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Introduction

Cancer is one of the most common causes of death in the world [1]. 
Among all types of cancer, lung cancer has the highest mortality 
rate with 15% survival in 5 years [1]. There are 2 main types of 

lung cancer, namely non-small cell lung cancer (NSCLC) and small cell 
lung cancer (SCLC), between which ~85% of diagnosed lung cancers 
are related to NSCLCs [2]. Selection of the best treatment modalities for 
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ABSTRACT
Background: Selection of the best treatment modalities for lung cancer depends 
on many factors, like survival time, which are usually determined by imaging. 
Objectives: To predict the survival time of lung cancer patients using the advan-
tages of both radiomics and logistic regression-based classification models.
Material and Methods: Fifty-nine patients with primary lung adenocarci-
noma were included in this retrospective study and pre-treatment contrast-enhanced 
CT images were acquired. The patients lived more than 2 years were classified as the 
‘Alive’ class and otherwise as the ‘Dead’ class. In our proposed quantitative radiomic 
framework, we first extracted the associated regions of each lung lesion from pre-
treatment CT images for each patient via grow cut segmentation algorithm. Then, 40 
radiomic features were extracted from the segmented lung lesions. In order to enhance 
the generalizability of the classification models, the mutual information-based feature 
selection method was applied to each feature vector. We investigated the performance 
of six logistic regression-based classification models. 
Results: It was observed that the mutual information feature selection method can 
help the classifier to achieve better predictive results. In our study, the Logistic regres-
sion (LR) and Dual Coordinate Descent method for Logistic Regression (DCD-LR) 
models achieved the best results indicating that these classification models have strong 
potential for classifying the more important class (i.e., the ‘Alive’ class).  
Conclusion: The proposed quantitative radiomic framework yielded promising 
results, which can guide physicians to make better and more precise decisions and 
increase the chance of treatment success.
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lung cancer depends on many factors, includ-
ing survival time, type, location and stage of 
cancer, which are usually determined by com-
puted tomography (CT) and/or positron emis-
sion tomography (PET).

CT imaging plays a critical role in early di-
agnosis, stage prediction, and follow-up of the 
patients suffering from lung cancer [3]. The 
standard methods, considered for evaluation 
of the tumor response to a given treatment 
modality in bi-dimensional and uni-dimen-
sional, are World Health Organization (WHO) 
and Response Evaluation Criteria in Solid Tu-
mors (RECIST) guidelines, respectively [4,5]. 
These guidelines use some general factors, 
including shape, size and growth of tumor to 
quantify response evaluation. This quantifi-
cation methods cannot reflect complexity of 
tumor behavior and predict therapeutic value 
of tumor treatment accurately [4,5]. In other 
hand, RECIST and WHO guidelines only can 
evaluate the tumor response after treatment 
process and cannot make any prediction about 
response to treatment. 

Survival of the patients at different stages 
and response to treatment process strongly de-
pend on the stage at the time of cancer diagno-
sis [6]. There are different types of biomarkers 
such as genomic, proteomic and metabolomic 
providing prognostic and diagnostic infor-
mation for cancer therapeutic assessment in 
clinical practice [7-9]. The ability to select the 
best treatment modality for cancer patients is 
highly important and of clinical significance. 
Currently, there is no non-invasive biomarker 
to predict the survival time of cancer patients 
at different stages [10]. Radiomics focuses on 
quantitative analysis of medical images to bet-
ter analyze the patients’ conditions and also 
tries to help physicians make the best clinical 
decision [11-12]. With high throughput com-
puting, we can extract quantitative informa-
tion from tomographic images. Analysis of re-
lationships between quantitative information 
and tumor response in a quantitative radiomic 
framework may increase the predictive value 

of medical images [13].
Although we believe that our study is the first 

attempt to systematically predict the survival 
time of patients by analyzing the performance 
of different logistic regression-based classifi-
cation models, there exist only few studies in 
a similar vein. The first study is Hawkins et al. 
which compared the performance of four fea-
ture selection and classification methods [14]. 
Their cohort consisted of 40 patients, and the 
cutoff survival time was selected in a way that 
their training dataset was converted into a bal-
anced one [14]. In real world scenarios, none-
theless, this assumption is not correct in the 
sense that many real world datasets are imbal-
anced, which makes the classification process 
more challenging. 

More recently, Parmar et al., investigated 
the performance of different feature selec-
tion methods and classifiers [15]. In 2016, 
Hayano et al., demonstrated that CT texture 
analysis provides favorable imaging biomark-
ers to predict the survival of patients with ad-
vanced NSCLC [16]. In addition, Dennie et 
al., reported that texture analysis of CT im-
ages has considerable sensitivity and specific-
ity in obtaining prognostic information about 
patients with NSCLC [17]. In comparison to 
these studies, the methods in our research are 
different in many components of the quanti-
tative radiomic framework, such as classifiers 
and segmentation algorithm. Moreover, in this 
study we investigated the performance of the 
predictors in a precise manner with respect 
to the importance of different probable error 
types which may occur in the classification 
process. 

In the current study, the main purpose was 
to assess the value of CT image features com-
bined with different logistic regression-based 
machine learning methods to predict the pa-
tients’ survival time. To this end, we incorpo-
rated different logistic regression-based clas-
sification models into a quantitative radiomic 
framework. These classifiers are found to yield 
favorable outcomes in many supervised clas-
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sification problems [18,19]. As a result, we 
experimentally evaluated their performance as 
well. We categorized the survival time of pa-
tients into two distinct groups with an accept-
able cutoff time of 2 years similar to Parmar et 
al., and other studies [15,20]. In our study, the 
patients lived more than 2 years were labeled 
as ‘Alive’ and otherwise as ‘Dead’. The imple-
mented classification models via the extracted 
radiomic features were used to automatically 
predict these class labels for new patients. 
Consequently, our prediction approach can be 
used as a useful and non-invasive application 
in clinical oncology to improve the accuracy 
of treatment modality selection.

Material and Methods
To elaborate the various sections of the ret-

rospective study, we made a schematic illus-
trati on for the proposed quantitative radiomic 
predictor system (Figure 1).

Patient CT images
Fifty-nine patients with primary lung ad-

enocarcinoma, who were treated in the tho-
racic oncology program at the H. Lee Mof-
fitt cancer center and research institute and 

the Maastricht radiation oncology clinic  
(MAASTRO), were included in this retro-
spective study [21]. For each patient, pre-
treatment contrast-enhanced CT scans were 
acquired at MAASTRO between years 2006 
to 2009. Clinical data, including demograph-
ics, diagnosis, TNM (tumor, nodes and metas-
tases status) stage, and patient survival were 
obtained for each patient [22]. Based on the 
clinically provided diagnostic data, 24 pa-
tients were labeled as ‘Dead’ and 35 as ‘Alive’ 
in this dataset. More details about the pa-
tients can be found in research carried out by  
Grove et al., [22].

Preprocessing of images
Because texture features are sensitive to dif-

ferent image acquisition which is unavoidable 
such as noise, the full intensities of each CT 
image were resampled to 64 gray levels. This 
process helps to efficiently and practically 
compute the texture features.

Segmentation method
Lung lesions were segmented using com-

petitive region-growing based algorithm [23]. 
Grow cut algorithm uses a competitive region 

Figure 1: Overall quantitative radiomic framework for predicting survival time of lung cancer 
patients.

481



J Biomed Phys Eng 2020; 10(4)

Shayesteh S. P., Shiri I., Karami A. H. et al

growing approach with given initial points and 
cellular automation [23]. All lung lesions were 
segmented by grow cut algorithm used in 3D-
Slicer software.

Radiomic features extraction 
Following the delineation and segmenta-

tion of the lesions, 40 quantitative radiomic 
features, including histogram-based, shape-
based, and texture-based features were ex-
tracted from the 3D-tumor volume of each 
lesion. The histogram-based features roughly 
calculate the first order statistics of the tu-
mor lesion’s voxel intensities [10]. The tumor 
shape complexity descriptors quantitatively 
characterize lung adenocarcinomas via con-
vexity and entropy ratio [22]. The texture fea-
tures such as gray level co-occurrence matrices 
(GLCM), gray level run length matrices (GL-
RLM), neighboring gray-level dependence 
matrix (NGLDM), and gray-level zone length 
matrix (GLZLM), mathematically quantify 
the spatial positioning of intensities in the seg-
mented regions of CT images [15,24]. These 
40 quantitative radiomic features made up our 
feature vector, and thereby represented our CT 
images in the classification task.

Mutual information-based feature 
selection

Up to this section, we represented each pa-
tient’s CT image by a set of 40 quantitative 
radiomic features. In order to obtain more ac-
curate results from the model, it needs to get 
a few features which have the highest rela-
tionship with the class label. In fact, feature 
selection methods aims to rank the extracted 
features according to their discrimination 
power, and select their subset with the highest 
discrimination power [25]. 

The techniques of correlation feature selec-
tion based on conventional statistics can detect 
only linear relationships. However, mutual 
information can detect nonlinear relationships 
as well as linear ones [25]. Having considered 
these reasons, we applied the mutual informa-

tion feature selection method on our dataset. 
Mutual information measures, from the infor-
mation theory viewpoint, how much informa-
tion about a feature contains about the class. 
The mutual information of two continuous 
random variables X and Y is defined as 

( )
  ( ( , )( , ) ( ( , ) ( ) ( )) ( , )

( )KL
Y X

p x yI x y D p x y p x p y p x y log dxdy
p x p y

≡ = ∫ ∫

Where DKL is the Kullback-Leibler (KL) di-
vergence, p(x,y) is the joint probability density 
function (PDF) of X and Y, and p(x) and p(y) 
are the marginal probability density functions 
of X and Y, respectively [26]. In other words, 
mutual information tells us how much p(x,y) 
is different from a hypothetical PDF with in-
dependent X and Y via the KL divergence. KL 
divergence is a measure of the difference be-
tween two PDFs [26]. From the properties of 
KL divergence, we can find out that I(x,y)≥0, 
and that if a feature’s distribution is the same 
in a class as it is in the other classes, then 
I(x,y)=0. Mutual information also reaches its 
highest value if the feature is a perfect indica-
tor of class membership. It occurs if and only 
if the feature is present in samples belonging 
to only one class [26].

We need to compute the overall mutual in-
formation using the mutual information func-
tion of feature xi of different classes. To this 
end, we define I(xi,yi) as the mutual informa-
tion between feature xi and a particular class 
yi. In order to compute the overall mutual in-
formation, we use the average values of I(xi,yi) 
over all the existing classes (i.e., ‘Alive’ and 
‘Dead’). Finally, we select the subset of fea-
tures with the maximum value of overall mu-
tual information score. 

Lastly, before applying a classifier to our se-
lected features, the features will be zero-cen-
tered, which is common in machine learning. 
More precisely, to accelerate the convergence 
rate of the model, and also prevent some fea-
tures from dominating the other features, the 
average of each feature is computed and then 
every feature’s value is subtracted from their 
respective means.
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Logistic regression-based classi-
fiers 

In this section, we introduce six different 
logistic regression-based classifiers in a com-
mon framework. The framework has two 
major components: 1) the linear score func-
tion which converts the selected features to 
class scores, and 2) the objective function that 
measures the extent to which the predicted la-
bels match the clinical annotated labels (i.e., 
ground truth labels). Next, in order to find the 
optimum parameters of our model, we consid-
er the problem as an optimization one which 
we overcome via adopting a maximum a pos-
teriori (MAP) estimation [27]. 

The linear score function maps the values of 
selected radiomic features onto our two class-
es’ confidence scores using a matrix multipli-
cation [27], as follows: 

( )( ) ( );i iS f x W Wx= =

Where the matrix W is the weight matrix, 
and the bias vector is eliminated in order to 
simplify our notation (i.e., we use the bias 
trick in equation (3)). It means that we extend 
X(i) by one extra dimension with the value 
of 1 (i.e., the default bias dimension). As a  
result, the size of X(i) equals to [(d ́+1)×1] 
and W is a matrix with the size of [2×(d ́+1)]. 
The result of the score function S is a vec-
tor with the size of 2×1, which we denote as  
S=[S1  S2]

T. It means that the model’s confi-
dence score for the ith class is the ith element of 
the result vector (i.e.,Si). 

The second major component is the objec-
tive function (or cost function). The objective 
function will be high if we predict the truth 
class label for most of the training samples; 
conversely, it will be low if the predicted con-
fidence scores are different from the ground 
truth [27]. The logistic regression-based mod-
els treat the computed confidence scores as the 
unnormalized log probabilities of each class. 
Using the softmax function, which normalizes 
these probabilities between 0 and 1, the objec-
tive function for the ith sample can be defined 

as [27] 

( )
( )( )
( )
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1
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∑
∑

The total objective function consists of two 
parts: 1) the mean of Ji for all training samples, 
and 2) the regularization term. More precisely, 
the first part computes the mean of the values 
of objective functions for all training samples 
indicating the data objective. The second part 
(i.e., the regularization term/penalty) prevents 
the overfitting problem by enforcing some 
constraints on the weight matrix W. Conse-
quently, the total objective function, which 
measures the quality of the classification, is 
defined as: 

( ) ( ) ( )
1

1 ( )
n

i
j

J W J R W J W R W
n =

= − = −∑
Where J(W) is data objective and R(W) in-

dicates regularization term [27]. Now, by sub-
tracting the regularization term from the total 
objective function, we can estimate the weight 
matrix W via the MAP estimation as follows:

( ) ( )max max[ ( )]MAP w wW arg J W arg J W R W= = −

In fact, according to the above-mentioned 
estimation, we can interpret the regulariza-
tion term R(W) as some priors on the weight 
matrix. This MAP estimation can be achieved 
using different optimization algorithms (e.g., 
Newton’s method, which is known as itera-
tively reweighted least squares (IRLS) in the 
literature, stochastic gradient descent (SGD), 
etc.) [27]. If one uses the IRLS method to ac-
complish the MAP estimation, then in the ma-
chine learning context, the overall method is 
called logistic regression, which we denote as 
LR in our experiments. If the number of class 
labels is more than two, the generalized logis-
tic regression is called multinomial logistic re-
gression (or softmax regression) [27]. 

Due to the success of the coordinate descent 
optimization method in solving the dual form 
of linear models (e.g., support vector ma-
chines (SVM)), Yu et al., presented the dual 
coordinate descent method for logistic regres-
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sion (DCD-LR) [28]. They formulated the 
dual form of logistic regression model (instead 
of its primal form), and applied the coordinate 
descent optimization method to solve it [28]. 
The DCD-LR is the second model, which we 
used in our experiments in this paper. 

The next four models used in this study are 
different from one another in terms of their 
priors on regularization term. These priors in-
clude Gaussian, Laplacian, Cauchy, and Uni-
form. For brevity, we denote these methods as 
G-LR, L-LR, C-LR, and U-LR, respectively. 
For some of these priors, the regularization 
term is non-differentiable, and as a result, the 
IRLS method cannot easily handle these priors 
[29]. Carpenter used the (online) SGD method 
for optimization [29]. In our implementation, 
the online SGD method uses just one training 
sample to update weights in each iteration.

Experimental setup 
In our experiments, we used the 10-fold 

cross-validation strategy on our dataset. It 
means that we used 90% of our dataset as a 
training set and the rest of it (i.e., the remain-
ing 10%) as a testing set. It is important to 
note that all of the results in this study were 
obtained by this strategy. The mutual informa-
tion-based feature selection and all of the six 
classifiers were implemented in Java and run 
on a PC with Intel Core2Duo 2.53GHz and 
4GB of RAM. 

As stated above, predicting the survival time 
of lung cancer patients via CT images involves 
a number of inter-related phenomena, each 
of which affects the overall performance in a 
particular way. However, since this issue (i.e., 
predicting the survival time of lung cancer pa-
tients) is quite new in the medical literature, 
there exists only few published papers about 
it. Most of these papers rarely report results 
on the same evaluation measures. As a result, 
making comparison between different models 
would be stifling. 

Using the Machine Learning viewpoint we 
can analyze our problem as a binary classifi-

cation task. Therefore, well-known evaluation 
measures in Machine Learning can be used 
here. As a result, first of all, in order to objec-
tively evaluate the characteristics of our mod-
els, we used the confusion matrices of the mod-
els. The confusion matrix is a visual table that 
indicates the number of correct and incorrect 
predictions made by the classification model 
in comparison to the actual ground truths in 
the test data [30]. In fact, using confusion ma-
trix, we can determine the performance of a 
classifier via quantitative measures.

In the confusion matrix, each column shows 
the number of test samples which the model 
predicted their class labels while each row 
shows the number of test samples according to 
the ground truth labels [30]. In the confusion 
matrix, each entry has a specific interpretation 
in the context of our study, which is defined as 
follows [30]: 

● True positive (TP): the number of test sam-
ples, class labels of which are predicted by the 
classification model as ‘Alive’ correctly. 

● True negative (TN): the number of test 
samples, class labels of which are predicted 
by the classification model as ‘Dead’ correctly. 

● False positive (FP): the number of test 
samples, class labels of which are predicted by 
the classification model as ‘Alive’ incorrectly; 
however, their actual class label is ‘Dead’. 

● False negative (FN): the number of test 
samples, class labels of which are predicted by 
the classification model as ‘Dead’ incorrectly; 
however, their actual class label is ‘Alive’.

According to these definitions, two funda-
mental evaluation measures can be defined as: 

TPsensitivity
TP FN

=
+

TPPrecision
TP FP

=
+

The sensitivity (also known as recall or true 
positive rate (TPR)) is the fraction of ‘Alive’ 
samples that were correctly classified [30]. In 
fact, sensitivity measures how much of the ac-
tual ‘Alive’ class is predicted correctly by the 
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classification model. Moreover, precision is 
the fraction of the ‘Alive’ samples predicted 
correctly. It means that in contrast to sensitiv-
ity, precision measures how much of the pre-
dicted ‘Alive’ class is the same as the ground 
truth. Both of the sensitivity and precision can 
take values between 0 and 1. If the value is 
higher, the classification will have the better 
performance [30]. 

In some papers [30], the specificity measure 
is also used for evaluation, which is defined 
as: 

TNSpecificity
TN FP

=
+

However, this is not considered as an impor-
tant evaluation measure in this study because 
we have two error types as follows: 

1) Error type 1: in this type of error, the ac-
tual class label is ‘Alive’ but the classification 
model incorrectly predicts ‘Dead’. 

2) Error type 2: in this type of error, the ac-
tual class label is ‘Dead’ but the classification 
model incorrectly predicts ‘Alive’. 

Based on analyzing these two error types, 
we can infer that error type 1 is more critical 
and dangerous than the second one. If error 
type 1 occurs, it means that the patient will ac-
tually be alive (more than 2 years), that we can 
start the treatment process, and that we expect 
that the patient will most probably be cured. 
However, since the classification model incor-
rectly predicts its class label as ‘Dead’, we do 
not start the treatment process (as in this case 
we mistakenly think that the treatment pro-
cess would not be effective) and as a result a 
human’s life will be lost. On the other hand, 
error type 2 will only result in financial loss. 
Therefore, we can conclude that error type 1 
is much more critical than the second one, and 
that the ‘Alive’ class is more important. Since 
the specificity measure focuses on the ‘Dead’ 
class, its value is not very important for our 
experiments. Moreover, in the next section we 
will show that our best models have less error 
type 1. 

Another useful evaluation measure is accu-

racy, which specifies the fraction of the total 
number of classification model’s correct pre-
dictions [30], and is defined as:

TP TNAccuracy
TP TN FN FP

+
=

+ + +
Although accuracy is a common, widely-

used and well-known evaluation measure, it 
solely is not a reliable and adequate evaluation 
metric. The reason is that when the dataset is 
imbalanced (i.e., there is a huge difference 
between the number of samples in different 
classes), it may yield unreliable results. On 
the other hand, the extracted evaluation mea-
sure from the confusion matrix allows us to 
propose better metrics, which can overcome 
this problem. We know that a perfect classi-
fication model requires both high sensitivity 
and precision values [30]. Thus, the F1 score 
or harmonic mean of the sensitivity and preci-
sion used to determine how well the classifica-
tion model predicts the ground truth labels is 
defined as [30]: 

21 sentivity precisionF score
sentivity precision
× ×

=
+

Finally, in situations where the dataset is 
balanced, one can use both the accuracy and 
F1 score to quantify the overall performance 
of a classifier. If the accuracy and F1 score 
get higher there will be better match between 
ground truth and the predicted labels. Since in 
our dataset the difference between the number 
of samples in the two different classes is not 
much (i.e., 11 patients), we used both accura-
cy and F1 score for a better evaluation. In the 
next section, a more detailed analysis of the 
classification models is presented. 

Ethics
As stated before, here we used a free dataset 

published earlier by Clark et al., in which the 
study was conducted in accordance with the 
Declaration of Helsinki and applicable local 
regulations [21]. Patients with primary lung 
adenocarcinoma, who were treated in the tho-
racic oncology program at the H. Lee Moffitt 
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cancer center and research institute and the 
Maastricht radiation oncology clinic (MAAS-
TRO), were included in Clark and co-worker 
study [21].

Results
In this section, at first, the analysis of clas-

sifiers’ performance against the number of 
selected features is discussed. At second, a 
comprehensive comparison among the six dif-
ferent classification models is presented. 

In our framework, the number of selected 
features via mutual information criterion is 
one of the key parameters which drastically 
affects the overall performance of the models. 
To study the dependency of our classification 
models on the number of selected features, 
experiments were conducted on the dataset 
(using 10-fold cross-validation), varying the 
number of the selected features in an interval 
of 2 to 14. In our experiments, we observed 
that if we increased the number of selected 
features over 14, the performance of the mod-

els would be stable and without any change. 
The obtained results are shown in Figures 2 
and 3.

In Figures 2 and 3, the performance of the 
models in terms of accuracy and F1 score are 
respectively plotted against the number of se-
lected features to find out which logistic re-
gression-based classification model achieves 
the highest F1 score or accuracy for a specific 
number of selected features. It is worth men-
tioning that due to the random nature of the 
classification models, we reported the aver-
age results of 30 runs per model. With respect 
to the plots in Figures 2 and 3, we observed 
that increasing the number of selected features 
would result in the improvement of the overall 
performance of the G-LR, C-LR, L-LR, and 
U-LR models, which enforce a prior function 
on the regularization term. On the contrary, the 
performance of the LR and DCD-LR models 
will decrease about 5% as the number of se-
lected features increases. By and large, the best 
results are obtained via the LR and DCD-LR 

Figure 2: Plot of accuracy measure against the number of selected features.
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models with 4 selected features. This indicates 
that the mutual information feature selection 
method can help the classifier to achieve better 
predictive results. A comprehensive compari-
son among the best results of the classification 
models in terms of accuracy and F1 score is 
illustrated in Figure 4.

As seen in Figure 4, the DCD-LR and LR 
models achieved the best results compared 
to the other models in terms of accuracy and 
F1 score, respectively. In the experiments, the 
DCD-LR model obtained an average accuracy 
of 61.02% and 65.67% F1 score using its co-
ordinate descent optimization method to opti-
mize the dual form of the objective function. 
It indicates that similar to other classification 
tasks [18,28], this robust model (i.e., DCD-
LR) can lead to better results. In addition, the 
LR model obtained the best average F1 score 
compared to the other models. From Figure 4, 
it is evident that the G-LR, L-LR, C-LR, and 
U-LR models, which enforce a prior function 
on the regularization term, yielded worse re-

sults than LR and DCD-LR did. In spite of the 
fact that enforcing a prior function on the reg-
ularization term generally prevents the overfit-
ting problem and enhances the generalization 
ability in many cases, in some cases (e.g., when 
the size of the test dataset is small or the num-
ber of the selected features is scant) it cannot 
significantly improve the classification results. 
This justifies the results of the four models ob-
tained in this study. By and large, in our study 
the LR and DCD-LR models achieved the 
best results, indicating that these classification 
models have a strong potential for predicting 
the survival time of lung cancer patients in the 
quantitative radiomic framework. 

In order to better explain the behavior of 
the LR and DCD-LR models, two examples 
of the results obtained by these models are 
presented in Figure 5. In these examples, 
the LR model totally achieved better results 
in terms of F1 score, accuracy, and sensitiv-
ity. However, due to the fact that the DCD-
LR model has less FP (i.e., it has the stronger 

Lung Cancer Survival Time Prediction

Figure 3: Plot of F1 score against the number of selected features.
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Figure 5: Two examples of the results: (a) LR classification model and (b) DCD-LR classification 
model.

Figure 4: Comparison of performance of six classification models in terms of: a) accuracy and 
b) F1 score.
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ability to classify the ‘Dead’ class than the 
LR model), it achieved a better performance 
in terms of specificity and precision (see Fig-
ure 5). As mentioned in experimental setup  
section, in our framework error type 1 is much 
more important than the second error type, 
thus the value of the specificity is not a very 
important evaluation measure to quantify the 
overall performance of the classifier. The low 
value of the specificity of the LR model (i.e., 
41.67%) does not significantly undermine its 
classification performance. Moreover, Figure 
5 indicates that both of the LR and DCD-LR 
models have an acceptable accuracy in clas-
sifying the more important class label (i.e., 
‘Alive’ class). As a result, we can conclude 
that these models, which have obtained bet-
ter results than the other logistic regression-
based models, can better handle error type 1 
and achieve high sensitivity values.

Discussion
Predicting the survival time of cancer patients 

is a critical factor in opting for an appropriate 
medical treatment. Machine learning methods 
and medical imaging provide a powerful ra-
diomic framework which yields a quantitative 
measure of patients’ biomarkers in an attempt 
to predict the survival time of those patients. 
In this study, we investigated the performance 
of six different logistic regression-based clas-
sification models for predicting the survival 
time of lung cancer patients. The features used 
for classification were extracted from the CT 
images of patients. To achieve better results 
and enhance the generalization ability of the 
classifiers, the mutual information feature se-
lection method was also employed. 

Since radiomics is a newly emerging filed in 
medical imaging, very few studies have been 
carried out in this regard. To the best of our 
knowledge, there exist only two studies which 
similarly aimed at predicting the survival time 
of lung cancer patients via machine learning 
methods [14,15]. Both of these studies, au-
thored by Hawkins et al., and Parmar et al., 

evaluated the performance of different feature 
selection and classification methods [14,15]. 
Nevertheless, our methods are totally differ-
ent from the previous ones. More specifically, 
the current study focuses on the investigation 
of the performance of six different logistic 
regression-based classification models in a 
quantitative radiomic framework. Moreover, a 
systematic analysis of the evaluation measures 
is presented, which considers the varying im-
portance of probable error types according to 
the proposed radiomic framework. Our analy-
sis demonstrated that one can summarize the 
results regarding the survival time prediction 
using F1 score and accuracy only, between 
which the former is even more precise. Finally, 
based on different error types, we concluded 
that sensitivity is a critical evaluation measure 
in this regard (see experimental setup section).   

Experimental results showed that the use of 
the mutual information feature selection meth-
od can increase the accuracy of the models. 
We also discovered that there was a negative 
correlation between the performance of the 
LR and DCD-LR models and the number of 
selected features. That is, the performance of 
the LR and DCD-LR models decreased as the 
number of selected features increased. In con-
trast, the other four models (i.e., G-LR, L-LR, 
C-LR, and U-LR) showed a different behavior 
in the sense that by increasing the number of 
selected features, their performance also in-
creased. The DCD-LR and LR models, which 
achieved the best results with 4 selected fea-
tures and over the 10-fold cross-validation 
strategy on the dataset, obtained an overall ac-
curacies of 61.02% and 58.98% with F1 scores 
of 65.67% and 67.22%, respectively. Further-
more, we have shown that these models have 
an acceptable performance of classifying the 
more important class (i.e., the ‘Alive’ class), 
which results in less error type 1. Finally, we 
can conclude that the presented methods have 
a great potential to predict the survival time of 
lung cancer patients in a quantitative radiomic 
framework. This yields a type of computer-
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aided diagnosis (CAD) system which can as-
sist physicians by offering reliable and accu-
rate treatment decisions.

Conclusion
The implemented methods in this paper have 

mainly focused on predicting the survival time 
of lung cancer patients via extracted features 
form their CT images. Future research can 
extend these methods to other types of can-
cer (e.g., prostate cancer, breast cancer, brain 
cancer, etc.). Moreover, from the viewpoint 
of prediction, one can employ the radiomic 
framework to analyze the type as well as stage 
of tumors. Another interesting avenue for 
future researchers is the combination of ra-
diomic and genomic features to improve the 
performance of predictors. By and large, we 
can conclude that as predicting the survival 
time of lung cancer patients plays a significant 
role in the selection of appropriate treatment 
strategies, we believe that the proposed quan-
titative radiomic framework is an effective and 
promising approach in this regard.
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