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Introduction

In recent years, therapeutic focused ultrasound (FUS) has been an 
important issue not only for its noninvasive transmission through 
skull bone [1-3] but also for its ability to act upon biological tis-

sues modulating cellular activity [4]. Apart from the use of ultrasound 
in diagnostic medical imaging, it can be used to interact with biological 
tissue as thermal or mechanical effects [5, 6]. FUS at high intensities, 
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ABSTRACT
Background: Recently, ultrasonic neuromodulation research has been an important 
and interesting issue. Ultrasonic neuromodulation is possible by the use of low-inten-
sity transcranial focused ultrasound (tFUS) to stimulate or inhibit the neural structures. 
The primary capability of this method is the improvement in the treatment progress of 
certain neurological and psychiatric disorders noninvasively. tFUS is able to modulate 
ionic currents and neural depolarization, causing the alteration in electrical properties 
of neurons.
Objective: The study aims to investigate the effect of tFUS waves on the electrical 
behavior of neurons using the simulation method.
Material and Methods: In the first part of this simulation study, the propa-
gation of tFUS waves throughout the head was simulated to calculate the value of 
acoustic pressure at the cortex. In the second part, cortical neurons were simulated by a 
simple model of spiking neurons proposed by Izhikevich for three common dynamics. 
Then, the capacitance model was proposed to determine the alteration in the electrical 
behavior of the neurons during tFUS stimulation. 
Results: At the resting state, the electric potential of the neuron’s membrane 
through the tFUS stimulation has an amplitude of about 30 mv with the similar oscil-
latory behavior of the acoustic waveform; while,the ultimate electrical behavior of the 
neuron’s membrane indicates a decrease in the electric potential when the neurons fire.
Conclusion: The electrical behavior of the neuron and the range of its membrane 
voltage modulated during ultrasonic stimulation. The reduction in the amplitude of 
membrane potential was observed while neuron spikes.
Citation: Baniasad F, Makkiabadi B, Solgi R, Ghadiri H. Transcranial Focused Ultrasound Modulates Electrical Behavior of the Neurons: 
Design and Implementation of a Model. J Biomed Phys Eng. 2020;10(1):65-74. doi: 10.31661/jbpe.v0i0.1052.
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known as a high-intensity focused ultrasound 
(HIFU), has been used for thermally ablated 
soft tissues with power over 1 kW/cm2 [4, 7]. 
On the other hand, it is shown that low-inten-
sity focused ultrasound (LIFU) is able to mod-
ulate neural activity with no heating damage 
typically at the power less than 1 W/cm2 [4-6, 
8, 9]. Ultrasonic neuromodulation is the use of 
low-intensity transcranial focused ultrasound 
(tFUS) to stimulate or inhibit the neuronal ac-
tivity without any concomitant brain damage. 

Ultrasonic neuromodulation has superior 
advantages over conventional neuromodula-
tion techniques such as deep brain stimula-
tion (DBS), transcranial magnetic stimulation 
(TMS), and transcranial current stimulation 
(tCS). DBS technique, for example, requires 
a surgical procedure causing risk of infection 
and immune responses [10]. Furthermore, 
both TMS and tCS are limited by the fact 
that the stimulation fields cannot be highly 
controlled due to the lack of spatial specific-
ity and penetrability required for targeting 
a deep-seated brain region [11]. However, 
repetitive TMS (rTMS) can treat certainly 
neurological and psychiatric disorders such 
as Parkinson’s disease, tinnitus, depression, 
stroke [12-14]. In efforts to overcome some 
of the limitations posed by these techniques, 
investigations into the use of ultrasound have 
begun to demonstrate new possibilities for in-
terfacing with neurobiology using mechani-
cal forces. Although the mechanism by which 
tFUS achieves neuromodulation is not known, 
it could be related to transient changes in cell 
membrane permeability [8]. With respect to 
the previous investigations at the microscopic 
level, high-intensity ultrasound can suppress 
neural activity due to widening synaptic clefts 
and decreasing the sizes of the presynaptic and 
postsynaptic densities [9]. Tyler et al. showed 
that low-intensity ultrasound (<300 mW/cm2) 
and low-frequency ultrasound (<0.65 MHz) 
are capable of stimulating action potentials 
and synaptic transmission [15].

Furthermore, considering the mechanosensi-

tive properties of voltage-gated ion channels, 
acoustic radiation forces made by the inter-
action of ultrasound and lipid bilayers may 
lead to the opening of voltage-gated channels 
[16, 17]. As a result, the hypothesis is that 
ultrasound may produce local membrane de-
polarization, and it is capable of modulating 
ion channel activity [18]. This study aims to 
provide a model to investigate the effect of 
transcranial focused ultrasound waves on the 
electrical behavior of neurons.

Material and Methods

Transcranial Focused Ultrasound 
Wave Simulation

In this simulation study, to gain the acoustic 
pressure of the transcranial focused ultrasound 
waves at the focal point, a simple numerical 
model was constructed using k-Wave MAT-
LAB toolbox (http://k-wave.org) [19]. This 
model was designed for the time-domain sim-
ulation of propagating acoustic waves in 2D 
using a k-space pseudospectral method.

Geometry of simulation 
The geometry of the simulation is a 2-di-

mensional medium shown in Figure 1. Since 
acoustical parameters of the cerebrospinal 
fluid and brain are close to each other, the 
simulated medium consists of the brain and 

Figure 1: 2-dimensional simulated medium 
and the linear phased array transducer.
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skull with the following parameters given in 
Table 1. A bone layer was defined adjacent to 
the transducer, and both tissues were supposed 
as a homogenous tissue [20-22]. Calculations 
were performed in a computational grid with a 
0.46 mm grid point size according to the Ny-

quist limit of two grid points per wavelength 
[23]. An absorption layer was defined around 
a computational grid with a thickness of  
0.92 cm in order to absorb the acoustic 
waves when they reached the edges of the  
computational domain [24].

Tissue Sound Speed (m/s) Density (kg⁄m3 ) Acoustic Absorption Coefficient (dB/cm MHz)
Brain 1560 1040 0.58
Skull 3200 1990 3.5

Table 1: Acoustical properties of tissues in the simulated medium [22].

tFUS waveform
According to the study carried out by the 

Hayner et al., the optimal gain between tran-
scranial transmission and brain absorption for 
the acoustical neuromodulation is 0.4-0.7 MHz 
[25]. Moreover, there is a possibility of gaining 
appropriate power to stimulate the brain tissue 
at frequencies less than 0.5 MHz [26]. Hence, 
the frequency of 0.5 MHz was selected to be 
propagated in the medium with a linear Phased 
Array Transducers (PATr). The parameter of 
transcranial ultrasonic waveform was obtained 
from a study carried out by Mueller et al. To 
produce a stimulus duration of 0.5 s yielding 
a peak rare factional pressure of 0.80 MPa, 
the employed waveform for tFUS stimulation 
had parameters, including acoustic frequency 
(Af) = 0.50MHz, pulse duration (PD) = 360 
µs, pulse repetition frequency (PRF) = 1.0 
kHz and number of pulses (np) = 500 [27].

Neural Model Simulation
In order to simulate signals generated in the 

cerebral cortex, we used a simple model of 
spiking neurons proposed by Izhikevich [28]. 
According to the 20 neuro-computational fea-
tures, Izhikevich model is not only biological-
ly plausible as the Hodgkin–Huxley model but 
also computationally efficient as the integrate-
and-fire model.
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Four parameters of the model employ re-

producing spiking and bursting behavior of 
common types of cortical neurons, including 
regular spiking (RS), intrinsically bursting 
(IB) and chattering (CH). The parameter α de-
scribes the time scale of the recovery variable 
u and its typical value is α=0.02. The param-
eter b describes the sensitivity of the recovery 
variable u to the subthreshold fluctuations of 
the membrane potential υ, and its typical value 
is b= 0.2. The values of c and d depend on the 
types of dynamics. For RS, IB and CH, the 
value of c is -65mV, -55mV and -50mV and 
the value of d is 8, 4 and 2, respectively

Mechanical-Electrical Model
To investigate the effect of tFUS on the elec-

trical behavior of neurons, the capacitance 
model has been suggested. The main assump-
tion of the model is that the acoustic pressure 
of tFUS modulates electrical properties of the 
neuron membrane during the stimulation. In 
this study, the membrane is considered as a 
capacitor. Therefore, the fact that how the cell 
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membrane potential responses to the flow of 
ion channel currents is associated with both 
membrane capacitance and membrane resis-
tance. The capacitance of a capacitor is altered 
since the mechanical force is applied to the 
membrane of a neuron. Capacitance changes 
because of decreasing the distance between 
the plates. The mass-spring model was em-
ployed to calculate the change in the mem-
brane potential. In resting neurons, membrane 
potential was estimated based on time-variant 
acoustic pressure using the following equa-
tion:

V (t) = (QA1/kϵ0KA) P (t)
Where Q is the electrical charge across the 

cell membrane of a neuron, and A1 is the area 
of membrane affected by mechanical force; in 
addition, k, ϵ0 and ϵare the spring constant, the 
permittivity of free space and the relative per-
mittivity, respectively. Moreover, K, A, and d 
are the dielectric constant, the cell membrane 
surface and the distance between two phos-
pholipid bilayer, respectively. Model param-
eters values are provided in Table 2. Besides, 
since the relative permittivity values depend 
on the frequency, Table 3 shows the value of 
gray matter relative permittivity in term of  
frequency [29].

In spiking neurons, the mechanical-electri-
cal model was modified in respect of neural 
encoding hypothesis. Acoustic pressure and 
action potential considered as a stimulus and 
feature of the system, respectively; thus, neu-

ron response could be predicted in reference to 
electric potential alteration.

Results

Simulated tFUS wave
According to the tFUS waveform parame-

ters, US wave was simulated based on phased 
array transducer (PATr) propagating in the 
simulated geometry. In this method, the focal 
point is determined using the timing of the in-
put electronic signals. Figure 2 reveals the dis-
tribution of the acoustic pressure waves sur-
rounding the focal point throughout the whole 
time simulation. The amplitude of the trans-
ducer acoustic pressure is 0.8 MPa while the 
pressure obtained at the focal point is 0.6 MPa 
(Isppa = 58.85 w/cm2) indicating attenuation 
of propagating waves due to the presence of 
the bone layer.

Neural modeling before and after 
tFUS stimulation

Electrical behavior of the cortical neurons 
was simulated based on different types of dy-
namics. Spiking and bursting behavior of RS, 
IB, and CH neurons are shown in Figure 3. 
Figure 4 displays a three-step approach to gain 
the ultimate time-variant electric potential of 
each neuron during the first 10 ms of tFUS 
stimulation. The first column is the action po-
tential of a neuron depending on the spiking 
dynamic. The second column is the calculat-
ed electric potential resulting from the tFUS 
stimulation, and the third column is the final 
membrane potential of a neuron during tFUS 
stimulation. RS neurons fire as a spike fre-
quency adaption which has a few spikes with 
short interspike period and then increases in 
the period. IB neurons fire a stereotypical burst 

Q A1 k ϵ0 K A ϵ
7 × 10-10 C 10 μm2 0.2 N/m 8.85 × 10-12 F/m 9 930 μm2 1181

Table 2: Parameters values for neuron

f (KHz) 100 200 300 400 500 600 700 800 900 1000
ϵ × 103 3.222 1.961 1.55 1.324 1.181 1.08 1.005 0.946 0.899 0.86

Table 3: The value of gray matter relative permittivity in term of frequency [29].
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of spikes followed by repetitive single spikes 
and CH neurons can fire stereotypical bursts 
of closely spaced spikes [28]. The electric po-
tential resulting from the tFUS stimulation has 

a peak voltage of a 30 mV, which is the accept-
able value according to the typical action po-
tential value. When neuron spikes during the 
tFUS stimulation, the pattern and amplitude of 
action potential change. The modified action 
potential has a similar oscillatory behavior to 
the acoustic waveform, although its amplitude 
reduces from 30 mV to 1-4 mV.

Discussion
Some years ago, significant advances were 

affirmed in the use of tFUS as a non-invasive 
tool for interacting with brain activity, not 
only for patients with neurological disorders 
or disabilities but also for the cognitive func-
tion. Ultrasonic Neuromodulation is possible 
through the use of tFUS to stimulate or inhibit 
the neural structures. In this study, a general 
model is proposed to simulate the effects of 
tFUS on the electrical behavior of neurons. 
First, the acoustic waves with effective neu-
romodulation parameters simulate through the 
head; then, the mechanical-electrical model 

Figure 2: Ultrasound can be noninvasively 
focused through the human skull bone. The 
amplitude of acoustic pressure at the focal 
point is 0.6 MPa.

Figure 3: Firing patterns of cortical neurons in the Izhikevich model and simulated neural model 
[28].

 

CH (chattering) 
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RS (regular spiking) 

Simulation Izhikevich 
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shows how the acoustic pressure affects the 
neurons membrane potential. With respect to 
the proposed model as well as other experi-
mental studies, tFUS may modulate the elec-
trical behavior of neurons.

Acoustic wave
Ultrasound waves are able to destroy bio-

logical tissues; thus, it is crucial to exposure 
properties such as pressure amplitude, pulse 
duration, and frequency set properly. Signifi-

cant thermal fluctuation and inertial cavitation 
can induce damage in soft tissues. In order to 
control thermal fluctuation, we used pulsed 
mode instead of continues mode in the tFUS 
transducer. Short stimulation time leads to 
generate low thermal in the tissue due to the 
absence of static waves, that is not sufficient 
for tissue damaging [30].

Furthermore, inertial cavitation rarely pro-
duces damage in soft tissues at pressures <40 
MPa because there are no gas bodies in most 

Figure 4: A three-step approach to gain the ultimate time-variant electric potential of each 
neuron during the first 10 ms of tFUS stimulation for A. CH dynamic, B. IB dynamic, and C. RS 
dynamic .

 

A 

B 
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soft tissues, including the brain [5]. Besides, 
ultrasound waves with peak rare-factional 
pressures<1 MPa have been effective for neu-
romodulation in the lack of cavitational dam-
age [15]. As a result, 0.8 MPa, which is used 
in our study, is not only capable of modulating 
neuronal activity but also safe.

According to studies, the optimal gain be-
tween transcranial transmission and brain 
absorption for the acoustical neuromodula-
tion is 0.4- 0.7 MHz [25]. If the frequency 
increases, the absorption in the tissue will 
also increase. Thus, there is a considerable 
possibility of tissue-damaging based on heat 
increment. On the other hand, the lower fre-
quencies not only have no adequate absorbed 
energy for neuromodulation but also increase 
the chance of resonance in the skull [26]. 
Therefore, the aforementioned reasons led us 
to the fact that 0.5 MHz frequency is the best 
option for tFUS neuromodulation. In addition, 
the value of ISPPA in our study was calculated  
58.85 w/cm2 which is below the output lim-
its established by the United States Food and 
Drug Administration for diagnostic imaging 
purposes = 190 w/cm2; and it is big enough 
for neuromodulation [15]. It is clear that if the 
acoustic pressure value is lower than the limit, 
the tissue will not have any damage during 
acoustic neuromodulation.

Microscopic level 
The resting membrane potential of the neu-

ron is about -70 mV. Besides, the ultimate val-
ue of the external voltage, which is applied to 
the membrane of a neuron in the presence of 
the ultrasonic stimulation, had a peak of about 
30 mV. Therefore, the variation of the external 
electric potential is biologically meaningful, 
and neurons are able to conceive and response 
to these changes.  

To better understand what happened to neu-
rons and their membrane potential during ul-
trasound stimulation, we examined a dipole as 
a group of neurons instead of a single neuron. 
We know that the number of neurons in the 

cortex is about 24 billion, and the total area 
of the cortex is 2400 cm2. Given that there is 
a dipole per square millimeter, the number of 
neurons in a dipolar is equal to 105. The ap-
plied ultrasonic wave had a frequency and 
wavelength of 0.5 MHz and 3 mm, respective-
ly, and also there is a dipole per mm square. 
Thus, each ultrasound pulse affected several 
neurons simultaneously (np = 500). Since 
some of these neurons are in the resting state, 
and some of them fire; the electrical behavior 
of all neurons may not be affected through-
out one pulse duration. On the other hand, as 
previously mentioned in the method section, 
we used 1 KHz pulse train instead of a single 
pulse, which means that 500 pulses were ap-
plied to the neurons during tFUS stimulation. 
As a result, all the neurons were modulated by 
the ultrasound waves ultimately. Due to the 
constant exposure of tFUS, neurons modu-
lated persistently. During one action potential, 
10-15 ultrasound pulses applied to the neuron. 
Consequently, the electrical behavior of the 
neuron was expected to be entirely influenced 
by the acoustic pressure pulse. In the final con-
volution of an action potential and the exter-
nal potential, the pattern of neuron’s dynamic 
would not be seen. Furthermore, the ultimate 
amplitude of electric potential of the neuron 
after stimulation indicates decrement into sev-
eral mV in all dynamics in which the decrease 
in RS dynamic is more significant due to lack 
of bursting. These results are consistent with 
a study carried out by Juan et al. in 2014 that 
indicates the reduction of the action potential’s 
amplitude during ultrasound stimulation [31].

Hypothesis
The underlying mechanism of ultrasound 

neuromodulation has been still unclear. Tyler 
represented two approaches to investigate the 
possible mechanisms, including potential and 
continuum mechanism based on several stud-
ies [30]. Potential mechanism’s hypothesis 
which has the electrical activity of neural cir-
cuits, can be modulated using ultrasound. The 
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mechanical change in membrane tension may 
alter ionic flux and local membrane depolar-
ization activating voltage-gated Na+ channels 
and modulating K+ influx and efflux. [9, 15]. 
These changes lead to the fact that ultrasound 
is able to induce action potentials and trigger 
synaptic transmission. In continuum mecha-
nism, the effect of ultrasound on the dynamics 
of cerebrospinal fluid (CSF) in the extracellu-
lar space of the brain is discussed. The hypoth-
esis reveals that the fluid-mechanical conse-
quences such as acoustic streaming, acoustic 
radiation force, and stable cavitation occur 
due to the acoustic impedance mismatches be-
tween lipid bilayers and surrounding intracel-
lular/extracellular fluids [32, 33]. As a result, 
ultrasound can noninvasively modulate neuro-
nal activity.

Conclusion
In this paper, we propose the mechanical-

electrical model to investigate the effect of 
low-intensity tFUS on neuronal activity. With 
respect to the proposed model, the electrical 
behavior of the neurons and the range of their-
membrane voltage changed during ultrasonic 
stimulation. The reduction in the amplitude of 
membrane potential was observed while neu-
ron spikes.
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