Document Type : Original Research

Authors

1 Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran

2 Radiation Sciences Research Center (ARSRC), Aja University of Medical Sciences, Tehran, Iran

10.31661/jbpe.v0i0.2308-1655

Abstract

Background: Radiotherapy, a highly effective method of radiation-based treating cancers, can reduce the size of tumors and affect healthy tissues. Radiation-induced lymphopenia as a side effect of radiation therapy can reduce the effectiveness of the treatment.
Objective: This study aimed to examine how taurine can protect peripheral blood lymphocytes from radiation-based apoptosis.
Material and Methods: In this experimental study, the effects of the taurine on lymphocytes were studied, and blood samples were divided into three groups: a negative control group that was not treated, a positive control group that was treated with cysteine (100 μg/ml), and a group that was treated with taurine (100 µg. mL-1) in three different doses (4, 8 & 12 Gy) before irradiation. The percentage of apoptotic and necrotic lymphocytes was measured using flow cytometry 48 and 72 hours after the irradiation, respectively.
Results: According to the groups treated with taurine, the number of lymphocytes undergoing apoptosis was lower and higher compared to the negative and positive control groups, respectively. The decrease in this value was more pronounced 48 hours after radiation compared to 72 hours. Furthermore, there was a slight increase in the number of apoptotic lymphocytes with increasing radiation dose. 
Conclusion: Taurine effectively protects human peripheral blood lymphocytes from radiation-based apoptosis.

Highlights

Hamed Bagheri (Google Scholar)

Keywords

  1. Liu L, Liang Z, Ma S, Li L, Liu X. Radioprotective countermeasures for radiation injury (Review). Mol Med Rep. 2023;27(3):66. doi: 10.3892/mmr.2023.12953. PubMed PMID: 36799170. PubMed PMCID: PMC9926870.
  2. El Naqa I, Johansson A, Owen D, Cuneo K, Cao Y, Matuszak M, et al. Modeling of Normal Tissue Complications Using Imaging and Biomarkers After Radiation Therapy for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys. 2018;100(2):335-43. doi: 10.1016/j.ijrobp.2017.10.005. PubMed PMID: 29353652. PubMed PMCID: PMC5779633.
  3. Ziyadi S, Iddar A, Errafiy N, Ridaoui K, Kabine M, El Mzibri M, Moutaouakkil A. Protective Effect of Some Essential Oils Against Gamma-Radiation Damages in Tetrahymena pyriformis Exposed to Cobalt-60 Source. Curr Microbiol. 2022;79(9):279. doi: 10.1007/s00284-022-02924-3. PubMed PMID: 35920924.
  4. Cheki M, Mihandoost E, Shirazi A, Mahmoudzadeh A. Prophylactic role of some plants and phytochemicals against radio-genotoxicity in human lymphocytes. J Cancer Res Ther. 2016;12(4):1234-42. doi: 10.4103/0973-1482.172131. PubMed PMID: 28169233.
  5. Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. 8th Edition. Philadelphia: Wolters Kluwer Health; 2019. p. 624.
  6. Zheng L, Cao H, Qiu J, Chi C. Inhibitory Effect of FMRFamide on NO Production During Immune Defense in Sepiella japonica. Front Immunol. 2022;13:825634. doi: 10.3389/fimmu.2022.825634. PubMed PMID: 35572529. PubMed PMCID: PMC9095972.
  7. Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, et al. Space Radiation Biology for “Living in Space”. Biomed Res Int. 2020;2020:4703286. doi: 10.1155/2020/4703286. PubMed PMID: 32337251. PubMed PMCID: PMC7168699.
  8. Wang Q, Xie C, Xi S, Qian F, Peng X, Huang J, Tang F. Radioprotective Effect of Flavonoids on Ionizing Radiation-Induced Brain Damage. 2020;25(23):5719. doi: 10.3390/molecules25235719. PubMed PMID: 33287417. PubMed PMCID: PMC7730479.
  9. Laube M, Kniess T, Pietzsch J. Development of Antioxidant COX-2 Inhibitors as Radioprotective Agents for Radiation Therapy-A Hypothesis-Driven Review. Antioxidants (Basel). 2016;5(2):14. doi: 10.3390/antiox5020014. PubMed PMID: 27104573. PubMed PMCID: PMC4931535.
  10. Nukala U, Thakkar S, Krager KJ, Breen PJ, Compadre CM, Aykin-Burns N. Antioxidant Tocols as Radiation Countermeasures (Challenges to be Addressed to Use Tocols as Radiation Countermeasures in Humans). Antioxidants (Basel). 2018;7(2):33. doi: 10.3390/antiox7020033. PubMed PMID: 29473853. PubMed PMCID: PMC5836023.
  11. Szejk M, Kołodziejczyk-Czepas J, Żbikowska HM. Radioprotectors in radiotherapy - advances in the potential application of phytochemicals. Postepy Hig Med Dosw (Online). 2016;70:722-34. doi: 10.5604/17322693.1208039. PubMed PMID: 27356603.
  12. Caine JJ, Geracioti TD. Taurine, energy drinks, and neuroendocrine effects. Cleve Clin J Med. 2016;83(12):895-904. doi: 10.3949/ccjm.83a.15050. PubMed PMID: 27938518.
  13. Kim YS, Kim EK, Jeon NJ, Ryu BI, Hwang JW, Choi EJ, et al. Antioxidant Effect of Taurine-Rich Paroctopus dofleini Extracts Through Inhibiting ROS Production Against LPS-Induced Oxidative Stress In Vitro and In Vivo Model. Adv Exp Med Biol. 2017;975(Pt 2):1165-77. doi: 10.1007/978-94-024-1079-2_93. PubMed PMID: 28849531.
  14. Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, et al. Protective role of taurine against oxidative stress (Review). Mol Med Rep. 2021;24(2):605. doi: 10.3892/mmr.2021.12242. PubMed PMID: 34184084. PubMed PMCID: PMC8240184.
  15. Lee CT, Yu LE, Wang JY. Nitroxide antioxidant as a potential strategy to attenuate the oxidative/nitrosative stress induced by hydrogen peroxide plus nitric oxide in cultured neurons. Nitric Oxide. 2016;54:38-50. doi: 10.1016/j.niox.2016.02.001. PubMed PMID: 26891889.
  16. Haider S, Sajid I, Batool Z, Madiha S, Sadir S, Kamil N, et al. Supplementation of Taurine Insulates Against Oxidative Stress, Confers Neuroprotection and Attenuates Memory Impairment in Noise Stress Exposed Male Wistar Rats. Neurochem Res. 2020;45(11):2762-74. doi: 10.1007/s11064-020-03127-7. PubMed PMID: 32918662.
  17. Zeng K, Yang N, Wang D, Li S, Ming J, Wang J, et al. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina. Neurochem Res. 2016;41(5):1050-64. doi: 10.1007/s11064-015-1793-9. PubMed PMID: 26677078.
  18. Jong CJ, Sandal P, Schaffer SW. The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. 2021;26(16):4913. doi: 10.3390/molecules26164913. PubMed PMID: 34443494. PubMed PMCID: PMC8400259.
  19. Li Y, Peng Q, Shang J, Dong W, Wu S, Guo X, et al. The role of taurine in male reproduction: Physiology, pathology and toxicology. Front Endocrinol (Lausanne). 2023;14:1017886. doi: 10.3389/fendo.2023.1017886. PubMed PMID: 36742382. PubMed PMCID: PMC9889556..
  20. Gao Y, Li X, Gao J, Zhang Z, Feng Y, Nie J, et al. Metabolomic Analysis of Radiation-Induced Lung Injury in Rats: The Potential Radioprotective Role of Taurine. Dose Response. 2019;17(4):1559325819883479. doi: 10.1177/1559325819883479. PubMed PMID: 31700502. PubMed PMCID: PMC6823985.
  21. Yamashita T, Kato T, Isogai T, Gu Y, Ma N. Protective Effects of Taurine on the Radiation Exposure Induced Cellular Damages in the Mouse Intestine. Adv Exp Med Biol. 2019;1155:443-50. doi: 10.1007/978-981-13-8023-5_41. PubMed PMID: 31468421.
  22. Yang W, Huang J, Xiao B, Liu Y, Zhu Y, Wang F, Sun S. Taurine Protects Mouse Spermatocytes from Ionizing Radiation-Induced Damage Through Activation of Nrf2/HO-1 Signaling. Cell Physiol Biochem. 2017;44(4):1629-39. doi: 10.1159/000485762. PubMed PMID: 29216642.
  23. Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. Microb Ecol Health Dis. 2012;23(1):14787. doi: 10.3402/mehd.v23i0.14787. PubMed PMID: 23990836. PubMed PMCID: PMC3747764.
  24. Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Christodoulou I, et al. Ameliorative effect of taurine against diabetes and renal-associated disorders (Review). Med Int (Lond). 2021;1(2):3. doi: 10.3892/mi.2021.3. PubMed PMID: 36699147. PubMed PMCID: PMC9855276.
  25. Kundaktepe BP, Sozer V, Papila C, Durmus S, Kocael PC, Simsek G, et al. Associations Between miRNAs and Two Different Cancers: Breast and Colon. Cancer Manag Res. 2020;12:871-9. doi: 10.2147/CMAR.S227628. PubMed PMID: 32104069. PubMed PMCID: PMC7012229.
  26. Grievink HW, Luisman T, Kluft C, Moerland M, Malone KE. Comparison of Three Isolation Techniques for Human Peripheral Blood Mononuclear Cells: Cell Recovery and Viability, Population Composition, and Cell Functionality. Biopreserv Biobank. 2016;14(5):410-5. doi: 10.1089/bio.2015.0104. PubMed PMID: 27104742.
  27. Hamid J, Ahmed D, Waheed A. Evaluation of anti-oxidative, antimicrobial and anti-diabetic potential of Adiantum venustum and identification of its phytochemicals through GC-MS. Pak J Pharm Sci. 2017;30(3):705-12. PubMed PMID: 28653913.
  28. Kim JH, Jang HJ, Cho WY, Yeon SJ, Lee CH. In vitro antioxidant actions of sulfur-containing amino acids. Arabian Journal of Chemistry. 2020;13(1):1678-84. doi: 10.1016/j.arabjc.2017.12.036.
  29. Guastaferro M, Reverchon E, Baldino L. Polysaccharide-Based Aerogel Production for Biomedical Applications: A Comparative Review. Materials (Basel). 2021;14(7):1631. doi: 10.3390/ma14071631. PubMed PMID: 33810582. PubMed PMCID: PMC8037187.
  30. Abdullah MAH, Rashid RSM, Amran M, Hejazii F, Azreen NM, Fediuk R, et al. Recent Trends in Advanced Radiation Shielding Concrete for Construction of Facilities: Materials and Properties. Polymers (Basel). 2022;14(14):2830. doi: 10.3390/polym14142830. PubMed PMID: 35890605. PubMed PMCID: PMC9316934.
  31. Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80-118. doi: 10.1016/j.addr.2020.09.009. PubMed PMID: 32980449. PubMed PMCID: PMC8173698.
  32. Duan H, Song W, Guo J, Yan W. Taurine: A source and application for the relief of visual fatigue. 2023;15(8):1843. doi: 10.3390/nu15081843.
  33. Papet I, Rémond D, Dardevet D, Mosoni L, Polakof S, Peyron MA, Savary-Auzeloux I. Sulfur amino acids and skeletal muscle. In Nutrition and skeletal muscle. Elsevier; 2019. p. 335-63.
  34. Banfalvi G. Methods to detect apoptotic cell death. 2017;22(2):306-23. doi: 10.1007/s10495-016-1333-3. PubMed PMID: 28035493.
  35. Sica V, Maiuri MC, Kroemer G, Galluzzi L. Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry. Methods Mol Biol. 2016;1419:1-16. doi: 10.1007/978-1-4939-3581-9_1. PubMed PMID: 27108427.
  36. Ward MD, Kaduchak G. Fundamentals of Acoustic Cytometry. Curr Protoc Cytom. 2018;84(1):e36. doi: 10.1002/cpcy.36. PubMed PMID: 30040220.
  37. Nematollahi H, Haddadi Gh, Jorat MV. The Effect of Vitamin C on Apoptosis and Bax/Bcl-2 Proteins Ratio in Peripheral Blood Lymphocytes of Patients during Cardiac Interventional Procedures. J Biomed Phys Eng. 2020;10(4):421-32. doi: 10.31661/jbpe.v0i0.917. PubMed PMID: 32802790. PubMed PMCID: PMC7416102.
  38. Prideaux M, Kitase Y, Kimble M, O’Connell TM, Bonewald LF. Taurine, an osteocyte metabolite, protects against oxidative stress-induced cell death and decreases inhibitors of the Wnt/β-catenin signaling pathway. 2020;137:115374. doi: 10.1016/j.bone.2020.115374. PubMed PMID: 32330695. PubMed PMCID: PMC7369146.