Document Type : Original Research

Authors

1 Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

2 Ionizing and Nonionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran

3 Research Center for Diagnostic Laboratory Science and Technology, Faculty of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 Member of the Diagnostic Laboratory Science and Technology Research Center, Faculty of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran

10.31661/jbpe.v0i0.2305-1620

Abstract

Background: Industrial radiography uses gamma or X-ray radionuclide sources to investigate the safety of industrial materials. Industrial radiation workers receive the highest occupational radiation doses.
Objective: The present study investigates the relationship between Bax and Bcl-2 gene expression variables in industrial radiation workers.
Material and Methods: In this case-control study, data was collected using blood sampling from 40 workers, including two groups of non-radiation and radiation workers employed at the location. Expression levels of Bax and Bcl-2 genes were assessed in the laboratory. The environmental and absorbed doses of workers were measured using environmental and pen dosimeters.
Results: Statistical analysis showed that the radiation group’s Bcl-2 gene expression level was significantly higher. Findings also demonstrated a correlation between Bcl-2 gene expression and the number of workdays. Also, the Bax gene expression did not show a significant change, and the expression ratio of Bax/Bcl-2 was insignificant in the two groups. 
Conclusion: Exposure to low doses of radiation could promote an adaptive response in cells by increasing Bcl-2 gene expression.

Highlights

Masoud Haghani (Google Scholar)

Keywords

  1. Pooya HS, Orouji T, Jafarizadeh M, Nazeri F, Nejad YF, Dashtipour RM. Status of industrial radiography incidents doses during the years 2005-2009 in Iran. Nuclear Technology and Radiation Protection. 2011;26(2):177-9. doi: 10.2298/NTRP1102177P.
  2. Jafarizadeh M, Nazeri F, Hosseini-Pooya SM, Taheri M, Gheshlaghi F, Kardan MR, et al. Occupational dose assessment and National Dose Registry System in Iran. Radiat Prot Dosimetry. 2011;144(1-4):52-5. doi: 10.1093/rpd/ncq297. PubMed PMID: 21044998.
  3. Pooya H, Mahdi S. Effectiveness of Interventional Actions in Reduction of Unusual Exposure in Industrial Radiography in Iran. NDT Technology. 2019;2(4):32-7. doi: 10.30494/JNDT.2019.95382.
  4. Sari-Minodier I, Orsière T, Bellon L, Pompili J, Sapin C, Botta A. Cytogenetic monitoring of industrial radiographers using the micronucleus assay. Mutat Res. 2002;521(1-2):37-46. doi: 10.1016/s1383-5718(02)00213-9. PubMed PMID: 12438002.
  5. Ting CY, Wang HE, Lin JP, Lin CC. Evaluating the Radiation From Accidental Exposure During a Nondestructive Testing Event. Health Phys. 2015;109(2):171-6. doi: 10.1097/HP.0000000000000311. PubMed PMID: 26107437.
  6. Le Roux PR. Radiation protection, safety and associated problems in industrial radiography. FWP Journal. 1990;30(4):42-3.
  7. International Atomic Energy Agency. Radiation Protection and Safety in Industrial Radiography. Safety Reports Series No.13; Vienna, Austria: IAEA; 1999.
  8. Mianji F, Hosseini Pooya SM, Zakeri F, Dashtipour MR. A root cause analysis of the high occupational doses of industrial radiographers in Iran. J Radiol Prot. 2016;36(1):184-94. doi: 10.1088/0952-4746/36/1/184. PubMed PMID: 26910013.
  9. Angelini S, Kumar R, Carbone F, Maffei F, Forti GC, Violante FS, et al. Micronuclei in humans induced by exposure to low level of ionizing radiation: influence of polymorphisms in DNA repair genes. Mutat Res. 2005;570(1):105-17. doi: 10.1016/j.mrfmmm.2004.10.007. PubMed PMID: 15680408.
  10. Azimian H, Bahreyni-Toossi MT, Rezaei AR, Rafatpanah H, Hamzehloei T, Fardid R. Up-regulation of Bcl-2 expression in cultured human lymphocytes after exposure to low doses of gamma radiation. J Med Phys. 2015;40(1):38-44. doi: 10.4103/0971-6203.152249. PubMed PMID: 26150686. PubMed PMCID: PMC4471643.
  11. Bahreyni–Toossi MT, Fardid R, Rezaee A, Sadr–nabavi A, Rafatpanah H, Bolbolian M. Expression of apoptotic genes can distinguish radiation workers from normal population. International Journal of Low Radiation. 2011;8(5-6):388-99. doi: 10.1504/IJLR.2011.047184.
  12. Stewart JS, Sanderson AR. Chromosomal aberration after diagnostic X irradiation. The Lancet. 1961;274(7184):978-9. doi: 10.1016/S0140-6736(61)91888-8.
  13. Norman A, Sasaki M, Ottoman Re, Veomett Rc. Chromosome Aberrations In Radiation Workers. Radiat Res. 1964;23:282-9. PubMed PMID: 14222077.
  14. Bigatti P, Lamberti L, Ardito G, Armellino F. Cytogenetic monitoring of hospital workers exposed to low-level ionizing radiation. Mutat Res. 1988;204(2):343-7. doi: 10.1016/0165-1218(88)90109-7. PubMed PMID: 3343984.
  15. Raad JA, Kuiper A. Industrial Radiography Image Forming Techniques. Netherlands: General Electric Company, Inspection Technologies; 2007.
  16. Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol. 2015;2(7):e276-81. doi: 10.1016/S2352-3026(15)00094-0. PubMed PMID: 26436129. PubMed PMCID: PMC4587986.
  17. Jousan FD, de Castro E Paula LA, Brad AM, Roth Z, Hansen PJ. Relationship between group II caspase activity of bovine preimplantation embryos and capacity for hatching. J Reprod Dev. 2008;54(3):217-20. doi: 10.1262/jrd.19175. PubMed PMID: 18277054.
  18. Vandaele L, Mateusen B, Maes DG, de Kruif A, Van Soom A. Temporal detection of caspase-3 and -7 in bovine in vitro produced embryos of different developmental capacity. Reproduction. 2007;133(4):709-18. doi: 10.1530/REP-06-0109. PubMed PMID: 17504915.
  19. Opiela J. Apoptosis in preimplantation bovine embryos and methods used for its detection. Annals of Animal Science. 2009;9(1):3-16.
  20. Gopisetty G, Ramachandran K, Singal R. DNA methylation and apoptosis. Molecular immunology. 2006;43(11):1729-40. doi: 10.1016/j.molimm.2005.11.010.
  21. Rajabi Pour M, Fardid R. In Vivo Mechanisms of Radioadaptive Response. Journal of Advanced Biomedical Sciences. 2019;9(2):1384-98.
  22. Dembélé D, Kastner P. Fold change rank ordering statistics: a new method for detecting differentially expressed genes. BMC Bioinformatics. 2014;15:14. doi: 10.1186/1471-2105-15-14. PubMed PMID: 24423217. PubMed PMCID: PMC3899927.
  23. Alain BI. Radiation protection of the workers in industrial radiography: the point of view of the regulatory body in France. 2001. Available from: https://www.eu-alara.net/images/stories/pdf/program5/session%201/5_biau.PDF.
  24. Mohammed NA. Estimation of radiation dose received by the radiation workers during radiographic testing [Dissertation]. Sudan: Sudan Atomic Energy Commission; 2013
  25. Stufano A, Chiarappa P, Bagnulo R, Drago I, Rapisarda V, Ledda C, et al. Influence of Polymorphisms of DNA Repair and GST Genes on Genotoxic Damage and Mutagen Sensitivity in Workers Occupationally Exposed to Very Low Doses of Ionizing Radiation. Applied Sciences. 2019;9(23):5175. doi: 10.3390/app9235175.
  26. Shakeri M, Zakeri F, Changizi V, Rajabpour MR, Farshidpour MR. Cytogenetic effects of radiation and genetic polymorphisms of the XRCC1 and XRCC3 repair genes in industrial radiographers. Radiat Environ Biophys. 2019;58(2):247-55. doi: 10.1007/s00411-019-00782-5. PubMed PMID: 30955049.
  27. Venkatachalam P, Paul SF, Prabhu BK, Mohankumar MN, Jeevanram RK. Comparison of chronic exposures received by radiation workers using different biological end-points with the doses recorded by TLD. Australas Radiol. 2001;45(4):464-71. doi: 10.1046/j.1440-1673.2001.00958.x. PubMed PMID: 11903180.
  28. Mackey TJ, Borkowski A, Amin P, Jacobs SC, Kyprianou N. bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. 1998;52(6):1085-90. doi: 10.1016/s0090-4295(98)00360-4. PubMed PMID: 9836559.
  29. Eftekhari Z, Fardid R. The Bystander Effect of Ultraviolet Radiation and Mediators. J Biomed Phys Eng. 2020;10(1):111-8. doi: 10.31661/jbpe.v0i0.956. PubMed PMID: 32158718. PubMed PMCID: PMC7036410.
  30. Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, et al. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol. 2001;117(2):333-40. doi: 10.1046/j.0022-202x.2001.01409.x. PubMed PMID: 11511312.
  31. Furlong H, Mothersill C, Lyng FM, Howe O. Apoptosis is signalled early by low doses of ionising radiation in a radiation-induced bystander effect. Mutat Res. 2013;741-742:35-43. doi: 10.1016/j.mrfmmm.2013.02.001. PubMed PMID: 23454491.
  32. Bonner WM. Low-dose radiation: thresholds, bystander effects, and adaptive responses. Proc Natl Acad Sci U S A. 2003;100(9):4973-5. doi: 10.1073/pnas.1031538100. PubMed PMID: 12704228. PubMed PMCID: PMC154280.
  33. Cai L. Research of the adaptive response induced by low-dose radiation: where have we been and where should we go? Hum Exp Toxicol. 1999;18(7):419-25. doi: 10.1191/096032799678840291. PubMed PMID: 10454070.
  34. Masoomi JR, Mohammadi Sh, Amini M, Ghiassi-Nejad M. High background radiation areas of Ramsar in Iran: evaluation of DNA damage by alkaline single cell gel electrophoresis (SCGE). J Environ Radioact. 2006;86(2):176-86. doi: 10.1016/j.jenvrad.2005.08.005. PubMed PMID: 16376699.
  35. Mortazavi SMJ, Nejad MG, Beitollahi M. Very high background radiation areas (VHBRAs) of Ramsar: do we need any regulations to protect the inhabitants? South Africa: ETDE WEB World Energy Base; 2002.
  36. Sugahara T. The radiation paradigm regarding health risk from exposures to low dose radiation. China: ETDE WEB World Energy Base; 1996.
  37. Mortazavi SMJ, Ghiassi-Nejad M, Karam PA, Ikushima T, Niroomand-Rad A, Cameron JR. Cancer incidence in areas with elevated levels of natural radiation. International Journal of Low Radiation. 2006;2(1-2):20-7. doi: 10.1504/IJLR.2006.007892.
  38. Farooque A, Mathur R, Verma A, Kaul V, Bhatt AN, Adhikari JS, et al. Low-dose radiation therapy of cancer: role of immune enhancement. Expert Rev Anticancer Ther. 2011;11(5):791-802. doi: 10.1586/era.10.217. PubMed PMID: 21554054.
  39. Nishad S, Chauhan PK, Sowdhamini R, Ghosh A. Chronic exposure of humans to high level natural background radiation leads to robust expression of protective stress response proteins. Sci Rep. 2021;11(1):1777. doi: 10.1038/s41598-020-80405-y. PubMed PMID: 33469066. PubMed PMCID: PMC7815775.
  40. Lee Y, Seo S, Jin YW, Jang S. Assessment of working environment and personal dosimeter-wearing compliance of industrial radiographers based on chromosome aberration frequencies. J Radiol Prot. 2020;40(1):151-64. doi: 10.1088/1361-6498/ab4686. PubMed PMID: 31539897.