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Introduction

Indirect dosimetry methods are applicable in poorly accessible radia-
tion areas or when physical dosimetry does not provide sufficient 
information. High doses of ionizing radiation might change the ge-

netic makeup of DNA, which can lead to increased risk of cancer. There-
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ABSTRACT
Background: High-energy ionizing radiation is harmful and changes the genetic 
makeup of DNA, which can lead to increased risk of cancer. Thus, the exposure of 
radiation dose should be under control and limited. Ionizing radiation might lead to 
some chromosome aberrations like dicentric. There is a strong relation between the 
frequency of dicentric chromosome in metaphase, and the received dose.
Objective: Identifying the frequency of dicentric chromosomes is an important 
task especially in large-scale radiation accident for making rapid clinical decision. 
Given this, a large number of metaphases should be investigated for an accurate esti-
mating of dose. It is well known that non-automated (visual) scoring of chromosome 
aberrations such as dicentrics requires highly trained experts. On the other hand, as 
thousands of cells should be scored, it is time-consuming and results in fatigue that can 
lead to poor concentration.
Methods: Biological dosimetry technique for assessing radiation dose is based on 
analyzing chromosome in peripheral blood lymphocyte. Our study describes a tech-
nique to speed up this procedure by automatically distinguishing abnormal chromo-
somes from normal ones. The most important feature of dicentric chromosomes is their 
two centromeres.  Therefore, the main approach in our study is to design an automated 
system to identify the number and position of centromeres. We presented a method for 
classifying chromosomes into four groups in accordance with the number of centro-
meres in each chromosome.
Results: The image dataset of 311 chromosomes of normal and dicentric chromo-
somes is used to test the scheme. The sensitivity about 90% and specificity more than 
95% for classification of chromosomes into dicentric and non-dicentric as well as ac-
curacy more than 90% for centromere identification, are obtained. 
Conclusion: If an automated system with the capability of straightening bent 
chromosome was applied prior to the proposed algorithm, even more accurate results 
would be achieved.
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Automated Scoring, Chromosome Aberrations, Biological Dosimetry, Dicentric 
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fore, the exposure of radiation dose should be 
controlled and limited. To this end, biologi-
cal dosimetry is one of the most important 
procedures in estimating the absorbed dose. 
Ionizing radiation may lead to some chro-
mosomal aberrations such as dicentric chro-
mosomes. There is a strong relation between 
the frequency of dicentric chromosomes in 
metaphase and the received dose. Therefore, 
dicentric chromosome analysis (DCA) is a 
well-known method for biological dosimetry. 
This method is known as the “gold standard” 
in accurate individual dose estimation [1] . 
With this intention, a large number of meta-
phases (minimum of 500 metaphases or about 
20000 chromosomes [2]) should be investi-
gated for an accurate estimation of the dose. 
Manual scoring of dicentric chromosomes is 
time consuming, tedious, and requires a cyto-
genetic expert. Therefore, it is extremely ex-
pensive. In the present paper, a technique to 
facilitate this procedure by automatically dis-
tinguishing abnormal chromosomes from oth-
ers is described. The most important feature of 
dicentric chromosomes is the presence of two 
centromeres. Accordingly, the main approach 
of the present study is to design an automated 
system to identify the number and position of 
centromeres. Centromere is the narrowest part 
of the chromosome where two sister chroma-
tids are joined together. Finding the centro-
mere position is an important feature which is 
essential for classifying chromosomes. This is 
a fundamental step for karyotyping (classifi-
cation of 46 human chromosomes into a stan-
dard format called Karyogram). Four types 
of chromosomes classified by the position of 
centromeres include metacentric, submetacen-
tric, acrocentric and telocentric [3]. 

The non-rigid nature of chromosomes 
makes it a difficult and complex task to iden-
tify centromere position. Numerous methods 
have been used and evaluated to extract suit-
able features for centromere detection. Among 
them, projection vectors and medial axis trans-
formation (MAT) interested most researchers 

[4]. As mentioned previously, centromeres are 
the narrowest part of the chromosome. The 
centromere position can be identified by ana-
lysing the vertical and horizontal projection of 
the binary image of chromosomes  to calculate 
the global minimum part of the projection [5, 
6]. Unfortunately, this method is not suitable 
for highly bent chromosomes or acrocentric 
chromosomes. MAT is useful for the detection 
of centromeres because it gives the skeleton 
shape and describes shape properties such as 
the degree of concavity on boundaries that 
are noisy [7] and extract shape and density 
profiles to detect the lowest valley along the 
profile [8]. The latter method requires straight 
chromosomes and because it uses MAT for 
straightening, shape variants might produce 
spurious branches [9].

In the present study, we proposed an auto-
mated algorithm using a less computationally 
expensive technique to specify the class of 
chromosome based on the number of centro-
meres.

This paper is organized as follows: section 2 
explains how the dataset is prepared, section 3 
illustrates how the automated scheme works, 
section 4 expresses the resultant and finally 
section 5 ends with discussion.

Material and Methods

Image Acquisition and Database 
Preparation

A reliable data set with enough dicentric 
chromosomes for testing purposes was inac-
cessible. This prompted creation of an indi-
vidual data set for the present study. For this 
purpose, fresh peripheral blood samples of 
healthy males and females were irradiated 
with 3.0 Gy Co60γ-rays at the SSDL (Second-
ary Standard Dosimetry Laboratory) of Na-
tional Radiation Protection Department. Lym-
phocytes were separated from the irradiated 
blood and cultured in RPMI1640 containing 
20% fatal calf serum for 48 h in the presence 
of 100 IU/ml Penicillin, 100 µg/ml Strepto-
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mycin, PHA (0.2%) and Colcemid (0.05 μg 
/ml) (Gibco BRL) as previously described 
[10] . Cultured cells were treated with a KCl 
hypotonic solution (0.075M) at 37 °C for 20 
minutes and fixed with acetic methanol (1:3). 
Air-dried slides were made under warm and 
humid conditions and stained with Giemsa. 
After preparation of a metaphase slide, im-
ages of well-spread metaphase were examined 
under microscope (Nikon Eclipse E600) and 
captured by (Digital camera DXM 1200F). 

Approximately 80 metaphase images with 
dicentric aberrations were selected as the da-
taset. The input for the automated scheme was 
311 single chromosomes, which were cropped 
manually.

Automated Scheme
A general scheme for automated dicentric 

chromosome detection is shown in Figure 1.
In the first step, pre-processing is applied to 

enhance image contrast. Then, the chromo-
somes are isolated from the background and 
the images are segmented. After that, suit-
able features for centromere localization are 
extracted. Chromosomes are further defined 
by counting the number of centromeres. Fol-
lowing the function of each block will be de-
scribed in more details.
Pre-processing
To improve the quality of chromosome im-

ages and unevenly distributed intensity [11], 
applying pre-processing to improve contrast 
and reducing inhomogeneity of chromosome 
images are necessary. Firstly, a median filter is 
applied to smooth the image, reduce salt and 
pepper noise, and preserve edge information. 
Next, adaptive histogram equalization is used 
to stretch the range of grey scale in histogram 
and increase image contrast. Figure 2 shows a 
sample of a main image and its histogram, and 
the result of adaptive histogram equalization.
Segmentation
Several methods have been studied for chro-

mosome image segmentation [11, 12, 13, 14]. 
The proposed algorithm segments the chro-
mosome images based on an Active Contour 
Model (ACM) [15] followed by edge detec-
tion. Active contour models use an initial 
framework in an attempt to minimize the 
energy inside and outside the contour, which 
moves the contour toward the outline of an 
object. Extensive studies have been conducted 
on this subject. Among them, a recent research 
by Zhang et al. proposed a novel (ACM) with 
special processing methods. By presenting a 
Signed Pressure Force (SPF) function (Equa-
tion 1), which adjusts the sign of pressure 
force inside and outside a Region of Interest 
(ROC); this increases both efficiency and ac-
curacy compared to previous works.

( )( )
( )

( )

c1 c2I x
2SPF I x  
c1 c2Max( I x )

2

+
−

=
+

−
       (1) 

Figure 1: The algorithm for automated di-
centric chromosome classification
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Figure 2:  Image enhancement a) initial image and its histogram b) after histogram equalization

Where c1 and c2 are the average intensity of 
the inside and outside of the contour and I(x) 
is the input image. This function constrains the 
contour to shrink when it is outside (ROC) and 
expand otherwise. In the proposed algorithm, 
to extract the outline of the chromosome 
boundary, some modifications on the method 
proposed by Zhang et al. are applied [16]. By 
modifying the (SPF) function as defined in 
Equation 2, and σ=4 (standard deviation of 
Gaussian filter; Equation 3)), which has high 
impact on weak or blurred edges, satisfactory 
segmentation is achieved.
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This set of values is selected empirically, 

and provides excellent results for segmenta-
tion. To detect edges of binary images (where 
there is a big jump in intensity), the Canny 
technique, one of the most robust image pro-
cessing tools for edge detection, is performed. 
As shown in Figure 3, these stages provide ac-
ceptable results.
Feature Extraction
Highly distinctive feature vector with the 

least possible length, maximize the classifica-
tion performance. Due to the computational 
complexity in any classification procedure, ef-
ficient feature vector selection is a challenging 
task.

Centromeres have two unique characteris-
tics:

• It is the thinnest region of the chromosome.
• Centromeres are significantly more con-

cave compared to the remaining parts of the 
chromosome edges.

In consideration of these specific character-
istics, two features are selected to identify the 
centromere location. The first one is the width 
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profile and the second one is the concavity de-
gree of the edge. To compute these features, a 
two-step pre-computation is required.

Step 1) Centreline Extraction 
It is more convenient to work with the chro-

mosome images in horizontal alignment. Ac-
cordingly, the angle of the chromosome over 
the horizon should be initially computed. For 
this reason, the relative slope of the centreline 
of the chromosome is calculated.

Extracting the centreline; an important to-
pological shape descriptor; is a valuable char-
acteristic for classification, segmentation and 
rotation of the chromosome. In addition, the 
centreline is an important tool to extract fea-
tures like width and density profiles. A robust 
technique was proposed to extract the cen-
treline without any spurious branches in order 
to accurately calculate the width profile and 
concavity degree of the chromosome bound-

ary and to determine the centromere posi-
tion. The proposed algorithm tries to extract 
the centreline in two steps. First, a filling al-
gorithm is applied to the segmented chromo-
some, and then an iterative thinning process is 
used to find the centreline. Figure 4 shows this 
process in a chromosome image.

One of the problems in identifying the 
slope of the centreline is spurious branches 
in the head and tail. To remove these spurious 
branches, 5% of the length of the centreline is 
truncated from the head and tail. Next a poly-
nomial curve of degree one is fitted to the x- 
and y- coordinates of the centreline. After that, 
the slope of the straight line is computed to find 
the direction of the chromosome. By rotating 
the chromosome in the opposite angle of the 
slope, the chromosome is aligned horizontal-
ly. However, due to the thinning process, this 
method suffers from spurious branches that 

 

Figure 3: a) Segmented image based on active contour b) Canny edge detector

 

Figure 4: Extracting centreline a) segmented image, b) filling, c) thinning

Automated Cytogenetic Imaging System

V



J Biomed Phys Eng

www.jbpe.orgSanaeian Pour Shirazi Z., et al

might cause the polynomial curve of degree 
one in the wrong orientation, with the wrong 
slope and wrong rotation. To overcome this 
problem, another centreline is computed with 
a different method. The chromosome image of 
previous section is swept vertically. Then the 
midpoints of the lines intersecting the edges 
of the chromosome are chosen as the cen-
treline. Afterwards, the slope of the centreline 
is computed and rotated to make the image of 
chromosome in the exact horizontal direction. 
In contrast with MAT, this technique is robust 
against shape variance to extract centrelines 
without any spurious branches.

Step 2) Edge Graph Extraction
Instead of processing a large amount of 

data from an image matrix, the corresponding 
graph of the edge is obtained by tracing the 
contour of image and extracting its boundary. 
This graph is represented by a matrix consist-
ing of two columns (x-and y-coordinates of 
each pixel of the edge). This technique pre-
serves all the information of the edge. Further-
more, a significant reduction in computational 
complexity can be achieved by working with 
a smaller amount of data from the edge, com-
pared to larger amounts of data from the im-
age. 

According to the previous section, this graph 
is rotated so that the graph aligns horizontal-
ly. Figure 5 shows the result of extracting the 
edge graph.

Width Profile
Width profile computes the length of the per-

pendicular line across the centerline. It is im-
portant to align the graph horizontally before 
computing the width profile for accurate dis-
tance measurement. The average value of the 
width of graph is chosen as a threshold, thus, 
the graph is converted into upper and lower 
sub-graphs. The formula for the threshold is 
computed by:

1 . 1n
ii

Threshold y
n

= =∑                      (4)

Where (yi) is the y- coordinate of each point 
of the graph and (n) is the total number of 
points in the graph.

To compute the width profile, as shown in 
Equation 5, the city block distance algorithm 
(Manhattan distance) is applied along the hori-
zontal graph.

Distance = |x1− x2| + |y1− y2|              (5)

Where (x1, y1) and (x2, y2) are the first and 
second points, respectively.  First, the distance 
between every point of the upper or lower sub-
graph is computed and then the minimum dis-
tance is chosen as the actual distance.

Figure 6 shows both upper and lower sub-
graphs of chromosome and the resulting width 
profile.

Concavity Degree 
As seen previously, centromeres are regions 

 

Figure 5: a) Edge graph extraction b) after rotation
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with maximum concavity compared to other 
parts of chromosome boundary. Considering 
this, the proposed algorithm computes the 
concavity degree of the chromosome bound-
ary. By splitting each sub-graph of the previ-
ous step into overlapped sub-sections, a sec-
ond order polynomial is fitted to each part. 
The second derivative of each part is then cal-
culated. The first 20% of points with the maxi-
mum derivative are labelled as the most con-
cave points. In the next section, application of 
this feature will be demonstrated.
Centromere Location
Based on the obtained feature, centromere 

position is identified. The centromere position 
in the width profile is a deep valley. Due to the 
noisy nature of chromosome edges, search-
ing for these valleys is a difficult procedure. 
To ignore weak valley, the profile is initially 
smoothed. Afterwards, using the same ap-
proach as the event detection of ECG signals 
[17], an empirical threshold is selected based 
on trial and error as in Equation 6. The valleys 
below the threshold are disregarded. 
Threshold = STD (width profile) + 0.6* Mean 
(width profile)                                          (6)

After that, four-point peak detection (Equa-
tion 7) is performed on the inverted width pro-
file signal to locate the centromere position. 
The result of peak detection is shown in Fig-
ure 7.

If  
2 1

2 3

2 4

x x
x x
x x

>
 ≥
 >

  then x2 is peak                  (7)

As mentioned, centromere is the most con-
cave part of chromosome. This area, as shown 
in Figure 8, is labelled as the most concave 
point on the edge graph. The combination of 
these two features leads to a result which is 
more satisfactory.

As a result, the centromere is the point where 
at the same length, both width profile and con-
cavity degrees are graphically identified as 
centromere. Figure 9 shows both features si-
multaneously.

Experimental Results
The proposed algorithm can classify chro-

mosomes into 4 spread classes, defined as 
those with normal chromosomes (with one 
centromere including metacentric chromo-
somes and sub-metacentric chromosomes), 

 

Figure 6: Upper and lower sub-graphs with width profile
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dicentric chromosomes (with 2 centromeres), 
thricentric chromosomes (with three centro-
meres) and fragmented or acrocentric chro-
mosomes. Due to the special structure of 
chromosomes in the latter class, the proposed 
algorithm categorized them as chromosomes 
with no centromeres. The results of the classi-
fication of 311 chromosome images into these 

four classes are shown in Table 1.
Moreover, the proposed algorithm can detect 

the location of centromere positions. To evalu-
ate the accuracy of centromere position, an ex-
pert human was used to compare the algorithm 
result with that of manual centromere segmen-
tation. Any dislocation out of the region of in-
terest was regarded as inaccurate centromere 

 

Figure 7: Centromere valleys in width profile

Figure 8: The most concave parts of chromosome signal
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Figure 9: Width profile with centromere valleys and concave points on the chromosome signal

Class Total No.
Chromosomes

No. correct class
identification

Accuracy rate of class
Identification (%)

Normal
(Metacentric or Submetacentri) 153 148 96.7

Dicentric 89 78 87.6
Thriccentric 5 3 60

Acrocentric or Fragment 64 60 93.8
Total 311

Table 1: Result of automated classification into 4 classes.

position. Table 2 shows the accuracy in cen-
tromere location.

To evaluate the efficiency of the proposed 
algorithm in detecting normal and abnormal 
chromosomes, chromosomes were catego-
rized into two distinct classes of either dicen-
tric or non-dicentric chromosomes. By mea-
suring two statistical indicators (sensitivity 
and specificity), the accuracy of this classifi-
cation was computed.

Sensitivity or true positive rate (TPR), as 
shown in Equation 8, represents the propor-
tion of positive cases in which the algorithm 
correctly identified as positive.

Specificity or true negative rate (TNR), as 
shown in Eq9, represents the proportion of 
negative cases in which the algorithm correct-
ly identified as negative.

TPR=TP/(TP+FN)×100                               (4)
TNR=TN/(TN+FP)×100                               (5)
TP: number of chromosomes correctly clas-

sified as dicentric
TN: number of chromosomes correctly clas-

sified as non- dicentric
FP: number of chromosomes inaccurately 

classified as dicentric
FN: number of chromosomes inaccurately 

classified as non- dicentric

Automated Cytogenetic Imaging System
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A sensitivity of 87.6% and specificity of 

95.9% are achieved (Table 3).

Conclusion
Automated centromere detection is a critical 

task in karyotyping as well as detecting dicen-
tric chromosome abnormalities in biological 
dosimetry. Despite the fact that much work 
has been done in this area, most genetic labo-
ratories still use semi-automated systems for 
these routine procedures. 

In the present study, an automated system 
for detecting centromere location was de-
veloped and tested, with fewer features (just 
two features), a less complicated scheme and 
more accurate results compared to previous 
research [4, 6, 18] (e.g. 94.2% versus 90.8 
%)[8] or (e.g.,94.2% versus 91.3) (after re-
moving acrocentric chromosomes from both 

data sets, the accuracy was computed for the 
most precise comparison)[19]. Additionally, 
if an automated system with the capability of 
straightening bent chromosome was applied 
prior to the proposed algorithm, even more ac-
curate results would be achieved. As reported 
in Table 4, the results of applying the proposed 
algorithm to straightened chromosomes in-
creases accuracy to 97.8 %. Fair comparison 
of the present method to other methods is dif-
ficult due to different preparation methods and 
databases utilized.

Ultimately, the input of the proposed algo-
rithm includes single chromosomes. Never-
theless, implementing an automated system 
which segments all of the chromosomes of 
metaphase is a great improvement for the in-
dustry.

Sanaeian Pour Shirazi Z., et al

Class Total No. chromosomes No. Correct class Identification
Dicentric 89 78

Non-dicentric 222 213

Table 3: Results of classification into dicentric and non-dicentric sets

Class
Total No. 

Chromosomes
Total No. 

Centromere

No. correct Cen-
tromere position 

Identification

Accuracy rate of 
Correct centromere 
Position Identifica-

tion (%)
Normal (metacentric 
or submetacentric)

153 153 148 96.7

Dicentric 89 178 164 92.1
Thricentric 5 15 13 86.6

Total 247 346 326 94.2

Table 2: Results of automated centromere detection
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Table 4: Results of classification into dicentric and non-dicentric sets

Class
Total No. 
Chromo-
somes

Total No. 
Centro-

mere

No. correct Cen-
tromere position 

Identification

Accuracy rate of Cor-
rect centromere Posi-
tion Identification (%)

Normal (Metacentric 
or Submetacentri)

151 151 149 98.7

Dicentric 80 160 156 97.5
Thricentric 4 12 11 91.6

Total 235 323 316 97.8
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