Document Type : Original Article

Authors

1 Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

2 Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

3 Royal Adelaide Hospital, Department of Medical Physics, Adelaide, Australia.

Abstract

Background: Given the importance of scattered and low doses in secondary cancer caused by radiation treatment, the point dose of critical organs, which were not subjected to radiation treatment in breast cancer radiotherapy, was measured.
Objective: The purpose of this study is to evaluate the peripheral dose in two techniques of breast cancer radiotherapy with two energies.
Material and Methods: Eight different plans in two techniques (conventional and conformal) and two photon energies (6 and 15 MeV) were applied to Rando Alderson Phantom’s DICOM images. Nine organs were contoured in the treatment planning system and specified on the phantom. To measure the photon dose, forty-eight thermoluminescence dosimeters (MTS700) were positioned in special places on the above nine organs and plans were applied to Rando phantom with Elekta presice linac. To obtain approximately the same dose distribution in the clinical organ volume, a wedge was used on planes with an energy of 6 MeV photon.
Results: Point doses in critical organs with 8 different plans demonstrated that scattering in low-energy photon is greater than high-energy photon. In contrast, neutron contamination in high-energy photon is not negligible. Using the wedge and shield impose greater scattering and neutron contamination on patients with low-and high-energy photon, respectively.
Conclusion: Deciding on techniques and energies required for preparing an acceptable treatment plan in terms of scattering and neutron contamination is a key issue that may affect the probability of secondary cancer in a patient.

Keywords

  1. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol. 2007;18:581-92. doi: 10.1093/annonc/mdl498. PubMed PMID: 17287242.
  2. Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and Mortality and Epidemiology of Breast Cancer in the World. Asian Pac J Cancer Prev. 2016;17:43-6.doi: 10.7314/apjcp.2016.17.s3.43 . PubMed PMID: 27165206.
  3. Clegg LX, Reichman ME, Miller BA, Hankey BF, Singh GK, Lin YD, et al. Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: National Longitudinal Mortality Study. Cancer Causes Control. 2009;20:417-35. doi: 10.1007/s10552-008-9256-0. PubMed PMID: 19002764; PubMed Central PMCID: PMC2711979.
  4. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353:1784-92. doi: 10.1056/NEJMoa050518. PubMed PMID: 16251534.
  5. Kalager M, Haldorsen T, Bretthauer M, Hoff G, Thoresen SO, Adami HO. Improved breast cancer survival following introduction of an organized mammography screening program among both screened and unscreened women: a population-based cohort study. Breast Cancer Res. 2009;11:R44. doi: 10.1186/bcr2331. PubMed PMID: 19575807; PubMed Central PMCID: PMC2750103.
  6. Berris T, Mazonakis M, Stratakis J, Tzedakis A, Fasoulaki A, Damilakis J. Calculation of organ doses from breast cancer radiotherapy: a Monte Carlo study. J Appl Clin Med Phys. 2013;14:4029. doi: 10.1120/jacmp.v14i1.4029. PubMed PMID: 23318389; PubMed Central PMCID: PMC5713920.
  7. Sant M, Allemani C, Santaquilani M, Knijn A, Marchesi F, Capocaccia R, et al. EUROCARE-4. Survival of cancer patients diagnosed in 1995–1999. Results and commentary. Eur J Cancer. 2009;45:931-91.doi: 10.1016/j.ejca.2008.11.018.
  8. D’Arienzo M, Masciullo SG, de Sanctis V, Osti MF, Chiacchiararelli L, Enrici RM. Integral dose and radiation-induced secondary malignancies: comparison between stereotactic body radiation therapy and three-dimensional conformal radiotherapy. Int J Environ Res Public Health. 2012;9:4223-40. doi: 10.3390/ijerph9114223. PubMed PMID: 23202843; PubMed Central PMCID: PMC3524624.
  9. Joosten A, Bochud F, Baechler S, Levi F, Mirimanoff RO, Moeckli R. Variability of a peripheral dose among various linac geometries for second cancer risk assessment. Phys Med Biol. 2011;56:5131-51. doi: 10.1088/0031-9155/56/16/004. PubMed PMID: 21775792.
  10. Schneider U. Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys. 2009;36:1138-43. doi: 10.1118/1.3089792. PubMed PMID: 19472619.
  11. Sharma DS, Animesh, Deshpande SS, Phurailatpam RD, Deshpande DD, Shrivastava SK, et al. Peripheral dose from uniform dynamic multileaf collimation fields: implications for sliding window intensity-modulated radiotherapy. Br J Radiol. 2006;79:331-5. doi: 10.1259/bjr/16208090. PubMed PMID: 16585727.
  12. Banaee N, Nedaie H, Esmati E, Nosrati H, Jamali M. Dose measurement outside of radiotherapy treatment field (Peripheral dose) using thermoluminesent dosimeters. International Journal of Radiation Research. 2014;12:356.
  13. SIJI CT, Musthafa M, GANAPATHI RR, ABDUL HK, Bhasi S. Out-of-field photon dosimetry study between 3-D conformal and intensity modulated radiation therapy in the management of prostate cancer. 2015.
  14. Nilsson B, Sorcini B. Surface dose measurements in clinical photon beams. Acta Oncol. 1989;28:537-42.doi: 10.3109/02841868909092265. PubMed PMID: 2789832.
  15. Yoon J, Heins D, Zhao X, Sanders M, Zhang R. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques. Phys Med Biol. 2017;62:9039-53. doi: 10.1088/1361-6560/aa94b5. PubMed PMID: 29048329; PubMed Central PMCID: PMC5724526.
  16. Ghitulescu Z, Stochioiu A, Dumitrache M. Dose measurements in teletherapy using thermoluminescent dosimeters. Rom Rep Phys. 2011;63:700-6.
  17. Akpochafor MO, ADENEYE SO, Habeebu MY, OMOJOLA A, Adedewe N, Adedokun A, et al. Organ dose measurement in CT using thermoluminescence dosimeter in a locally developed phantom. Iranian Journal of Medical Physics. 2018.
  18. Ernst M, Manser P, Dula K, Volken W, Stampanoni MF, Fix MK. TLD measurements and Monte Carlo calculations of head and neck organ and effective doses for cone beam computed tomography using 3D Accuitomo 170. Dentomaxillofac Radiol. 2017;46:20170047. doi: 10.1259/dmfr.20170047. PubMed PMID: 28749697; PubMed Central PMCID: PMC5988186.
  19. Huang JY, Followill DS, Wang XA, Kry SF. Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments. J Appl Clin Med Phys. 2013;14:4139. doi: 10.1120/jacmp.v14i2.4139. PubMed PMID: 23470942; PubMed Central PMCID: PMC5714363.
  20. Howell RM, Scarboro SB, Kry SF, Yaldo DZ. Accuracy of out-of-field dose calculations by a commercial treatment planning system. Phys Med Biol. 2010;55:6999-7008. doi: 10.1088/0031-9155/55/23/S03. PubMed PMID: 21076191; PubMed Central PMCID: PMC3152254.
  21. Joosten A, Matzinger O, Jeanneret-Sozzi W, Bochud F, Moeckli R. Evaluation of organ-specific peripheral doses after 2-dimensional, 3-dimensional and hybrid intensity modulated radiation therapy for breast cancer based on Monte Carlo and convolution/superposition algorithms: implications for secondary cancer risk assessment. Radiother Oncol. 2013;106:33-41.doi: 10.1016/j.radonc.2012.11.012.
  22. Bahreyni Toossi MT, Soleymanifard S, Farhood B, Mohebbi S, Davenport D. Assessment of accuracy of out-of-field dose calculations by TiGRT treatment planning system in radiotherapy. J Cancer Res Ther. 2018;14:634-9. doi: 10.4103/0973-1482.176423. PubMed PMID: 29893331.
  23. Huang JY, Followill DS, Wang XA, Kry SF. Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments. J Appl Clin Med Phys. 2013;14:4139. doi: 10.1120/jacmp.v14i2.4139. PubMed PMID: 23470942; PubMed Central PMCID: PMC5714363.
  24. Schneider U, Kaser-Hotz B. Radiation risk estimates after radiotherapy: application of the organ equivalent dose concept to plateau dose-response relationships. Radiat Environ Biophys. 2005;44:235-9. doi: 10.1007/s00411-005-0016-1. PubMed PMID: 16273381.
  25. Schneider U, Lomax A, Lombriser N. Comparative risk assessment of secondary cancer incidence after treatment of Hodgkin’s disease with photon and proton radiation. Radiat Res. 2000;154:382-8.doi: 10.1667/0033-7587(2000)154[0382:craosc]2.0.co;2. PubMed PMID: 11023601.
  26. Schneider U, Lomax A, Timmermann B. Second cancers in children treated with modern radiotherapy techniques. Radiother Oncol. 2008;89:135-40. doi: 10.1016/j.radonc.2008.07.017. PubMed PMID: 18707783.
  27. Schneider U, Sumila M, Robotka J. Site-specific dose-response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theor Biol Med Model. 2011;8:27. doi: 10.1186/1742-4682-8-27. PubMed PMID: 21791103; PubMed Central PMCID: PMC3161945.
  28. Schneider U, Zwahlen D, Ross D, Kaser-Hotz B. Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose. Int J Radiat Oncol Biol Phys. 2005;61:1510-5. doi: 10.1016/j.ijrobp.2004.12.040. PubMed PMID: 15817357.
  29. Knoll GF. Radiation detection and measurement. New Jersey: John Wiley & Sons; 2010.