lynch HJ, Wurtman RJ, Deng MH, Lieberman HR. Effects of illumination on human nocturnal serum melatonin levels and performance. Physiol Behav. 1993;53(1):153-60. doi: 10.1016/0031-9384(93)90024-a. PubMed PMID: 8434055.
  28. Czeisler CA, Weitzman ED, Moore-Ede MC, Zimmerman JC, Knauer RS. Human sleep: its duration and organization depend on its circadian phase. 1980;210(4475):1264-7. doi: 10.1126/science.7434029. PubMed PMID: 7434029.
  29. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009;106(11):4453-8. doi: 10.1073/pnas.0808180106. PubMed PMID: 19255424. PubMed PMCID: PMC2657421.
  30. Killgore WDS, Kent HC, Knight SA, Alkozei A. Changes in morning salivary melatonin correlate with prefrontal responses during working memory performance. 2018;29(6):488-94. doi: 10.1097/WNR.0000000000001002. PubMed PMID: 29528974.
  31. Te Kulve M, Schlangen L, Schellen L, Souman JL, Van Marken Lichtenbelt W. Correlated colour temperature of morning light influences alertness and body temperature. Physiol Behav. 2018;185:1-13. doi: 10.1016/j.physbeh.2017.12.004. PubMed PMID: 29223712.
  32. McGlashan EM, Poudel GR, Vidafar P, Drummond SPA, Cain SW. Imaging Individual Differences in the Response of the Human Suprachiasmatic Area to Light. Front Neurol. 2018;9:1022. doi: 10.3389/fneur.2018.01022. PubMed PMID: 30555405. PubMed PMCID: PMC6281828.
  33. Kozaki T, Kubokawa A, Taketomi R, Hatae K. Light-induced melatonin suppression at night after exposure to different wavelength composition of morning light. Neurosci Lett. 2016;616:1-4. doi: 10.1016/j.neulet.2015.12.063. PubMed PMID: 26777427.
  34. Drozdova A, Okuliarova M, Zeman M. The effect of different wavelengths of light during incubation on the development of rhythmic pineal melatonin biosynthesis in chick embryos. 2019;13(8):1635-40. doi: 10.1017/S1751731118003695. PubMed PMID: 30614433.
  35. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. 1980;210(4475):1267-9. doi: 10.1126/science.7434030. PubMed PMID: 7434030.
  36. Badia P, Myers B, Boecker M, Culpepper J, Harsh JR. Bright light effects on body temperature, alertness, EEG and behavior. Physiol Behav. 1991;50(3):583-8. doi: 10.1016/0031-9384(91)90549-4. PubMed PMID: 1801013.
  37. Green A, Cohen-Zion M, Haim A, Dagan Y. Evening light exposure to computer screens disrupts human sleep, biological rhythms, and attention abilities. Chronobiol Int. 2017;34(7):855-65. doi: 10.1080/07420528.2017.1324878. PubMed PMID: 28548897.
  38. Gooley JJ, Chamberlain K, Smith KA, Khalsa SB, Rajaratnam SM, Van Reen E, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011;96(3):E463-72. doi: 10.1210/jc.2010-2098. PubMed PMID: 21193540. PubMed PMCID: PMC3047226.
  39. Lledó VE, Alkozi HA, Pintor J. Yellow Filter Effect on Melatonin Secretion in the Eye: Role in IOP Regulation. Curr Eye Res. 2019;44(6):614-8. doi: 10.1080/02713683.2019.1570276. PubMed PMID: 30640554.
  40. Gradisar M, Gardner G, Dohnt H. Recent worldwide sleep patterns and problems during adolescence: a review and meta-analysis of age, region, and sleep. Sleep Med. 2011;12(2):110-8. doi: 10.1016/j.sleep.2010.11.008. PubMed PMID: 21257344.
  41. Alkozei A, Smith R, Pisner DA, Vanuk JR, Berryhill SM, Fridman A, et al. Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task. 2016;39(9):1671-80. doi: 10.5665/sleep.6090. PubMed PMID: 27253770. PubMed PMCID: PMC4989256.
  42. Wood B, Rea MS, Plitnick B, Figueiro MG. Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Appl Ergon. 2013;44(2):237-40. doi: 10.1016/j.apergo.2012.07.008. PubMed PMID: 22850476.
  43. Smolders KC, De Kort YA. Investigating daytime effects of correlated colour temperature on experiences, performance, and arousal. Journal of Environmental Psychology. 2017;50:80-93. doi: 10.1016/j.jenvp.2017.02.001.
  44. Shamsul BM, Sia CC, Ng YG, Karmegan K. Effects of light’s colour temperatures on visual comfort level, task performances, and alertness among students. American Journal of Public Health Research. 2013;1(7):159-65. doi: 10.12691/ajphr-1-7-3.
  45. Lee SI, Matsumori K, Nishimura K, Nishimura Y, Ikeda Y, Eto T, Higuchi S. Melatonin suppression and sleepiness in children exposed to blue-enriched white LED lighting at night. Physiol Rep. 2018;6(24):e13942. doi: 10.14814/phy2.13942. PubMed PMID: 30556352. PubMed PMCID: PMC6295443.
  46. Smith A. Effects of caffeine on human behavior. Food Chem Toxicol. 2002;40(9):1243-55. doi: 10.1016/s0278-6915(02)00096-0. PubMed PMID: 12204388.
  47. Wright KP Jr, Badia P, Myers BL, Plenzler SC, Hakel M. Caffeine and light effects on nighttime melatonin and temperature levels in sleep-deprived humans. Brain Res. 1997;747(1):78-84. doi: 10.1016/s0006-8993(96)01268-1. PubMed PMID: 9042530.
  48. Semo M, Peirson S, Lupi D, Lucas RJ, Jeffery G, Foster RG. Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci. 2003;17(9):1793-801. doi: 10.1046/j.1460-9568.2003.02616.x. PubMed PMID: 12752778.
  49. Güler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. 2008;453(7191):102-5. doi: 10.1038/nature06829. PubMed PMID: 18432195. PubMed PMCID: PMC2871301.
  50. Tsai JW, Hannibal J, Hagiwara G, Colas D, Ruppert E, Ruby NF, et al. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-) mice. PLoS Biol. 2009;7(6):e1000125. doi: 10.1371/journal.pbio.1000125. PubMed PMID: 19513122. PubMed PMCID: PMC2688840.
  51. Lupi D, Semo M, Foster RG. Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiol Aging. 2012;33(2):383-92. doi: 10.1016/j.neurobiolaging.2010.03.006. PubMed PMID: 20409612.
  52. Brainard GC, Rollag MD, Hanifin JP. Photic regulation of melatonin in humans: ocular and neural signal transduction. J Biol Rhythms. 1997;12(6):537-46. doi: 10.1177/074873049701200608. PubMed PMID: 9406028.
  53. Charman WN. Age, lens transmittance, and the possible effects of light on melatonin suppression. Ophthalmic Physiol Opt. 2003;23(2):181-7. doi: 10.1046/j.1475-1313.2003.00105.x. PubMed PMID: 12641706.
  54. Scheuermaier KD, Lee JH, Duffy JF. Phase Shifts to a Moderate Intensity Light Exposure in Older Adults: A Preliminary Report. J Biol Rhythms. 2019;34(1):98-104. doi: 10.1177/0748730418818655. PubMed PMID: 30554544. PubMed PMCID: PMC9217104.
  55. Chang AM, Santhi N, St Hilaire M, Gronfier C, Bradstreet DS, Duffy JF, et al. Human responses to bright light of different durations. J Physiol. 2012;590(13):3103-12. doi: 10.1113/jphysiol.2011.226555. PubMed PMID: 22526883. PubMed PMCID: PMC3406393.
  56. Dewan K, Benloucif S, Reid K, Wolfe LF, Zee PC. Light-induced changes of the circadian clock of humans: increasing duration is more effective than increasing light intensity. 2011;34(5):593-9. doi: 10.1093/sleep/34.5.593. PubMed PMID: 21532952. PubMed PMCID: PMC3079938.
  57. Lockley SW, Brainard GC, Czeisler CA. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab. 2003;88(9):4502-5. doi: 10.1210/jc.2003-030570. PubMed PMID: 12970330.
  58. Cajochen C. Alerting effects of light. Sleep Med Rev. 2007;11(6):453-64. doi: 10.1016/j.smrv.2007.07.009. PubMed PMID: 17936041.
  59. Vandewalle G, Schwartz S, Grandjean D, Wuillaume C, Balteau E, Degueldre C, et al. Spectral quality of light modulates emotional brain responses in humans. Proc Natl Acad Sci U S 2010;107(45):19549-54. doi: 10.1073/pnas.1010180107. PubMed PMID: 20974959. PubMed PMCID: PMC2984196.
  60. Mortazavi SAR, Parhoodeh S, Hosseini MA, Arabi H, Malakooti H, Nematollahi S, et al. Blocking Short-Wavelength Component of the Visible Light Emitted by Smartphones' Screens Improves Human Sleep Quality. J Biomed Phys Eng. 2018;8(4):375-80. PubMed PMID: 30568927. PubMed PMCID: PMC6280115.
  61. Campbell SS, Dawson D. Enhancement of nighttime alertness and performance with bright ambient light. Physiol Behav. 1990;48(2):317-20. doi: 10.1016/0031-9384(90)90320-4. PubMed PMID: 2255738.
  62. Lehrl S, Gerstmeyer K, Jacob JH, Frieling H, Henkel AW, Meyrer R, et al. Blue light improves cognitive performance. J Neural Transm (Vienna). 2007;114(4):457-60. doi: 10.1007/s00702-006-0621-4. PubMed PMID: 17245536.
  63. Spitschan M, Lazar R, Cajochen C. Visual and non-visual properties of filters manipulating short-wavelength light. Ophthalmic Physiol Opt. 2019;39(6):459-68. doi: 10.1111/opo.12648. PubMed PMID: 31696535. PubMed PMCID: PMC6887545.
  64. Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci Rep. 2014;4:5223. doi: 10.1038/srep05223. PubMed PMID: 24909301. PubMed PMCID: PMC4048889.
  65. National Sleep Foundation. Summary of Findings "Sleep in America ® poll". 2005.
  66. Chinoy ED, Duffy JF, Czeisler CA. Unrestricted evening use of light-emitting tablet computers delays self-selected bedtime and disrupts circadian timing and alertness. Physiol Rep. 2018;6(10):e13692. doi: 10.14814/phy2.13692. PubMed PMID: 29845764. PubMed PMCID: PMC5974725.
  67. Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A. 2015;112(4):1232-7. doi: 10.1073/pnas.1418490112. PubMed PMID: 25535358. PubMed PMCID: PMC4313820.
  68. Heo JY, Kim K, Fava M, Mischoulon D, Papakostas GI, Kim MJ, et al. Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison. J Psychiatr Res. 2017;87:61-70. doi: 10.1016/j.jpsychires.2016.12.010. PubMed PMID: 28017916.
  69. Scholkmann F, Hafner T, Metz AJ, Wolf M, Wolf U. Effect of short-term colored-light exposure on cerebral hemodynamics and oxygenation, and systemic physiological activity. Neurophotonics. 2017;4(4):045005. doi: 10.1117/1.NPh.4.4.045005. PubMed PMID: 29181427. PubMed PMCID: PMC5695650.
  70. Alkozei A, Dailey NS, Bajaj S, Vanuk JR, Raikes AC, Killgore WD. Blue Wavelength Light and its Effects on Functional Brain Connectivity. Biological Psychiatry. 2020;87(9):S146. doi: /10.1016/j.biopsych.2020.02.388.
  71. Funahashi S. Working Memory in the Prefrontal Cortex. Brain Sci. 2017;7(5):49. doi: 10.3390/brainsci7050049. PubMed PMID: 28448453. PubMed PMCID: PMC5447931.
  72. Uytun MC. Development period of prefrontal cortex. In: Prefrontal Cortex. IntechOpen; 2018.
  73. Cajochen C, Zeitzer JM, Czeisler CA, Dijk DJ. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav Brain Res. 2000;115(1):75-83. doi: 10.1016/s0166-4328(00)00236-9. PubMed PMID: 10996410.
  74. Myers BL, Badia P. Immediate effects of different light intensities on body temperature and alertness. Physiol Behav. 1993;54(1):199-202. doi: 10.1016/0031-9384(93)90067-p. PubMed PMID: 8327605.
  75. Sahin L, Wood BM, Plitnick B, Figueiro MG. Daytime light exposure: effects on biomarkers, measures of alertness, and performance. Behav Brain Res. 2014;274:176-85. doi: 10.1016/j.bbr.2014.08.017. PubMed PMID: 25131505.
  76. Vandewalle G, Gais S, Schabus M, Balteau E, Carrier J, Darsaud A, et al. Wavelength-dependent modulation of brain responses to a working memory task by daytime light exposure. Cereb Cortex. 2007;17(12):2788-95. doi: 10.1093/cercor/bhm007. PubMed PMID: 17404390.
  77. Vandewalle G, Collignon O, Hull JT, Daneault V, Albouy G, Lepore F, et al. Blue light stimulates cognitive brain activity in visually blind individuals. J Cogn Neurosci. 2013;25(12):2072-85. doi: 10.1162/jocn_a_00450. PubMed PMID: 23859643. PubMed PMCID: PMC4497579.
  78. Alkozei A, Smith R, Dailey NS, Bajaj S, Killgore WDS. Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance. PLoS One. 2017;12(9):e0184884. doi: 10.1371/journal.pone.0184884. PubMed PMID: 28922397. PubMed PMCID: PMC5602660.
  79. Akerstedt T. Psychological and psychophysiological effects of shift work. Scand J Work Environ Health. 1990;16(Suppl 1):67-73. doi: 10.5271/sjweh.1819. PubMed PMID: 2189223.
  80. Akerstedt T. Work hours, sleepiness and the underlying mechanisms. J Sleep Res. 1995;4(S2):15-22. doi: 10.1111/j.1365-2869.1995.tb00221.x. PubMed PMID: 10607206.
  81. Eastman CI, Boulos Z, Terman M, Campbell SS, Dijk DJ, Lewy AJ. Light treatment for sleep disorders: consensus report. VI. Shift work. J Biol Rhythms. 1995;10(2):157-64. doi: 10.1177/074873049501000208. PubMed PMID: 7632989.
  82. Benhaberou-Brun D, Lambert C, Dumont M. Association between melatonin secretion and daytime sleep complaints in night nurses. Sleep. 1999;22(7):877-85. doi: 10.1093/sleep/22.7.877. PubMed PMID: 10566906.
  83. Dumont M, Lanctôt V, Cadieux-Viau R, Paquet J. Melatonin production and light exposure of rotating night workers. Chronobiol Int. 2012;29(2):203-10. doi: 10.3109/07420528.2011.647177. PubMed PMID: 22324558.
  84. Thorpy MJ. Classification of sleep disorders. Neurotherapeutics. 2012;9(4):687-701. doi: 10.1007/s13311-012-0145-6. PubMed PMID: 22976557. PubMed PMCID: PMC3480567.
  85. Sasseville A, Hébert M. Using blue-green light at night and blue-blockers during the day to improves adaptation to night work: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(7):1236-42. doi: 10.1016/j.pnpbp.2010.06.027. PubMed PMID: 20599459.
  86. Casper RF, Rahman S. Spectral modulation of light wavelengths using optical filters: effect on melatonin secretion. Fertil Steril. 2014;102(2):336-8. doi: 10.1016/j.fertnstert.2014.06.006. PubMed PMID: 25015557.
  87. Van Der Lely S, Frey S, Garbazza C, Wirz-Justice A, Jenni OG, Steiner R, et al. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J Adolesc Health. 2015;56(1):113-9. doi: 10.1016/j.jadohealth.2014.08.002. PubMed PMID: 25287985.
  88. Perez Algorta G, Van Meter A, Dubicka B, Jones S, Youngstrom E, Lobban F. Blue blocking glasses worn at night in first year higher education students with sleep complaints: a feasibility study. Pilot Feasibility Stud. 2018;4:166. doi: 10.1186/s40814-018-0360-y. PubMed PMID: 30410784. PubMed PMCID: PMC6211454.
  89. Hayashi K, Hayashi H. Visual function in patients with yellow tinted intraocular lenses compared with vision in patients with non-tinted intraocular lenses. Br J Ophthalmol. 2006;90(8):1019-23. doi: 10.1136/bjo.2006.090712. PubMed PMID: 16597662. PubMed PMCID: PMC1857188.
  90. Colombo L, Melardi E, Ferri P, Montesano G, Samir Attaalla S, Patelli F, et al. Visual function improvement using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by retinal diseases. BMC Ophthalmol. 2017;17(1):149. doi: 10.1186/s12886-017-0545-9. PubMed PMID: 28830379. PubMed PMCID: PMC5568170.
  91. Davison JA, Patel AS. Light normalizing intraocular lenses. Int Ophthalmol Clin. 2005;45(1):55-106. PubMed PMID: 15632528.
  92. Wirtitsch MG, Schmidinger G, Prskavec M, Rubey M, Skorpik F, Heinze G, et al. Influence of blue-light-filtering intraocular lenses on color perception and contrast acuity. 2009;116(1):39-45. doi: 10.1016/j.ophtha.2008.08.035. PubMed PMID: 19118695.
  93. Bandyopadhyay S, Saha M, Chakrabarti A, Sinha A. Effect on contrast sensitivity after clear, yellow and orange intraocular lens implantation. Int Ophthalmol. 2016;36(3):313-8. doi: 10.1007/s10792-015-0120-4. PubMed PMID: 26286756.
  94. Alzahrani HS, Khuu SK, Roy M. Modelling the effect of commercially available blue-blocking lenses on visual and non-visual functions. Clin Exp Optom. 2020;103(3):339-46. doi: 10.1111/cxo.12959. PubMed PMID: 31441122.
  95. Daneault V, Dumont M, Massé É, Forcier P, Boré A, Lina JM, et al. Plasticity in the Sensitivity to Light in Aging: Decreased Non-visual Impact of Light on Cognitive Brain Activity in Older Individuals but No Impact of Lens Replacement. Front Physiol. 2018;9:1557. doi: 10.3389/fphys.2018.01557. PubMed PMID: 30459639. PubMed PMCID: PMC6232421.
  96. Downes SM. Ultraviolet or blue-filtering intraocular lenses: what is the evidence? Eye (Lond). 2016;30(2):215-21. doi: 10.1038/eye.2015.267. PubMed PMID: 26742866. PubMed PMCID: PMC4763142.
  97. Li X, Kelly D, Nolan JM, Dennison JL, Beatty S. The evidence informing the surgeon's selection of intraocular lens on the basis of light transmittance properties. Eye (Lond). 2017;31(2):258-72. doi: 10.1038/eye.2016.266. PubMed PMID: 27935597. PubMed PMCID: PMC5306461.
  98. Mainster MA, Sparrow JR. How much blue light should an IOL transmit? Br J Ophthalmol. 2003;87(12):1523-9. doi: 10.1136/bjo.87.12.1523. PubMed PMID: 14660465. PubMed PMCID: PMC1920564.
  99. Wohlfart C, Tschuschnig K, Fellner P, Weiss K, Vidic B, El-Shabrawi Y, Ardjomand N. Visual function with blue light filter IOLs. Klin Monbl Augenheilkd. 2007;224(1):23-7. doi: 10.1055/s-2006-927275. PubMed PMID: 17260315.
  100. Eperjesi F, Fowler CW, Evans BJ. The effects of coloured light filter overlays on reading rates in age-related macular degeneration. Acta Ophthalmol Scand. 2004;82(6):695-700. doi: 10.1111/j.1600-0420.2004.00371.x. PubMed PMID: 15606466.
  101. Leung TW, Li RW, Kee CS. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances. PLoS One. 2017;12(1):e0169114. doi: 10.1371/journal.pone.0169114. PubMed PMID: 28045969. PubMed PMCID: PMC5207664.
  102. Niwano Y, Iwasawa A, Tsubota K, Ayaki M, Negishi K. Protective effects of blue light-blocking shades on phototoxicity in human ocular surface cells. BMJ Open Ophthalmol. 2019;4(1):e000217. doi: 10.1136/bmjophth-2018-000217. PubMed PMID: 31245609. PubMed PMCID: PMC6557184.
  103. Klein R, Wang Q, Klein BE, Moss SE, Meuer SM. The relationship of age-related maculopathy, cataract, and glaucoma to visual acuity. Invest Ophthalmol Vis Sci. 1995;36(1):182-91. PubMed PMID: 7822146.
  104. Taylor HR, Muñoz B, West S, Bressler NM, Bressler SB, Rosenthal FS. Visible light and risk of age-related macular degeneration. Trans Am Ophthalmol Soc. 1990;88:163-73. PubMed PMID: 2095019. PubMed PMCID: PMC1298584.
  105. Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis. 1999;5:32. PubMed PMID: 10562656. PubMed PMCID: PMC1773059.
  106. De Jong PT. Age-related macular degeneration. N Engl J Med. 2006;355(14):1474-85. doi: 10.1056/NEJMra062326. PubMed PMID: 17021323.
  107. Gray R, Perkins SA, Suryakumar R, Neuman B, Maxwell WA. Reduced effect of glare disability on driving performance in patients with blue light-filtering intraocular lenses. J Cataract Refract Surg. 2011;37(1):38-44. doi: 10.1016/j.jcrs.2010.07.034. PubMed PMID: 21183098.
  108. Gray R, Hill W, Neuman B, Houtman D, Potvin R. Effects of a blue light-filtering intraocular lens on driving safety in glare conditions. J Cataract Refract Surg. 2012;38(5):816-22. doi: 10.1016/j.jcrs.2011.11.047. PubMed PMID: 22520305.
  109. Cuthbertson FM, Peirson SN, Wulff K, Foster RG, Downes SM. Blue light-filtering intraocular lenses: review of potential benefits and side effects. J Cataract Refract Surg. 2009;35(7):1281-97. doi: 10.1016/j.jcrs.2009.04.017. PubMed PMID: 19545821.
  110. Do MT, Yau KW. Intrinsically photosensitive retinal ganglion cells. Physiol Rev. 2010;90(4):1547-81. doi: 10.1152/physrev.00013.2010. PubMed PMID: 20959623. PubMed PMCID: PMC4374737.
  111. Ayaki M, Hattori A, Maruyama Y, Nakano M, Yoshimura M, Kitazawa M, et al. Protective effect of blue-light shield eyewear for adults against light pollution from self-luminous devices used at night. Chronobiol Int. 2016;33(1):134-9. doi: 10.3109/07420528.2015.1119158. PubMed PMID: 26730983.
  112. Giannos SA, Kraft ER, Lyons LJ, Gupta PK. Spectral Evaluation of Eyeglass Blocking Efficiency of Ultraviolet/High-energy Visible Blue Light for Ocular Protection. Optom Vis Sci. 2019;96(7):513-22. doi: 10.1097/OPX.0000000000001393. PubMed PMID: 31274740. PubMed PMCID: PMC6615932.
  113. Vandewalle G, Archer SN, Wuillaume C, Balteau E, Degueldre C, Luxen A, et al. Effects of light on cognitive brain responses depend on circadian phase and sleep homeostasis. J Biol Rhythms. 2011;26(3):249-59. doi: 10.1177/0748730411401736. PubMed PMID: 21628552.
  114. Chellappa SL, Steiner R, Blattner P, Oelhafen P, Götz T, Cajochen C. Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? PLoS One. 2011;6(1):e16429. doi: 10.1371/journal.pone.0016429. PubMed PMID: 21298068. PubMed PMCID: PMC3027693.
  115. Dai Q, Uchiyama Y, Lee S, Shimomura Y, Katsuura T. Effect of quantity and intensity of pulsed light on human non-visual physiological responses. J Physiol Anthropol. 2017;36(1):22. doi: 10.1186/s40101-017-0137-7. PubMed PMID: 28446222. PubMed PMCID: PMC5405487.
  116. Thorne H, Hampton S, Morgan L, Skene DJ, Arendt J. Differences in sleep, light, and circadian phase in offshore 18:00-06:00 h and 19:00-07:00 h shift workers. Chronobiol Int. 2008;25(2):225-35. doi: 10.1080/07420520802106850. PubMed PMID: 18484362.
  117. Gumenyuk V, Roth T, Drake CL. Circadian phase, sleepiness, and light exposure assessment in night workers with and without shift work disorder. Chronobiol Int. 2012;29(7):928-36. doi: 10.3109/07420528.2012.699356. PubMed PMID: 22823876.
  118. Grundy A, Sanchez M, Richardson H, Tranmer J, Borugian M, Graham CH, Aronson KJ. Light intensity exposure, sleep duration, physical activity, and biomarkers of melatonin among rotating shift nurses. Chronobiol Int. 2009;26(7):1443-61. doi: 10.3109/07420520903399987. PubMed PMID: 19916841.
  119. Rahman SA, Shapiro CM, Wang F, Ainlay H, Kazmi S, Brown TJ, Casper RF. Effects of filtering visual short wavelengths during nocturnal shiftwork on sleep and performance. Chronobiol Int. 2013;30(8):951-62. doi: 10.3109/07420528.2013.789894. PubMed PMID: 23834705. PubMed PMCID: PMC3786545.
  120. Henriksen TEG, Grønli J, Assmus J, Fasmer OB, Schoeyen H, Leskauskaite I, Bjorke-Bertheussen J, et al. Blue-blocking glasses as additive treatment for mania: Effects on actigraphy-derived sleep parameters. J Sleep Res. 2020;29(5):e12984. doi: 10.1111/jsr.12984. PubMed PMID: 31967375.
  121. Janků K, Šmotek M, Fárková E, Kopřivová J. Block the light and sleep well: Evening blue light filtration as a part of cognitive behavioral therapy for insomnia. Chronobiol Int. 2020;37(2):248-59. doi: 10.1080/07420528.2019.1692859. PubMed PMID: 31752544.
  122. Mortazavi SAR, Tahmasebi S, Parsaei H, Taleie A, Faraz M, Rezaianzadeh A, et al. Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens. J Biomed Phys Eng. 2022;12(6):637-644. doi: 10.31661/jbpe.v0i0.2105-1341. PubMed PMID: 36569561. PubMed PMCID: PMC9759638.
  123. Mortazavi SAR, Mortazavi SMJ. Women with hereditary breast cancer predispositions should avoid using their smartphones, tablets, and laptops at night. Iran J Basic Med Sci. 2018;21(2):112-115. doi: 10.22038/IJBMS.2018.27711.6751. PubMed PMID: 29456806. PubMed PMCID: PMC5811748.
  124. Arjmandi N, Mortazavi G, Zarei S, Faraz M, Mortazavi SAR. Can Light Emitted from Smartphone Screens and Taking Selfies Cause Premature Aging and Wrinkles? J Biomed Phys Eng. 2018;8(4):447-452. PubMed PMID: 30568934. PubMed PMCID: PMC6280109.
  125. Mortazavi SMJ, Mortazavi SAR, Habibzadeh P, Mortazavi G. Is it Blue Light or Increased Electromagnetic Fields which Affects the Circadian Rhythm in People who Use Smartphones at Night. Iran J Public Health. 2016;45(3):405-6. PubMed PMID: 27141511. PubMed PMCID: PMC4851763.
  126. Taheri M, Darabyan M, Izadbakhsh E, Nouri F, Haghani M, Mortazavi SAR, et al. Exposure to Visible Light Emitted from Smartphones and Tablets Increases the Proliferation of Staphylococcus aureus: Can this be Linked to Acne? J Biomed Phys Eng. 2017;7(2):163-8. PubMed PMID: 28580338. PubMed PMCID: PMC5447253.
  127. Mortazavi SMJ, Abbasi S, Mortazavi SAR. Regarding: “The Association Between Smartphone Use and Breast Cancer Risk Among Taiwanese Women: A Case-Control Study”. Cancer Manag Res. 2020;12:12535-6. doi: 10.2147/CMAR.S292761. PubMed PMID: 33324097. PubMed PMCID: PMC7732173.
  128. Mortazavi SMJ. Comment on ‘Domestic light at night and breast cancer risk: a prospective analysis of 105 000 UK women in the Generations Study’. Br J Cancer. 2018;118(11):1536. doi: 10.1038/s41416-018-0060-7. PubMed PMID: 29769746. PubMed PMCID: PMC5988714.
  129. Mortazavi SMJ. Re: Insomnia and Mild Cognitive Impairment. Gerontol Geriatr Med. 2018;4:1-2. doi: 10.1177/2333721418787840. PubMed PMID: 30046649. PubMed PMCID: PMC6055093.
  130. Mortazavi SMJ, Dehghani Nazhvani A, Paknahad M. Synergistic Effect of Radiofrequency Electromagnetic Fields of Dental Light Cure Devices and Mobile Phones Accelerates the Microleakage of Amalgam Restorations: An in vitro Study. J Biomed Phys Eng. 2019;9(2):227-32. doi: 10.31661/jbpe.v9i2Apr.596. PubMed PMID: 31214528. PubMed PMCID: PMC6538905.
  131. Shih YW, Hung CS, Huang CC, Chou KR, Niu SF, Chan S, Tsai HT. The Association Between Smartphone Use and Breast Cancer Risk Among Taiwanese Women: A Case-Control Study. Cancer Manag Res. 2020;12:10799-807. doi: 10.2147/CMAR.S267415. PubMed PMID: 33149685. PubMed PMCID: PMC7605549.
  132. James P, Bertrand KA, Hart JE, Schernhammer ES, Tamimi RM, Laden F. Outdoor Light at Night and Breast Cancer Incidence in the Nurses’ Health Study II. Environ Health Perspect. 2017;125(8):087010. doi: 10.1289/EHP935. PubMed PMID: 28886600. PubMed PMCID: PMC5783660.
  133. Lai KY, Sarkar C, Ni MY, Cheung LWT, Gallacher J, Webster C. Exposure to light at night (LAN) and risk of breast cancer: A systematic review and meta-analysis. Sci Total Environ. 2021;762:143159. doi: 10.1016/j.scitotenv.2020.143159. PubMed PMID: 33131852.
  134. Al-Naggar RA, Anil Sh. Artificial Light at Night and Cancer: Global Study. Asian Pac J Cancer Prev. 2016;17(10):4661-4. doi: 10.22034/apjcp.2016.17.10.4661. PubMed PMID: 27892680. PubMed PMCID: PMC5454613.