Document Type : Mini Review

Authors

1 Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

3 School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 MVLS College, The University of Glasgow, Glasgow, Scotland, United Kingdom

5 Department of Physics, East Carolina University, Greenville, USA

6 Royal Military College of Canada, Kingston, ON, Canada

7 Department of Radiation Physics, Technische Universität Wien, Atominstitut, Vienna, Austria

10.31661/jbpe.v0i0.2402-1729

Abstract

Humans have generally evolved some adaptations to protect against UV and different levels of background ionizing radiation. Similarly, elephants and whales have evolved adaptations to protect against cancer, such as multiple copies of the tumor suppressor gene p53, due to their large size and long lifespan. The difference in cancer protection strategies between humans and elephants/whales depends on genetics, lifestyle, environmental exposures, and evolutionary pressures. In this paper, present how the differences in evolutionary adaptations between humans and elephants could explain why elephants have evolved a protective mechanism against cancer, whereas humans have not. Humans living in regions with high levels of background radiation, e.g. in Ramsar, Iran where exposure rates exceed those on the surface of Mars, seem to have developed some kind of protection against the ionizing radiation. However, humans in general have not developed cancer-fighting adaptations, so they instead rely on medical technologies and interventions. The difference in cancer protection strategies between humans and elephants/whales depends on genetics, lifestyle, environmental exposures, and evolutionary pressures. In this paper, we discuss how the differences in evolutionary adaptations between humans and elephants could explain why elephants have evolved a protective mechanism against cancer, whereas humans have not. Studying elephant adaptations may provide insights into new cancer prevention and treatment strategies for humans, but further research is required to fully understand the evolutionary disparities.

Highlights

Seyed Mohammad Javad Mortazavi (Google Scholar)

Lembit Sihver (Google Scholar)

Keywords

  1. Peto R, Roe FJ, Lee PN, Levy L, Clack J. Cancer and ageing in mice and men. Br J Cancer. 1975;32(4):411-26. doi: 10.1038/bjc.1975.242. PubMed PMID: 1212409. PubMed PMCID: PMC2024769.
  2. Caulin AF, Maley CC. Peto’s Paradox: evolution’s prescription for cancer prevention. Trends Ecol Evol. 2011;26(4):175-82. doi: 10.1016/j.tree.2011.01.002. PubMed PMID: 21296451. PubMed PMCID: PMC3060950.
  3. Orr HA. The genetic theory of adaptation: a brief history. Nat Rev Genet. 2005;6(2):119-27. doi: 10.1038/nrg1523. PubMed PMID: 15716908.
  4. Lande R, Shannon S. The Role of Genetic Variation in A PubMed daptation and Population Persistence in a Changing Environment. Evolution. 1996;50(1):434-7. doi: 10.1111/j.1558-5646.1996.tb04504.x. PubMed PMID: 28568879.
  5. Schondube JE, Martinez del Rio C. The flowerpiercers’ hook: an experimental test of an evolutionary trade-off. Proc Biol Sci. 2003;270(1511):195-8. doi: 10.1098/rspb.2002.2231. PubMed PMID: 12590760. PubMed PMCID: PMC1691227.
  6. Kellermann V, Van Heerwaarden B, Sgrò CM, Hoffmann AA. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science. 2009;325(5945):1244-6. doi: 10.1126/science.1175443. PubMed PMID: 19729654.
  7. Moore LG, Niermeyer S, Zamudio S. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol. 1998;Suppl 27:25-64. doi: 10.1002/(sici)1096-8644(1998)107:27+<25::aid-ajpa3>3.0.co;2-l. PubMed PMID: 9881522.
  8. Hedrick PW. Population genetics of malaria resistance in humans. Heredity (Edinb). 2011;107(4):283-304. doi: 10.1038/hdy.2011.16. PubMed PMID: 21427751. PubMed PMCID: PMC3182497.
  9. Baker LB. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature (Austin). 2019;6(3):211-59. doi: 10.1080/23328940.2019.1632145. PubMed PMID: 31608304. PubMed PMCID: PMC6773238.
  10. Ingram CJ, Mulcare CA, Itan Y, Thomas MG, Swallow DM. Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet. 2009;124(6):579-91. doi: 10.1007/s00439-008-0593-6. PubMed PMID: 19034520.
  11. Jablonski NG, Chaplin G. Human skin pigmentation as an adaptation to UV radiation. Proceedings of the National Academy of Sciences. 2010;107(supplement_2):8962-8. doi: 10.1073/pnas.0914628107.
  12. Seluanov A, Gladyshev VN, Vijg J, Gorbunova V. Mechanisms of cancer resistance in long-lived mammals. Nat Rev Cancer. 2018;18(7):433-41. doi: 10.1038/s41568-018-0004-9. PubMed PMID: 29622806. PubMed PMCID: PMC6015544.
  13. Nagy JD, Victor EM, Cropper JH. Why don’t all whales have cancer? A novel hypothesis resolving Peto’s paradox. Integr Comp Biol. 2007;47(2):317-28. doi: 10.1093/icb/icm062. PubMed PMID: 21672841.
  14. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2(5):331-41. doi: 10.1038/nrc795. PubMed PMID: 12044009.
  15. Padariya M, Jooste ML, Hupp T, Fåhraeus R, Vojtesek B, Vollrath F, et al. The Elephant Evolved p53 Isoforms that Escape MDM2-Mediated Repression and Cancer. Mol Biol Evol. 2022;39(7):msac149. doi: 10.1093/molbev/msac149. PubMed PMID: 35792674. PubMed PMCID: PMC9279639.
  16. Nunney L. Cancer suppression and the evolution of multiple retrogene copies of TP53 in elephants: A re-evaluation. Evol Appl. 2022;15(5):891-901. doi: 10.1111/eva.13383. PubMed PMID: 35603034. PubMed PMCID: PMC9108310.
  17. Vazquez JM, Sulak M, Chigurupati S, Lynch VJ. A Zombie LIF Gene in Elephants Is Upregulated by TP53 to Induce Apoptosis in Response to DNA Damage. Cell Rep. 2018;24(7):1765-76. doi: 10.1016/j.celrep.2018.07.042. PubMed PMID: 30110634.
  18. Sulak M, Fong L, Mika K, Chigurupati S, Yon L, Mongan NP, et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. 2016;5:e11994. doi: 10.7554/eLife.11994. PubMed PMID: 27642012. PubMed PMCID: PMC5061548.
  19. Preston AJ, Rogers A, Sharp M, Mitchell G, Toruno C, Barney BB, et al. Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Cell Death Discov. 2023;9(1):66. doi: 10.1038/s41420-023-01348-7. PubMed PMID: 36797268. PubMed PMCID: PMC9935553.
  20. Parsa N. Environmental factors inducing human cancers. Iran J Public Health. 2012;41(11):1-9. PubMed PMID: 23304670. PubMed PMCID: PMC3521879.
  21. Spinage C. Elephants. London: T &A.D. Poyser Natural History; 1994. p. 319.
  22. Wood B. Human evolution. 1996;18(12):945-54. doi: 10.1002/bies.950181204.