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Introduction

Recently, an increasing interest in medical image fusion has been 
observed [1-4]. Fusion of medical images obtained from dif-
ferent imaging systems such as positron emission tomography 

(PET), magnetic resonance image (MRI), single photon emission com-
puted tomography (SPECT) and computed tomography (CT) facilitate 
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ABSTRACT
Background: Medical image fusion is being widely used for capturing compli-
mentary information from images of different modalities. Combination of useful 
information presented in medical images is the aim of image fusion techniques, and 
the fused image will exhibit more information in comparison with source images. 
Objective: In the current study, a BEMD-based multi-modal medical image 
fusion technique is utilized. Moreover, Teager-Kaiser energy operator (TKEO) was 
applied to lower BIMFs. The results were compared to six routine methods. 
Material and Methods: In this study, which is of experimental type, an im-
age fusion technique using bi-dimensional empirical mode decomposition (BEMD), 
Teager-Kaiser energy operator (TKEO) as a local feature selection and Hierarchical 
Model And X (HMAX) model is presented. BEMD fusion technique can preserve 
much functional information. In the process of fusion, we adopt the fusion rule of 
TKEO for lower bi-dimensional intrinsic mode functions (BIMFs) of two images and 
HMAX visual cortex model as a fusion rule for higher BIMFs, which are verified to 
be more appropriate for human vision system. Integrating BEMD and this efficient 
fusion scheme can retain more spatial and functional features of input images. 
Results: We compared our method with IHS, DWT, LWT, PCA, NSCT and SIST 
methods. The simulation results and fusion performance show that the presented 
method is effective in terms of mutual information, quality of fused image (QAB/F), 
standard deviation, peak signal to noise ratio, structural similarity and considerably 
better results compared to six typical fusion methods. 
Conclusion: The statistical analyses revealed that our algorithm significantly 
improved spatial features and diminished the color distortion compared to other 
fusion techniques. The proposed approach can be used for routine practice. Fusion 
of functional and morphological medical images is possible before, during and after 
treatment of tumors in different organs. Image fusion can enable interventional events 
and can be further assessed. 
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image analysis, clinical diagnosis and treat-
ment planning [5]. Each medical imaging mo-
dality provides a different level of structural 
and functional information. For instance, CT 
(based on x-ray principle) is often used to 
represent dense structures, and is not suitable 
for soft tissues and physiological analysis. By 
contrast, MRI provides a better representation 
of soft tissue and is usually used for the diag-
nosis of tumors and other tissue abnormalities. 
Similarly, low blood pressure information in 
one region of the body is obtained by PET; 
nonetheless, its low resolution is one of the 
disadvantages of this imaging modality [6].

Previous methods have revealed that image 
fusion has a great ability to improve diagnostic 
and treatment in different pathological popula-
tions such as cancer patients [7-10]. Various 
algorithms have been applied effectively for 
most applications in the past and were suc-
cessfully applied for diagnosis of kidney and 
liver tumors [11]. Fusion can be valuable dur-
ing interventional events and can contribute 
before, during and after tumor therapy [12]. 
Most functional and morphologic imaging 
researches offer distinct and complimentary 
information. Registration of medical images 
can provide another insight into the spatial re-
lationships between tumor and thermal lesion. 
Predictable clarification practices mental reg-
istration [13]; nevertheless, computer process-
ing can afford an impartial and exact assess-
ment [14]. 

Recent research has revealed that fusion of 
abdominal images from diverse modalities 
can recover analysis and monitoring of pro-
gression of disease [15, 16]. New imaging 
modalities joining positron emission tomogra-
phy (PET), single photon emission computed 
tomography (SPECT) and computed tomog-
raphy (CT) proposes a unique inspection en-
couraging investigative and prognostic capac-
ities for different applications of image fusion 
in cancer [14]. Image fusion has confirmed 
advantageous for the assessment of patients 
with cancer supportive diagnosis, treatment 

development, monitoring the reply to therapy 
with disease development [17-19]. 

Hence, combining images obtained from dif-
ferent methods is required to extract sufficient 
information, reduce redundancy and make 
it more suitable for visual perception [20]. 
When there are multiple images of a patient, 
medical image fusion is applied. Fused im-
ages could be provided from multiple images 
from the same imaging modality [21], or mul-
tiple modalities [22]. Goshtas by categorized 
image fusion algorithms into pixel [23], fea-
ture [24] and symbolic [25] levels [20]. Pixel 
level fusion is more appropriate than other 
fusion methods, and can be implemented in 
both spatial and transform domains. Principal 
component analysis (PCA) [26], and Intensity 
hue saturation (IHS) [27, 28] methods are in 
spatial domain pixel level fusion category. 
However, spatial domain fusion methods can 
cause spatial distortion [29]. In order to over-
come these disadvantages, multi-scale decom-
position (MSD) based medical image methods 
such as Daubechies complex wavelet trans-
form [4], lifting wavelet transform (LWT) 
[30], Weighted Score Level Fusion [31], 
curvelet transform [32, 33], non-subsample 
Deontourlet transform (NSCT) [34], Shearlet 
transform [35], shift-invariant shearlet trans-
form (SIST) [1] and fuzzy transform [20] have 
been widely used to the fusion of medical im-
aging. Because of limitations in providing di-
rectional information, discrete wavelet trans-
form (DWT) based fusion method produce 
block artifacts and inconsistency in the fused 
results [36]. Contourlet transform methods use 
various and flexible directions to distinguish 
geometrical structures. Hence, the down- and 
up-sampling cause ringing artifacts; it is a re-
dundant transform [37]. Curvelet transform 
can capture the intrinsic geometrical structure 
of an image; however, it does not provide a 
multi-resolution demonstration of geometry 
[38]. Empirical Mode decomposition (EMD) 
is an innovative data representation that de-
composes non-stationary and non-linear sig-
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nals into Intrinsic Mode Functions (IMFs) 
[39]. Compared to other former multi-scale 
decomposition approaches, EMD can more 
precisely represent image information. The 
reasons are as follows [40]: (1) This decompo-
sition technique is data driven; (2) Decompo-
sition is based on the local spatial scale of the 
image; and (3) IMFs permit illustration of in-
stantaneous frequencies as functions of space. 

Physical properties of one-dimensional 
EMD can also be extended to two-dimension-
al image analysis. Qiao et al. developed space 
transform by combining the panchromatic im-
ages into multispectral images [41]. Chenet et 
al. integrated SVM with EMD to create multi-
focus image fusion [42]. After that Zhang et 
al. implemented a comparison of EMD-based 
image fusion approaches and showed that the 
fused image quality is the best by BEMD [43]. 
Ahmed et al. and Wielgus et al. considered 
the use of fast and adaptive BEMD in image 
fusion [44, 45]. Also Zhao et al. proposed a 
bidimensional empirical mode decomposition 
with directional information to merge medical 
images [46]. These studies exhibit the poten-
tial of using BEMD on medical image fusion. 
Consequently, we select BEMD as the MSD 
tool in our present work.

Choice of the fusion schemes is another es-
sential work for the MSD-based image fusion 
technique. There are various fusion rules for 
a variety of applications. The coefficients are 
combined with a rule, such as choose-max 
[35, 47], the energy and regional information 
entropy [48], Pulse Coupled Neural Network 
(PCNN) [49] and Self-Generating Neural 
Network [50]. The drawbacks of these rules 
include time-consuming process and no sta-
tistical dependency between these MSD co-
efficients. The correlation coefficients of the 
cross- and inter- sub-bands scales have been 
considered as fusion criteria [2]. However, 
BIMFs are statistically uncorrelated or orthog-
onal, and there are no dependencies between 
the BIMFs.

In this study, a BEMD-based multi-modal 

medical image fusion technique is utilized. 
Teager-Kaiser energy operator (TKEO) ap-
plied to lower BIMFs. TKEO can track the 
energy and distinguish the instantaneous fre-
quency and instantaneous amplitude of mono-
component AM-FM signal [51]. TKEO is used 
to emphasize the pixel activity. Furthermore, 
this operator reflects much more the pixel 
energy activity compared to other features. 
HMAX visual cortex model is used for higher 
BIMFs. The proposed fusion schema makes 
complete use of the mechanism of V1 visual 
cortex to fused proper BIMFs. This study is 
organized as follows: Section 2 explains the 
proposed framework of method (Section 2.1), 
the BEMD-based fusion technique (Section 
2.2), theoretical overview of TKEO (Section 
2.3), HMAX visual cortex model (Section 2.4) 
and the fusion rule for the BIMFs is described 
in Section 2.5. Section 3 presents experimen-
tal results. Finally, Section 4 is devoted to con-
clusion.

Material and Methods
This study is an experimental type and this 

section offers main fusion method under the 
BEMD frame. Then, the theory and imple-
mentation of BEMD are presented. The fusion 
rules based on dependencies of the BIMFs are 
also discussed.

The Proposed Framework of Medical 
Image Fusion

It should be noted that PET images are de-
picted by pseudo-color, thus, we considered 
them color images. Figure 1 is a block diagram 
representing proposed algorithm. The steps of 
the algorithm are summarized here.

Step 1: Convert source image B into IHS 
model and then calculate the intensity compo-
nent of it.

Step 2: Decompose the intensity compo-
nents into BIMFs via BEMD.

Step 3: Combine lower BIMFs according to 
TKEO rules.

Step 4: Combine higher BIMFs based on 
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HMAX Visual Cortex model.
Step 5: Reconstruct the intensity compo-

nents of the fused image by summation of se-
lected BIMFs.

Step 6: Reconstruct the fused color image 
using the inverse IHS transform.

BEMD-based Fusion Algorithm: Theo-
retical Overview of BEMD

The bi-dimensional empirical mode decom-
position (BEMD) has been suggested to adap-
tively extract different frequency components 
of image [39]. This technique is derived from 
the assumption that image consists of vari-
ous bi-dimensional intrinsic mode functions 
(BIMFs). ABIMF is defined by two criteria: 
firstly, each BIMF has the same number of 
zero crossings and extrema; secondly, each 
BIMF is symmetric with respect to the local 
mean. The following plan suggests an idea 
about the principle algorithm of the BEMD:

1) Identify the extrema of the image I by 
morphological reconstruction based on geode-
sic operators.

2) Generate the 2D ‘envelope’ by connecting 
maxima points (respectively, minima points) 
with a radial basis function (RBF). 

3) Determine the local mean m1; by averag-
ing the two envelopes. 

4) Since BIMF should have zero local mean, 
subtract out the mean from the image:

1 1I m h− =

5) Repeat as h1 is a BIMF.

Theoretical Overview of TKEO
It is revealed that the TKEO can track the 

energy and recognize the instantaneous fre-
quency (IF) and the amplitude of a signal [52]. 
Energy of each pixel can be assessed using 
an image statistic such as the Sobel detectors 
or gradient; nevertheless, these methods are 
sensitive to noise [53] and do not perfectly 
highlight edges. The 2D-TKEO distinguishes 
noise peaks and true edges, and reflects better 
the local activity than the amplitude of the gra-
dient [54]. The 2D-TKEO is defined by [55]:

( )( ) ( ) ( ) ( )2 2, | , | , ,I m n I m n I m n I m nψ = ∇ − ∇    (1)

I(x, y) supposes twice-differentiable continu-
ous real valued function. The first type of the 
new 2D nonlinear filter has been attained by 
applying the filtering operation of Eq. (1) 
along both the vertical and horizontal direc-
tions resulting in a 2-D version given by [56]:

( )( ) ( ) ( ) ( ) ( ) ( )2, 2 , 1, . , 1 , 1 , 1I m n I m n I m n I m n I m n I m nψ = − − − − − + (2)

An essential characteristic of 2D-TKEO is 
that it is approximately instantaneous and this 
resolution offers us an ability to capture the 

Figure 1: Schematic diagram of the bi-dimensional empirical mode decomposition (BEMD)-
based medical image fusion method
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energy fluctuations. Additionally, implemen-
tation is very easy.

HMAX Visual Cortex Model
The HMAX Visual Cortex model is arranged 

in some layers to evaluate information in a 
bottom-up way. The layers of the model are 
called simple “S” or complex “C” which are 

discovered by Hubel and Wiesel [42]. These 
cells are placed in the striate cortex (called 
V1), which is the part of visual cortex in the 
most posterior area of the occipital lobe. The 
structure of HMAX model is shown in Figure 
2.

In this model [43], S1 and S2 are two layers 
of simple cells, and C1 and C2 are two lay-

Figure 2: The structure of mathematical simulation of Hierarchical Model And X (HMAX) model 

ers of complex cells (Figure 2). The layers are 
computed by a hard max filter. The images are 
processed by the subsequent simple and com-
plex cells layers and reduced to set of features 
(F). The S1 layer adjusts the 2D Gabor filters 
calculated for four orientations (horizontal, 
vertical, and two diagonal) at each position 
and scale. The Gabor filter is described by:

( )
2 2

2
2, exp( )cos( )

2
X YG x y Xγ π

σ λ
+

= −  (3)

where,     X xcos ysinϕ ϕ= −  and 
    Y xsin ycosϕ ϕ= + ; The aspect ratio (γ), af-

fective width (σ), and wavelength (λ) are fixed 
to 0.3, 4.5 and 5.6, respectively. Finally, the 
HMAX response R can be computed using the 
formula (4):

( )
2

, ( )i i

i

X G
R X G abs

X
= ∑

∑
                       (4)

Fusion Rule for BIMFs
It is well known that lower IMFs correspond 

to higher frequency parts and vice versa, thus, 
higher BIMFs provide the approximation of 
original images. Frequently, the averaging 
or regional standard deviation methods are 
used to produce the fused low frequency co-

efficients. However, their drawback is low-
contrast results. On the other hand, clarity of 
the local energy is observed. Therefore, a new 
scheme for fusion is developed by the hierar-
chical HMAX in the visual cortex model to 
select between BIMFs. The completely devel-
oped scheme is described as follows:

1) Compute the HMAX response by Eq. (4)
2) The fused BIMFs are obtained by the hi-

erarchical HMAX response mapping:

( ) ( ) ( ) ( )
( ) ( ) ( )

, , ,
,

, , ,
A A B

F
B A B

C i j R X G R X G
C i j

C i j R X G R X G
 ≥=  <

         (5)

where, ( , )lC i j  denotes higher BIMFs lo
cat-

ed at (i, j), l=A,B.A (MRI), B (PET/SPECT) 
and F is fused image. Lower BIMFs offer the 
detailed information of image. The choose-
max method is a popular scheme, which is 
used for composition of high frequency coef-
ficients. This method selects only the maxi-
mum amplitude of single coefficient; hence, it 
is not suitable for medical image features. 
Consequently, to obtain better results than oth-
er fusion schemes, 2D Teager Kaiser Energy 
Operator (2D TKEO) is applied to construct a 
weight fusion scheme. The 2D TKEO reflects 
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finer local activity. This quadratic filter en-
hances information, which is the average of 
gray values by the energy activity at each pix-
el. Let ( , )iC x y  denote lower BIMFs located 
at (x, y), i=A,B. The coeffcient of the fused im-
age at location (x, y) can be calculated by: 

( ) ( , )
,

,F i i x y
i A B

C x y Cµ
=

= ∑                               (6)

where, iµ  is the weight for the local Energy 
Ei. Ei is computed in the 3 * 3 neighborhood 
by Eq. (2):

( )
( , )

, ( , )
i

i
A B

E x y
E x y E x y

µ =
+

                       (7)

Results
PET/MRI/SPECT images used in this study 

were obtained from Harvard university site 
(http://www.med.harvard.edu/AANLIB/
home.html). The simulation results of our 

method were compared with IHS transform, 
DWT, LWT, PCA, NSCT and SIST. The per-
formance of our algorithm is evaluated by Mu-
tual Information (MI for short) [27], QAB/F 
[57], Standard deviation (SD for short) [35], 
peak signal-to-noise ratio (PSNR for short) 
and structural similarity (SS for short) [58, 
59].

Figures 3a and b show PET-MRI images 
from a 60 year-old man with Mild Alzheimer’s 
disease. Figures 4a and b demonstrate SPECT-
MRI images from a 38 year-old man with Mild 
Neoplastic Disease (brain tumor). From the 
result, it can be obviously seen that proposed 
fusion technique can retain high spatial reso-
lution features of the MRI image. Moreover, 
the fused image does not distort the spectral 
features of multispectral image. In addition, 
according to the quantitative comparison of 
different fusion techniques, most metrics can 
achieve the best value by the proposed method 
that is seen in Tables 1 and 2.

Figure 3: Alzheimer’s disease positron emission tomography (PET) and magnetic resonance 
image (MRI) images (a and b), Intensity hue saturation (IHS) model (c), Lifting wavelet trans-
form (LWT) (d), Discrete wavelet transform (DWT) (e), Principal component analysis (PCA) (f), 
Nonsubsampled contour transformation (NSCT) (g), Shearlet transform (ST) (h) and proposed 
method (i).
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Figure 4: Single photon emission computed tomography (SPECT) and magnetic resonance image 
(MRI) images (a and b), Intensity hue saturation (IHS) model (c), Lifting wavelet transform (LWT) 
(d), Discrete wavelet transform (DWT) (e), Principal component analysis (PCA) (f), Nonsubsam-
pled contour transformation (NSCT) (g), Shearlet transform (ST) (h) and proposed method (i).

Discussions
Visual analysis demonstrates that results of 

the proposed method have more spatial resolu-
tions. It appears that, our results (Figures (3i) 
and (4i)) show visually the best results among 
all other results. The proposed method enables 
offering less spectral information loss as com-
pared to other state-of-the-art techniques.

The proposed algorithm is compared with 
IHS, DWT, LWT, PCA, NSCT and SIST meth-
ods. A proper fusion method should maintain 
the spectral characteristics of PET image and 
the high spatial characteristics of the MRI im-
age, which is obtained by the proposed meth-
od.

To entirely envisage two fused images, it is 

IHS PCA DWT LWT NSCT ST Proposed method
MI 2.4641 2.6093 2.7740 2.7783 2.5253 2.8554 2.9871
SD 37.7569 47.6791 53.1702 53.1941 53.5308 68.9855 81.9598

QAB/F 0.3102 0.2742 0.3745 0.3721 0.2156 0.2111 0.4023
PSNR 14.8553 17.2423 21.1892 21.1806 20.9094 25.8630 28.4485

SS 0.8870 0.8141 0.9546 0.9537 0.9144 0.9445 0.9456

IHS: Intensity hue saturation, PCA: Principal component analysis, DWT: Discrete wavelet transform, LWT: Lifting wavelet trans-
form, NSCT: Nonsubsampled contourlet transform, ST: Shearlet transform, MI: Mutual Information, SD: Standard deviation, 
QAB/F: Quality of fused image, PSNR: Peak signal to noise ratio, SS: Structural similarity

Table 1: The objective evaluation of the seven methods for the fusion of magnetic resonance 
image (MRI)/positron emission tomography (PET) (Alzheimer’s disease).
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significant to be able to regulate the coloriza-
tion, brightness and image contrast autono-
mously. In addition, it is also vital to be able 
to correct the amount of merger between the 
two fused images. Having the capability to 
adjust these image characteristics significantly 
recovers the imagining of lesions and necrotic 
parts. Such a visualization is vigorous to pre-
cise evaluations. The most individually actual 
color arrangements were kept, which permit-
ted further computerization of repetitive post-
processing stages. In addition, our techniques 
allow localizing and fusing both MRI and 
PET images. Image processing and fusion es-
tablished investigative apparatuses that can be 
further assessed for possible effectiveness dur-
ing interventional procedures.

Conclusion
In this study, we present a novel method 

based on the BEMD technique to decompose 
medical images into various frequency bands 
and Teager-Kaiser energy operator (TKEO) 
applied to lower modes to extract regional 
features and HMAX visual cortex model for 
higher BIMFs. Thanks to this model, the pro-
posed divisive HMAX-based fusion rule can 
be applied on higher BIMFs to make complete 
use of the mechanism of visual cortex (V1). 
The statistical analyses revealed that our al-
gorithm significantly rose spatial information 
and decreased the color distortion compared 

to other fusion methods on the fusion of MRI/
PET and MRI/SPECT. Furthermore, the re-
sults of our algorithm are visually better than 
all other results.
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