Document Type : Original Research

Authors

Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Background: Angiogenesis initiated by cancerous cells is the process by which new blood vessels are formed to enhance oxygenation and growth of tumor. Objective: In this paper, we present a new multiscale mathematical model for the formation of a vascular network in tumor angiogenesis process. Methods: Our model couples an improved sprout spacing model as a stochastic mathematical model of sprouting along an existing parent blood vessel, with a mathematical model of sprout progression in the extracellular matrix (ECM) in response to some tumor angiogenic factors (TAFs). We perform simulations of the siting of capillary sprouts on an existing blood vessel using finite difference approximation of the dynamic equations of some angiogenesis activators and inhibitors. Angiogenesis activators are chemicals secreted by hypoxic tumor cells for initiating angiogenesis, and inhibitors of the angiogenesis are chemicals that are produced around every new sprout during tumor angiogenesis to inhibit the formation of further sprouts as a feedback of sprouting in angiogenesis. Moreover, for modelling sprout progression in ECM, we use three equations for the motility of endothelial cells at the tip of the activated sprouts, the consumption of TAF and the production and uptake of Fibronectin by endothelial cells. Results: Coupling these two basic models not only does provide a better time estimation of angiogenesis process, but also it is more compatible with reality. Conclusion: This model can be used to provide basic information for angiogenesis in the related studies. Related simulations can estimate the position and number of sprouts along parent blood vessel during the initial steps of angiogenesis and models the process of sprout progression in ECM until they vascularize a tumor.  

Keywords

  1. Cieślak T, Morales-Rodrigo C. Long-time behavior of an angiogenesis model with flux at the tumor boundary. Zeitschrift für angewandte Mathematik und Physik. 2013;64:1625-41. doi.org/10.1007/s00033-013-0302-8.
  2. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001;49:507-21. doi.org/10.1016/S0008-6363(00)00281-9. PubMed PMID: 11166264.
  3. Kurz H, Burri PH, Djonov VG. Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci. 2003;18:65-70. doi.org/10.1152/nips.01417.2002. PubMed PMID: 12644622.
  4. Vilanova G, Colominas I, Gomez H. Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int J Numer Method Biomed Eng. 2013;29:1015-37. doi.org/10.1002/cnm.2552. PubMed PMID: 23653256.
  5. Figg W, Folkman J. Angiogenesis: an integrative approach from science to medicine: Springer Science & Business Media; 2008.
  6. Qutub A, Gabhann FM, Karagiannis ED, Vempati P, Popel AS. Multiscale models of angiogenesis. Engineering in Medicine and Biology Magazine, IEEE. 2009;28(2):14-31. doi.org/10.1109/MEMB.2009.931791.
  7. Billy F, Ribba B, Saut O, Morre-Trouilhet H, Colin T, Bresch D, et al. A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J Theor Biol. 2009;260:545-62. doi.org/10.1016/j.jtbi.2009.06.026. PubMed PMID: 19615383.
  8. Mantzaris NV, Webb S, Othmer HG. Mathematical modeling of tumor-induced angiogenesis. Journal of mathematical biology. 2004;49:111-87. doi.org/10.1007/s00285-003-0262-2.
  9. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70. doi.org/10.1016/S0092-8674(00)81683-9.
  10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-74. doi.org/10.1016/j.cell.2011.02.013. PubMed PMID: 21376230.
  11. Araujo RP, McElwain DL. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol. 2004;66:1039-91. doi.org/10.1016/j.bulm.2003.11.002. PubMed PMID: 15294418.
  12. Addison-Smith B, McElwain DL, Maini PK. A simple mechanistic model of sprout spacing in tumour-associated angiogenesis. J Theor Biol. 2008;250:1-15. doi.org/10.1016/j.jtbi.2007.08.030. PubMed PMID: 18028960.
  13. Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235:442-7. doi.org/10.1126/science.2432664. PubMed PMID: 2432664.
  14. Anderson AR, Chaplain MA. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol. 1998;60:857-99. doi.org/10.1006/bulm.1998.0042. PubMed PMID: 9739618.
  15. Anderson A, Chaplain M, Garcia-Reimbert C, Vargas C. A gradient-driven mathematical model of antiangiogenesis. Mathematical and computer modelling. 2000;32:1141-52. doi.org/10.1016/S0895-7177(00)00196-5.
  16. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27-31. doi.org/10.1038/nm0195-27. PubMed PMID: 7584949.
  17. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79:315-28. doi.org/10.1016/0092-8674(94)90200-3. PubMed PMID: 7525077.
  18. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88:277-85. doi.org/10.1016/S0092-8674(00)81848-6. PubMed PMID: 9008168.
  19. Anderson A, Chaplain M, Newman E, Steele R, Thompson A. Mathematical modelling of tumour invasion and metastasis. Computational and Mathematical Methods in Medicine. 2000;2:129-54. doi.org/10.1080/10273660008833042.
  20. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993;73:161-95. PubMed PMID: 8419965.
  21. Matrisian LM. The matrix-degrading metalloproteinases. Bioessays. 1992;14:455-63. doi.org/10.1002/bies.950140705.
  22. Thorgeirsson UP, Lindsay CK, Cottam DW, Gomez DE. Tumor invasion, proteolysis, and angiogenesis. Journal of Neuro-oncology. 1993;18:89-103. doi.org/10.1007/BF01050415.
  23. Saarela J, Rehn M, Oikarinen A, Autio-Harmainen H, Pihlajaniemi T. The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am J Pathol. 1998;153:611-26. doi.org/10.1016/S0002-9440(10)65603-9. PubMed PMID: 9708820. PubMed PMCID: 1852992.
  24. Heljasvaara R, Nyberg P, Luostarinen J, Parikka M, Heikkila P, Rehn M, et al. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res. 2005;307:292-304. doi.org/10.1016/j.yexcr.2005.03.021. PubMed PMID: 15950618.
  25. Karihaloo A, Karumanchi SA, Barasch J, Jha V, Nickel CH, Yang J, et al. Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc Natl Acad Sci U S A. 2001;98:12509-14. doi.org/10.1073/pnas.221205198. PubMed PMID: 11606725. PubMed PMCID: 60084.
  26. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000;19:1187-94. doi.org/10.1093/emboj/19.6.1187. PubMed PMID: 10716919. PubMed PMCID: 305660.
  27. Jurasz P, Alonso D, Castro-Blanco S, Murad F, Radomski MW. Generation and role of angiostatin in human platelets. Blood. 2003;102:3217-23. doi.org/10.1182/blood-2003-02-0378. PubMed PMID: 12855585.
  28. Dvorak HF. How tumors make bad blood vessels and stroma. The American journal of pathology. 2003;162:1747-57. doi.org/10.1016/S0002-9440(10)64309-X.
  29. Stokes CL, Lauffenburger DA. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol. 1991;152:377-403. doi.org/10.1016/S0022-5193(05)80201-2. PubMed PMID: 1721100.
  30. Hynes RO. Fibronectins: Springer Science & Business Media; 2012.
  31. Birdwell CR, Gospodarowicz D, Nicolson GL. Identification, localization, and role of fibronectin in cultured bovine endothelial cells. Proc Natl Acad Sci U S A. 1978;75:3273-7. doi.org/10.1073/pnas.75.7.3273. PubMed PMID: 277924. PubMed PMCID: 392757.
  32. Jaffe EA, Mosher DF. Synthesis of fibronectin by cultured human endothelial cells. The Journal of Experimental Medicine. 1978;147:1779-91. doi.org/10.1084/jem.147.6.1779.
  33. Macarak EJ, Kirby E, Kirk T, Kefalides NA. Synthesis of cold-insoluble globulin by cultured calf endothelial cells. Proc Natl Acad Sci U S A. 1978;75:2621-5. doi.org/10.1073/pnas.75.6.2621. PubMed PMID: 96438. PubMed PMCID: 392614.
  34. Monaghan P, Warburton MJ, Perusinghe N, Rudland PS. Topographical arrangement of basement membrane proteins in lactating rat mammary gland: comparison of the distribution of type IV collagen, laminin, fibronectin, and Thy-1 at the ultrastructural level. Proc Natl Acad Sci U S A. 1983;80:3344-8. doi.org/10.1073/pnas.80.11.3344. PubMed PMID: 6134283. PubMed PMID: 394039.
  35. Rieder H, Ramadori G, Dienes HP, Meyer zum Buschenfelde KH. Sinusoidal endothelial cells from guinea pig liver synthesize and secrete cellular fibronectin in vitro. Hepatology. 1987;7:856-64. doi.org/10.1002/hep.1840070511. PubMed PMID: 3308666.
  36. Sawada H, Furthmayr H, Konomi H, Nagai Y. Immunoelectronmicroscopic localization of extracellular matrix components produced by bovine corneal endothelial cells in vitro. Exp Cell Res. 1987;171:94-109. doi.org/10.1016/0014-4827(87)90254-0. PubMed PMID: 3305047.
  37. Schor SL, Schor AM, Bazill GW. The effects of fibronectin on the migration of human foreskin fibroblasts and Syrian hamster melanoma cells into three-dimensional gels of native collagen fibres. J Cell Sci. 1981;48:301-14. PubMed PMID: 7276092.
  38. Hosseini F, Naghavi N. Two dimensional mathematical model of tumor angiogenesis: coupling of avascular growth and vascularization. Iranian J Med Phys. 2015;12(3):146-66.
  39. Orme ME, Chaplain MA. A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J Math Appl Med Biol. 1996;13:73-98. doi.org/10.1093/imammb/13.2.73. PubMed PMID: 8671581.
  40. Levine HA, Sleeman BD, Nilsen-Hamilton M. Mathematical modeling of the onset of capillary formation initiating angiogenesis. J Math Biol. 2001;42:195-238. doi.org/10.1007/s002850000037. PubMed PMID: 11315313.
  41. Cai Y, Xu S, Wu J, Long Q. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J Theor Biol. 2011;279:90-101. doi.org/10.1016/j.jtbi.2011.02.017. PubMed PMID: 21392511.
  42. Wu J, Xu S, Long Q, Collins MW, Konig CS, Zhao G, et al. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. J Biomech. 2008;41:996-1004. doi.org/10.1016/j.jbiomech.2007.12.008. PubMed PMID: 18222455.
  43. Hao G, Ying C, ShiXiong X, Collins MW. 2-D mathematical models of Tumor-induced angiogenesis. Conf Proc IEEE Eng Med Biol Soc. 2005;6:6112-5. PubMed PMID: 17281658.
  44. Stéphanou A, McDougall SR, Anderson AR, Chaplain MA. Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Mathematical and Computer Modelling. 2006;44:96-123. doi.org/10.1016/j.mcm.2004.07.021.
  45. Sun S, Wheeler MF, Obeyesekere M, Patrick CW, Jr. A deterministic model of growth factor-induced angiogenesis. Bull Math Biol. 2005;67:313-37. doi.org/10.1016/j.bulm.2004.07.004. PubMed PMID: 15710183.
  46. McDougall SR, Anderson AR, Chaplain MA. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol. 2006;241:564-89. doi.org/10.1016/j.jtbi.2005.12.022. PubMed PMID: 16487543.
  47. Wu J, Long Q, Xu S, Padhani AR. Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. J Biomech. 2009;42:712-21. doi.org/10.1016/j.jbiomech.2009.01.009. PubMed PMID: 19268290.
  48. Capasso V, Morale D. Stochastic modelling of tumour-induced angiogenesis. J Math Biol. 2009;58:219-33. doi.org/10.1007/s00285-008-0193-z. PubMed PMID: 18542963.
  49. Macklin P, McDougall S, Anderson AR, Chaplain MA, Cristini V, Lowengrub J. Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol. 2009;58:765-98. doi.org/10.1007/s00285-008-0216-9. PubMed PMID: 18781303. PubMed PMCID: 3037282.
  50. Mitchell AR, Griffiths DF. The finite difference method in partial differential equations: John Wiley; 1980.
  51. Paku S, Paweletz N. First steps of tumor-related angiogenesis. Lab Invest. 1991;65:334-46. PubMed PMID: 1716330.
  52. Ambrosi D, Bussolino F, Preziosi L. A review of vasculogenesis models. Journal of Theoretical Medicine. 2005;6:1-19. doi.org/10.1080/1027366042000327098.
  53. Serini G, Ambrosi D, Giraudo E, Gamba A, Preziosi L, Bussolino F. Modeling the early stages of vascular network assembly. EMBO J. 2003;22:1771-9. doi.org/10.1093/emboj/cdg176. PubMed PMID: 12682010. PubMed PMCID: 154468.