Document Type: Original Research

Authors

1 PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

2 PhD,Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran

3 PhD,Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran

4 MD,Department of Biomedical Engineering, Standard Research Institute, Karaj, Iran

5 PhD,Shiraz University of Medical Sciences, Shiraz, Iran

6 PhD,Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Background: The increasing use of telecommunication devices such as Wi-Fi modems and mobile phones in the recent years can change the cellular structure of microorganisms so the generation of electromagnetic waves has led to concern in the community whenever be exposed to these fields and may have harmful effects on human health.Material and Methods: Standard strains of bacteria were prepared on Mueller-Hinton agar for bacterial growth to obtain 0.5 McFarland turbidity (1.5 × 108 CFU) of bacteria. Antibiotic susceptibility testing using the Kirby-Bauer disk diffusion method was done. For Staphylococcus aureus and Pseudomonas aeruginosa, antibiotics susceptibility test was conducted. The test group was exposed to electromagnetic waves emitted by mobile phone simulator with a frequency of 900 MHz and the control group didin’t exposed.Results: The results revealed that increasing duration of exposure to electromagnetic waves emitted by the mobile simulators with a frequency of 900 MHz especially after 24 h of exposure, can increase bacterial resistance in S. aureus, and P. aeruginosa.Conclusion: Several factors can cause bacterial resistance against antibiotics. One of these factors is the electromagnetic waves emitted from mobile simulator with a frequency of 900 MHz, which can increase the permeability of the cell wall of bacteria.

Keywords

  1. Andersson DI. Persistence of antibiotic resistant bacteria. Curr Opin Microbiol. 2003;6:452-6. PubMed PMID: 14572536.
  2. Meyer E, Jonas D, Schwab F, Rueden H, Gastmeier P, Daschner FD. Design of a surveillance system of antibiotic use and bacterial resistance in German intensive care units (SARI). Infection. 2003;31:208-15. PubMed PMID: 14562943.
  3. Huang CR, Lu CH, Chuang YC, Tsai NW, Chang CC, Chen SF, et al. Adult Pseudomonas aeruginosa meningitis: high incidence of underlying medical and/or postneurosurgical conditions and high mortality rate. Jpn J Infect Dis. 2007;60:397-9. PubMed PMID: 18032844.
  4. Jensen T, Pedersen SS, Garne S, Heilmann C, Hoiby N, Koch C. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Antimicrob Chemother. 1987;19:831-8. PubMed PMID: 3301785.
  5. Mena KD, Gerba CP. Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxicol. 2009;201:71-115. doi: 10.1007/978-1-4419-0032-6_3. PubMed PMID: 19484589.
  6. Bodey GP, Bolivar R, Fainstein V, Jadeja L. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis. 1983;5:279-313. PubMed PMID: 6405475.
  7. Lang AB, Furer E, Senyk G, Larrick JW, Cryz SJ, Jr. Systematic generation of antigen specific human monoclonal antibodies with therapeutical activities using active immunization. Hum Antibodies Hybridomas. 1990;1:96-103. doi: 10.3233/hab-1990-1204.PubMed PMID: 2129420.
  8. Merrer J, Santoli F, Appere De Vecchi C, Tran B, De Jonghe B, Outin H. “Colonization pressure” and risk of acquisition of methicillin-resistant Staphylococcus aureus in a medical intensive care unit. Infect Control Hosp Epidemiol. 2000;21:718-23. doi: 10.1086/501721. PubMed PMID: 11089656.
  9. Haddadin AS, Fappiano SA, Lipsett PA. Methicillin resistant Staphylococcus aureus (MRSA) in the intensive care unit. Postgrad Med J. 2002;78:385-92. doi: 10.1136/pmj.78.921.385.PubMed PMID: 12151652; PubMed Central PMCID: PMC1742438.
  10. Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genet Mol Res. 2003;2:63-76. PubMed PMID: 12917803.
  11. Roy S, Santra S, Das A, Dixith S, Sinha M, Ghatak S, et al. Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Ann Surg. 2019. doi: 10.1097/SLA.0000000000003053. PubMed PMID: 30614873.
  12. Centers for Disease Control and Prevention (CDC). Staphylococcus aureus resistant to vancomycin--United States, 2002. MMWR Morb Mortal Wkly Rep. 2002;51:565-7. PubMed PMID: 12139181.
  13. Tang J, Zhang Y, Yang L, Chen Q, Tan L, Zuo S, et al. Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res. 2015;1601:92-101. doi: 10.1016/j.brainres.2015.01.019.
  14. Urbinello D, Joseph W, Verloock L, Martens L, Roosli M. Temporal trends of radio-frequency electromagnetic field (RF-EMF) exposure in everyday environments across European cities. Environ Res. 2014;134:134-42. doi: 10.1016/j.envres.2014.07.003. PubMed PMID: 25127524.
  15. Urbinello D, Joseph W, Huss A, Verloock L, Beekhuizen J, Vermeulen R, et al. Radio-frequency electromagnetic field (RF-EMF) exposure levels in different European outdoor urban environments in comparison with regulatory limits. Environ Int. 2014;68:49-54. doi: 10.1016/j.envint.2014.03.007. PubMed PMID: 24704639.
  16. Repacholi MH. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics. 1998;19:1-19. doi: 10.1002/(sici)1521-186x(1998)19:13.3.co;2-8.PubMed PMID: 9453702.
  17. Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92:1318-25. doi: 10.1016/j.fertnstert.2008.08.022. PubMed PMID: 18804757.
  18. McNamee JP, Chauhan V. Radiofrequency radiation and gene/protein expression: a review. Radiat Res. 2009;172:265-87. doi: 10.1667/RR1726.1. PubMed PMID: 19708776.
  19. Salehi I, Sani KG, Zamani A. Exposure of rats to extremely low-frequency electromagnetic fields (ELF-EMF) alters cytokines production. Electromagn Biol Med. 2013;32:1-8. doi: 10.3109/15368378.2012.692343. PubMed PMID: 23046051.
  20. Moreau E. Airflow control by non-thermal plasma actuators. Journal of physics D: applied physics. 2007;40:605. doi: 10.1088/0022-3727/40/3/s01.
  21. Preece A. Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. Int J Radiat Biol. 1999;75:447-56. doi: 10.1080/095530099140375.
  22. Dogan M, Turtay MG, Oguzturk H, Samdanci E, Turkoz Y, Tasdemir S, et al. Effects of electromagnetic radiation produced by 3G mobile phones on rat brains: magnetic resonance spectroscopy, biochemical, and histopathological evaluation. Hum Exp Toxicol. 2012;31:557-64. doi: 10.1177/0960327111412092. PubMed PMID: 21659345.
  23. Fu TC. A Dual Communication and Imaging Underwater Acoustic System: University of California, Santa Barbara; 2011.
  24. Lerner EJ. Biological effect of electromagnetic fields: New findings linking changes in organisms to irradiation by weak fields encourage researchers to posit theories, although research is incomplete. IEEE spectrum. 1984;21:57-69. doi: 10.1109/mspec.1984.6370269.
  25. Krewski D, Glickman BW, Habash RW, Habbick B, Lotz WG, Mandeville R, et al. Recent advances in research on radiofrequency fields and health: 2001-2003. J Toxicol Environ Health B Crit Rev. 2007;10:287-318. doi: 10.1080/15287390600974973. PubMed PMID: 17620203.
  26. Parajuli P, Panday JP, Koirala RP, Shah BR. Study of the Electromagnetic Field Radiated from the Cell Phone Towers Within Kathmandu Valley. International Journal of Applied Sciences and Biotechnology. 2015;3:179-87. doi: 10.3126/ijasbt.v3i2.12297.
  27. Mortazavi SM, Darvish L, Abounajmi M, Zarei S, Zare T, Taheri M, et al. Alteration of Bacterial Antibiotic Sensitivity After Short-Term Exposure to Diagnostic Ultrasound. Iran Red Crescent Med J. 2015;17:e26622. doi: 10.5812/ircmj.26622. PubMed PMID: 26732124; PubMed Central PMCID: PMC4698328.
  28. Taheri M, Mortazavi SM, Moradi M, Mansouri S, Hatam GR, Nouri F. Evaluation of the Effect of Radiofrequency Radiation Emitted From Wi-Fi Router and Mobile Phone Simulator on the Antibacterial Susceptibility of Pathogenic Bacteria Listeria monocytogenes and Escherichia coli. Dose Response. 2017;15:1559325816688527. doi: 10.1177/1559325816688527. PubMed PMID: 28203122; PubMed Central PMCID: PMC5298474.
  29. Adebayo E, Adeeyo A, Ayandele A, Omomowo I. Effect of radiofrequency radiation from telecommunication base stations on microbial diversity and antibiotic resistance. Journal of Applied Sciences and Environmental Management. 2014;18:669-74.
  30. Crabtree DPE, Herrera BJ, Kang S. The response of human bacteria to static magnetic field and radiofrequency electromagnetic field. J Microbiol. 2017;55:809-15. doi: 10.1007/s12275-017-7208-7. PubMed PMID: 28956351.
  31. Salmen SH, Alharbi SA, Faden AA, Wainwright M. Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria. Saudi J Biol Sci. 2018;25:105-10. doi: 10.1016/j.sjbs.2017.07.006. PubMed PMID: 29379365; PubMed Central PMCID: PMC5775109.
  32. Nguyen TH, Shamis Y, Croft RJ, Wood A, McIntosh RL, Crawford RJ, et al. 18 GHz electromagnetic field induces permeability of Gram-positive cocci. Sci Rep. 2015;5:10980. doi: 10.1038/srep10980. PubMed PMID: 26077933; PubMed Central PMCID: PMC4468521.
  33. Belyaev I. Toxicity and SOS-response to ELF magnetic fields and nalidixic acid in E. coli cells. Mutat Res. 2011;722:56-61. doi: 10.1016/j.mrgentox.2011.03.012. PubMed PMID: 21497670.
  34. Torgomyan H, Tadevosyan H, Trchounian A. Extremely high frequency electromagnetic irradiation in combination with antibiotics enhances antibacterial effects on Escherichia coli. Curr Microbiol. 2011;62:962-7. doi: 10.1007/s00284-010-9811-2. PubMed PMID: 21079961.
  35. Taheri M, Mortazavi S, Moradi M, Mansouri S, Nouri F, Mortazavi S, et al. Klebsiella pneumonia, a microorganism that approves the non-linear responses to antibiotics and window theory after exposure to Wi-Fi 2.4 GHz electromagnetic radiofrequency radiation. Journal of biomedical physics & engineering. 2015;5:115.
  36. Taheri M, Moradi M, Mortazavi S, Mansouri S, Hatam G, Nouri F. Evaluation of the 900 MHz Radiofrequency Radiation Effects on the Antimicrobial Susceptibility and Growth Rate of Klebsiella pneumoniae. Shiraz E-Medical Journal. 2017;18. (3).
  37. doi: 10.17795/semj44946.