Document Type : Original Research

Authors

1 Department of Radiation Sciences, Faculty of Paramedicine, Iran University of Medical Sciences, Tehran, Iran

2 Department of Laboratory Sciences, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran

3 Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran

10.31661/jbpe.v0i0.2109-1409

Abstract

Background: High-dose radiation altering the genetic material in patients’ bone marrow cells can lead to hematopoietic radiation syndrome. Accordingly, the presence of radiation protections agents is critical to preventing these adverse effects.
Objective: This study aimed to evaluate the radioprotection of the exclusive or combination effect of resveratrol and crocin extracts at various concentrations on irradiated human lymphocytes.
Material and Methods: In this experimental study, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to evaluate the cell viability in pre-treatment with resveratrol, crocin, or a combination of both, using a concentration range of 5 to 4800 μM / ml in 24 h. The chromosomal aberration test was employed to determine the aberration frequency in 48 h. This study was performed on human peripheral blood lymphocytes treated with 2 Gy radiation and reliability of measurements performed by the triplicate repeat.
Results: MTT results showed that the groups treated with either resveratrol or crocin at concentrations of 5 to 4800 µM had no significant reduction in cell viability. The cytogenetic analysis of irradiated lymphocytes with 2 Gy X-rays revealed a reduction in the frequency of dicentric chromosomes in all treated groups in contrast with the control group. The most significant reduction occurred in those treated with a single agent at the concentration of 100 µM and a combined drug at the concentration of 50 µM. 
Conclusion: The combination of resveratrol and crocin is considered a potential radioprotector and prophylactic for patients before radiation therapy.

Highlights

Susan Cheraghi (Google Scholar)

Keywords

  1. Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal. 2014;20(9):1447-62. doi: 10.1089/ars.2013.5635. PubMed PMID: 24124731. PubMed PMCID: PMC3936513.
  2. De Bont R, Van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. 2004;19(3):169-85. doi: 10.1093/mutage/geh025. PubMed PMID: 15123782.
  3. Mateuca R, Lombaert N, Aka PV, Decordier I, Kirsch-Volders M. Chromosomal changes: induction, detection methods and applicability in human biomonitoring. 2006;88(11):1515-31. doi: 10.1016/j.biochi.2006.07.004. PubMed PMID: 16919864.
  4. Withers HR, Thames HD Jr, Peters LJ. A new isoeffect curve for change in dose per fraction. Radiother Oncol. 1983;1(2):187-91. doi: 10.1016/s0167-8140(83)80021-8. PubMed PMID: 6680223.
  5. Neshasteh-Riz A, Eyvazzadeh N, Koosha F, Cheraghi S. Comparison of DSB effects of the beta particles of iodine-131 and 6 MV X-ray at a dose of 2 Gy in the presence of 2-Methoxyestradiol, IUdR, and TPT in glioblastoma spheroids. Radiat Phys Chem. 2017;131:41-5. doi: 10.1016/j.radphyschem.2016.10.011.
  6. Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, et al. Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med. 2017;15(1):232. doi: 10.1186/s12967-017-1338-x. PubMed PMID: 29121966. PubMed PMCID: PMC5680756.
  7. Gale RP, Armitage JO. Use of molecularly-cloned haematopoietic growth factors in persons exposed to acute high-dose, high-dose rate whole-body ionizing radiations. Blood Rev. 2021;45:100690. doi: 10.1016/j.blre.2020.100690. PubMed PMID: 32273121.
  8. Sebastià N, Almonacid M, Villaescusa JI, Cervera J, Such E, Silla MA, et al. Radioprotective activity and cytogenetic effect of resveratrol in human lymphocytes: an in vitro evaluation. Food Chem Toxicol. 2013;51:391-5. doi: 10.1016/j.fct.2012.10.013. PubMed PMID: 23099504.
  9. Le QT, Kim HE, Schneider CJ, Muraközy G, Skladowski K, et al. Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. J Clin Oncol. 2011;29(20):2808-14. doi: 10.1200/JCO.2010.32.4095.PubMed PMID: 21670453.
  10. Sebastià N, Montoro A, Hervás D, Pantelias G, Hatzi VI, Soriano JM, et al. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay. Mutat Res. 2014;766-7:49-55. doi: 10.1016/j.mrfmmm.2014.05.006. PubMed PMID: 25847272.
  11. Gambini J, Inglés M, Olaso G, Lopez-Grueso R, Bonet-Costa V, Gimeno-Mallench L, et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid Med Cell Longev. 2015;2015:837042. doi: 10.1155/2015/837042. PubMed PMID: 26221416. PubMed PMCID: PMC4499410.
  12. Sener TE, Atasoy BM, Cevik O, Kaya OT, Cetinel S, Dagli Degerli A, et al. Effects of resveratrol against scattered radiation-induced testicular damage in rats. Turk Biyokim Derg. 2021;46(4):425-33. doi: 10.1515/tjb-2020-0320.
  13. Bonnefont-Rousselot D. Resveratrol and Cardiovascular Diseases. 2016;8(5):250. doi: 10.3390/nu8050250. PubMed PMID: 27144581. PubMed PMCID: PMC4882663.
  14. Sebastià N, Montoro A, Montoro A, Almonacid M, Villaescusa JI, Cervera J, et al. Assessment in vitro of radioprotective efficacy of curcumin and resveratrol. Radiat Meas. 2011;46(9):962-6. doi: 10.1016/j.radmeas.2011.05.009.
  15. Koohian F, Shanei A, Shahbazi-Gahrouei D, Hejazi SH, Moradi MT. The Radioprotective Effect of Resveratrol Against Genotoxicity Induced by γ-Irradiation in Mice Blood Lymphocytes. Dose Response. 2017;15(2):1559325817705699. doi: 10.1177/1559325817705699. PubMed PMID: 28566983. PubMed PMCID: PMC5439647.
  16. Fang Y, DeMarco VG, Nicholl MB. Resveratrol enhances radiation sensitivity in prostate cancer by inhibiting cell proliferation and promoting cell senescence and apoptosis. Cancer Sci. 2012;103(6):1090-8. doi: 10.1111/j.1349-7006.2012.02272.x. PubMed PMID: 22417066. PubMed PMCID: PMC7685088.
  17. Colapietro A, Mancini A, D’Alessandro AM, Festuccia C. Crocetin and Crocin from Saffron in Cancer Chemotherapy and Chemoprevention. Anticancer Agents Med Chem. 2019;19(1):38-47. doi: 10.2174/1871520619666181231112453. PubMed PMID: 30599111.
  18. Tazhibi M, Feizi A. Awareness levels about breast cancer risk factors, early warning signs, and screening and therapeutic approaches among Iranian adult women: a large population based study using latent class analysis. Biomed Res Int. 2014;2014:306352. doi: 10.1155/2014/306352. PubMed PMID: 25295257. PubMed PMCID: PMC4180890.
  19. Salahshoor MR, Khazaei M, Jalili C, Keivan M. Crocin Improves Damage Induced by Nicotine on A Number of Reproductive Parameters in Male Mice. Int J Fertil Steril. 2016;10(1):71-8. doi: 10.22074/ijfs.2016.4771. PubMed PMID: 27123203. PubMed PMCID: PMC4845532.20.
  20. Ohno Y, Nakanishi T, Umigai N, Tsuruma K, Shimazawa M, Hara H. Oral administration of crocetin prevents inner retinal damage induced by N-methyl-D-aspartate in mice. Eur J Pharmacol. 2012;690(1-3):84-9. doi: 10.1016/j.ejphar.2012.06.035. PubMed PMID: 22760072.
  21. Heydari M, Zare M, Badie MR, Watson RR, Talebnejad MR, Afarid M. Crocin as a vision supplement. Clin Exp Optom. 2022:1-8. doi: 10.1080/08164622.2022.2039554. PubMed PMID: 35231199.
  22. Liou JC, Yang SL, Wang PH, Wu JL, Huang YP, Chen BY, et al. Protective effect of crocin against the declining of high spatial frequency-based visual performance in mice. J Funct Foods. 2018;49:314-23. doi: 10.1016/j.jff.2018.08.031.
  23. Zhang K, Wang L, Si S, Sun Y, Pei W, Ming Y, et al. Crocin improves the proliferation and cytotoxic function of T cells in children with acute lymphoblastic leukemia. Biomed Pharmacother. 2018;99:96-100. doi: 10.1016/j.biopha.2018.01.042. PubMed PMID: 29329036.
  24. Aung HH, Wang CZ, Ni M, Fishbein A, Mehendale SR, Xie JT, et al. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol. 2007;29(3):175-80. PubMed PMID: 18004240. PubMed PMCID: PMC2658895.
  25. Veisi A, Akbari G, Mard SA, Badfar G, Zarezade V, Mirshekar MA. Role of crocin in several cancer cell lines: An updated review. Iran J Basic Med Sci. 2020;23(1):3-12. doi: 10.22038/IJBMS.2019.37821.8995. PubMed PMID: 32405344. PubMed PMCID: PMC7206843.
  26. Kassumeh S, Wertheimer CM, Ohlmann A, Priglinger SG, Wolf A. Cytoprotective effect of crocin and trans-resveratrol on photodamaged primary human retinal pigment epithelial cells. Eur J Ophthalmol. 2021;31(2):630-7. doi: 10.1177/1120672119895967. PubMed PMID: 31847593.
  27. Manual A. Cytogenetic analysis for radiation dose assessment. Technical Reports Series No. 405; IAEA; 2001.
  28. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi: 10.1016/0022-1759(83)90303-4. PubMed PMID: 6606682.
  29. Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS. The Role of Resveratrol in Cancer Therapy. Int J Mol Sci. 2017;18(12):2589. doi: 10.3390/ijms18122589. PubMed PMID: 29194365. PubMed PMCID: PMC5751192.
  30. Moratalla-López N, Bagur MJ, Lorenzo C, Salinas MEMR, Alonso GL. Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Molecules. 2019;24(15):2827. doi: 10.3390/molecules24152827. PubMed PMID: 31382514. PubMed PMCID: PMC6696252.
  31. Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, et al. Radioprotection by plant products: present status and future prospects. Phytother Res. 2005;19(1):1-22. doi: 10.1002/ptr.1605.PubMed PMID: 15799007.
  32. Hosseinimehr SJ, Hosseini SA. Resveratrol sensitizes selectively thyroid cancer cell to 131-iodine toxicity. J Toxicol. 2014;2014:839597. doi: 10.1155/2014/839597. PubMed PMID: 25276125. PubMed PMCID: PMC4170962.
  33. Milajerdi A, Djafarian K, Hosseini B. The toxicity of saffron (Crocus sativus L.) and its constituents against normal and cancer cells. J Nutr Intermed Metab. 2016;3:23-32. doi: 10.1016/j.jnim.2015.12.332.
  34. Webb MR, Ebeler SE. Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: structural determinates of activity. Biochem J. 2004;384(Pt 3):527-41. doi: 10.1042/BJ20040474. PubMed PMID: 15312049. PubMed PMCID: PMC1134138.
  35. Hoshyar R, Bathaie SZ, Sadeghizadeh M. Crocin triggers the apoptosis through increasing the Bax/Bcl-2 ratio and caspase activation in human gastric adenocarcinoma, AGS, cells. DNA Cell Biol. 2013;32(2):50-7. doi: 10.1089/dna.2012.1866. PubMed PMID: 23347444.
  36. Johnke RM, Sattler JA, Allison RR. Radioprotective agents for radiation therapy: future trends. Future Oncol. 2014;10(15):2345-57. doi: 10.2217/fon.14.175. PubMed PMID: 25525844.
  37. Frombaum M, Le Clanche S, Bonnefont-Rousselot D, Borderie D. Antioxidant effects of resveratrol and other stilbene derivatives on oxidative stress and *NO bioavailability: Potential benefits to cardiovascular diseases. Biochimie. 2012;94(2):269-76. doi: 10.1016/j.biochi.2011.11.001. PubMed PMID: 22133615.
  38. Mohammadi E, Mehri S, Badie Bostan H, Hosseinzadeh H. Protective effect of crocin against d-galactose-induced aging in mice. Avicenna J Phytomed. 2018;8(1):14-23. PubMed PMID: 29387570. PubMed PMCID: PMC5787993.
  39. Brisdelli F, D’Andrea G, Bozzi A. Resveratrol: a natural polyphenol with multiple chemopreventive properties. Curr Drug Metab. 2009;10(6):530-46. doi: 10.2174/138920009789375423. PubMed PMID: 19702538.
  40. Latruffe N, Menzel M, Delmas D, Buchet R, Lançon A. Compared binding properties between resveratrol and other polyphenols to plasmatic albumin: consequences for the health protecting effect of dietary plant microcomponents. 2014;19(11):17066-77. doi: 10.3390/molecules191117066. PubMed PMID: 25347454. PubMed PMCID: PMC6270862.