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Introduction

Blood pressure is exerted on the vessel wall due to circulation. 
Hypertension is a condition characterized by elevated blood 
pressure. The seventh report of the Joint National Committee 

on prevention, detection, evaluation, and treatment of high blood pres-
sure categorizes blood pressure as hypertension, prehypertension, and  
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ABSTRACT
Background: Hypertension is associated with severe complications, and its detec-
tion is important to provide early information about a hypertension event, which is 
essential to prevent further complications. 
Objective: This study aimed to investigate a strategy for hypertension detection 
without a cuff using parameters of bioelectric signals, i.e., Electrocardiogram (ECG), 
Photoplethysmogram (PPG,) and an algorithm of Swarm-based Support Vector Ma-
chine (SSVM).
Material and Methods: This experimental study was conducted to develop 
a hypertension detection system. ECG and PPG bioelectrical records were collected 
from the Medical Information Mart for Intensive Care (MIMIC) from normal and hy-
pertension participants and processed to find the parameters, used for the inputs of 
SSVM and comprised Pulse Arrival Time (PAT) and the characteristics of PPG signal 
derivatives. The SSVM was n Support Vector Machine (SVM) algorithm optimized 
using particle swarm optimization with Quantum Delta-potential-well (QDPSO). The 
SSVMs with different inputs were investigated to find the optimal detection perfor-
mance. 
Results: The proposed strategy was performed at 96% in terms of F1-score, accu-
racy, sensitivity, and specificity with better performance than the other methods tested 
and methods and also could develop a cuff-free hypertension monitoring system.  
Conclusion: Hypertension using SSVM, ECG, and PPG parameters is acceptably 
performed. The hypertension detection had lower performance utilizing only PPG than 
both ECG and PPG.
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normotension [1]. The report defined normo-
tension as a systolic blood pressure of less than 
120 mmHg and a diastolic blood pressure of 
less than 80 mmHg. The systolic and diastolic 
blood pressure range was 120-139 and 80-
89 mmHg, respectively, for prehypertension. 
The hypertension category was separated into 
two stages: stage 1 (140-159 mmHg systolic 
and 90-99 mmHg diastolic) and stage 2 (more 
than 160 mmHg systolic and 100-110 mmHg  
diastolic).

The prevalence of hypertension is currently 
significant, and its global prevalence is pro-
jected to expand from 918 million to 1.56 
billion between 2000 and 2025 [2]. A total of 
26.4% of the global population had hyperten-
sion, with 26.1% of women and 26.6% of men 
affected [2]. It is predicted that 29.2% of the 
global population would have hypertension 
(29.0% of males and 29.5% of women) by 
2025.

Uncontrolled hypertension may result in se-
vere problems since it is a global risk factor for 
disability and mortality. Cognitive impairment 
was also linked to hypertension [3]. A strong 
association between high blood pressure and 
cardiovascular disease was also documented 
[4], and it was suggested that hypertension 
played a role in kidney disease [5].

Patients with hypertension should receive 
prompt therapy to reduce the occurrence of 
severe hypertension and its complications. It 
is vital to have timely information on hyper-
tension-related events in a patient to provide 
early therapy [6]. It is possible to identify an 
episode of hypertension by measuring a pa-
tient’s blood pressure with a blood pressure 
monitor, which typically employs an inflat-
able rubber bladder cuff. The strap is secured 
around the arm. Patients with a blood pressure 
cuff frequently experience discomfort due to 
the tightness of the inflated cuff.

In recent years, studies have focused on 
approaches or methods for measuring blood 
pressure without a cuff using an Electrocardio-
gram (ECG) and Photoplethysmogram (PPG) 

instead of a cuff [7]. A link was also reported 
between blood pressure and ECG and PPG pa-
rameters [8]. The PPG offered vital informa-
tion regarding the cardiovascular system [9] 
with a new method for detecting hypertension 
by simplifying PPG characteristics, derived 
from PPG and the first and second derivatives. 

The current study also introduces a Sup-
port Vector Machine (SVM) designed with 
a swarm approach to identify hypertension 
and compares its performance to that of other 
machine learning algorithms. The SVM is a 
suitable classification and a trustworthy ma-
chine-learning technique for a variety of ap-
plications [10, 11]. Quantum Delta-potential-
well Swarm Optimization (QDPSO) [12] was 
employed to optimize SVM. The QDPSO as 
a novel algorithm is an enhanced variant of 
traditional PSO, influenced by quantum me-
chanics. In addition, the QDPSO updates the  
classical PSO rule, based on Newton’s law.

Material and Methods
This experimental study was conducted 

to develop a hypertension detection sys-
tem, which was developed and tested using  
bioelectrical signals, in hypertension and  
normotension states.

Dataset 
This study used a database from Medical In-

formation Mart for Intensive Care II (MIMIC 
II) provided by Physionet [13, 14]. The MIM-
IC II contained clinical data from tens of thou-
sands of Intensive Care Units (ICU). The clin-
ical data was acquired from hospital archives 
and workstations and comprised phycological 
signals with a duration of more than one day.

The database, including PPG, ECG (Lead 
II), and Arterial Blood Pressure (ABP) was 
collected. A total of 121 records were col-
lected with good quality signals and 120 s in 
length [15]. The blood pressure was represent-
ed by the ABP and categorized as normoten-
sion, prehypertension, and hypertension based 
on the Seventh Report of the Joint National  
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Committee (JNC 7) [1]. A total dataset of 
17,534 consisting of 6,229, 5,079, and 6,232 
was used for normotension, prehypertension, 
and hypertension, respectively. The dataset 
was then randomly split for training and test-
ing for five-fold cross-validation, in which 
80% and 20% of the dataset were for training 
and testing, respectively.

Detection System of hypertension 
The general design of the proposed hy-

pertension detection system is presented in  
Figure 1. The signals were ECG and PPG as 
the inputs of the detection system. Feature 
extraction was created to find five ECG-PPG 
features, i.e., PAT (Pulse arrival time), D1, A1, 
D2, and D2. The PAT was from both ECG and 
PPG, and the other features were from PPG 
alone, as follows:

D1: The distance between the PPG peak and 
the minimum point of the PPG first derivative.

D2: The distance between the PPG peak 
and the maximum point of the PPG’s second  
derivative.

A1: The area under the PPG curve between a 
PPG peak and the minimum point of the PPG 
first derivative.

A2: The detail of the features is presented in 
the next section. 

Subsequently, the features were fed to the 

SSVM-based classifier, which was optimized 
using QDPSO. The output of the detec-
tion system was the category of blood pres-
sure: normal or hypertension. The design 
was implemented using Python programming  
language (3.7.0).

Feature extraction
Feature extraction was used to find the five 

features, as presented in Figure 2: Pulse Ar-
rival Time (PAT), D1, D2, A1, and A2 [15]. 
The PPG peak was called as systolic peak and 
the minimum of the PPG first derivative was 
called as diastolic peak [16]. A1 was the area 
under the PPG curve between a PPG peak and 
the minimum point of the PPG first derivative; 
D2 was the distance between the PPG peak 
and the maximum point of the PPG’s second 
derivative, and A2 was the area under the PPG 
curve between a PPG peak and the maximum 
point of the PPG’s second derivative.

The position of the QRS peak was necessary 
as the starting point to get PAT. Some steps 
are necessary to find the QRS peak as follows: 
firstly, applying low-pass and high-pass filters 
to the ECG with cut-off frequencies of 20 Hz 
and 5 Hz, respectively; secondary, Moving 
Wave Integration (MWI) were applied using 
Mexican Hat wavelet [17] and squaring pro-
cess. During MWI, the local maxima points 

Figure 1: The design of a hypertension detection system using SSVM (support vector machine) 
with the features of ECG (electrocardiogram) and PPG (photoplethysmogram): PAT (pulse arrival 
time), D1, A1, D2, and A2
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were iterated and checked. A maxima point 
was defined as QRS-complex if it exceeded a 
defined threshold and came after a refractory 
period (0.2 s). Otherwise, it was defined as a 
noise peak. If no QRS complex was detected 
within a defined period (T), a back-search al-
gorithm was conducted using a lower thresh-
old. The T was defined as follows:

T=1.66×RR                     (1)
where RR was the time length between two 
consecutive QRS peaks. 

The end of PAT was the PPG peak position 
on the right side of the QRS peak, and the PPG 
peak is found as follows: 1) applying the 4th 

of Chebyshev type II for filtering, 2) creating 

a moving window, and 3) defining the largest 
point in this window as the PPG peak with the 
window size of 61 samples.

Support Vector Machine (SVM)
The SVM constructed an optimal hyperplane 

that separated binary class data. Training data, 
X=(xi,yi), was linearly separated, where 

 m
ix ∈  was a m-dimensional space, and yi 

was the class label, i=1,2, …, k, k was the 
amount of data. Support vectors were training 
data that satisfied,

yi(w.x+b)-1≥0                      (2)
and laid in the equality of the equation. 
w.x+b=0 was optimal hyper-parameter; w 

Figure 2: The definition of ECG (electrocardiogram) and PPG (Photoplethysmogram) features. 
Pulse Arrival Time (PAT), D1, D2, A1, and A2, and the associated Atrial Blood Pressure (ABP)  
signal. ECG-PPG (electrocardiogram-Photoplethysmogram) is presented in Normalized Unit 
(NU). 
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was the hyperplane perpendicular vector; and 
b was bias or threshold. The optimum hy-
perplane was determined by maximizing the 
margin between two hyper-planes: w.x+b=+1 
and w.x+b=-1. The margin between these two 
hyper-planes was 2⁄‖w‖.

Such separating hyperplanes did not ex-
ist in many real-world problems. Therefore, 
a slack variable ζi was inserted and then  
yi(w.x+b)≥1-ζi. The optimal separating hyper-
plane was determined by minimizing.

2
1

1
2

k
iI

C wζ
=

+∑                                          (3)

C was a cost constant to control the trade-off 
between error and margin size. The optimal 
hyperplane can be found by performing a large 
range multiplier approach by maximizing;
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=∑  where αi was 

the Lagrange multiplier. Imbalanced data be-
tween two classes often happened in real data. 
Therefore, a higher error weight (w0 or w1) 
was given to the class that had a smaller popu-
lation. Then equation (1) was modified by 
minimizing.
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The inner product in equation (3) was substi-
tuted by a kernel function K(xi,xj) to map the 
input to space with a higher dimension. The 
mapping made the non-linearly separable data 
to be able for linear classification. We adopted 
the Radial Basis Function (RBF) for the func-
tion. RBF was defined as;

( ) ( )2,i j i jK x x exp x xγ= − −                          (6)

The prediction result for any test vector 
Nx∈  was defined by,

( ) ( )( ),i i if x sgn y k x x bα= ∑ +                     (7)

sgn was a signum function. Using the signum 
function, the f(x) value of more than 0 was de-
fined as +1 class, otherwise, it was defined as 

-1 class.

Quantum Delta Particle Swarm  
Optimizer (QDPSO)

It was assumed that the particle position at 
search step l was sl, at step l+1, and the particle 
might be in the zone of (-|h|,|h|) with a proba-
bility of z, or out of the zone with the probabil-
ity 1-z. s converged to the center point, p, if we 
set z>0.5. Thus, the probability hl+1 on the left 
side of |hl| must be more than 0.75. Therefore, 
the length of Delta L was obtained as follows:
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Where Q(h)=|ψ(h)|2 was probability density 
function, 

2 / 2
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e
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                          (9)

L was formulated as L=(1⁄g)|sl-p| and g was a 
parameter constrained by.

2g ln>                                                 (10)

The control parameter L can reduce to the 
control and selection of parameter g. The 
QDPSO algorithm was described as follows 
(Figure 3) [12].

Results
This section presents the ECG/PPG features 

in different blood pressure categories and the 
hypertension detection performances using 
SSVM and other methods. The performances 
are presented in terms of F1-score [15, 18]. 

The ECG/PPG features in three categories 
of blood pressure are presented in Table 1, in 
the forms of mean and standard deviation. The 
PAT, A2, and D1 were higher during normo-
tension than in prehypertension and hyperten-
sion. All features were higher in hypertension 
than in prehypertension. In addition, each  

481



J Biomed Phys Eng 2023; 13(5)

Nuryani Nuryani, et al

feature significantly differed in the three cat-
egories, considering the P-values.

The performances of SSVM using three dif-
ferent Feature Sets (FS) in three various tri-
als consisting of Trial-A (normotension vs 
prehypertension), Trial-B (normotension vs 
hypertension), and Trial-C (normotension-

prehypertension vs hypertension) as seen in  
Table 2. Three feature sets comprised FS1 
(PAT, D1, A1), FS2 (D1, A1, D2, A2), and 
FS3 (PAT, D1, A1, D2, A2). The performance 
was measured in terms of F1-Score, accuracy,  
sensitivity, and specificity. 

The detection performances were almost 

Figure 3: Quantum Delta Particle Swarm Optimizer (QDPSO) algorithm

Features Normotension Prehypertension Hypertension ANOVA P-value
PAT 0.50±0.23 0.41±0.26 0.48±0.22 <0.0001
A1 0.04±0.04 0.03±0.02 0.04±0.03 <0.0001
A2 0.10±0.09 0.06±0.03 0.09±0.06 <0.0001
D1 0.22±0.05 0.21±0.06 0.21±0.04 <0.0001
D2 0.47±0.14 0.44±0.16 0.47±0.16 <0.0001

PAT: Pulse Arrival Time

Table 1: ECG (Electrocardiogram)/PPG (Photoplethysmogram) features in three categories of 
blood pressures
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the same in all the trials, in all four terms of  
performances using FS1 and FS2. For trial-
B, the F1-scores were 91.55% and 91.44% 
for FS1 and FS2, respectively. The detection, 
which used FS3, performed higher than that 
used FS1 and FS2. The SSVM provided the 
highest performance in Trial-B with FS3, re-
sulting in F1-score, accuracy, sensitivity, and 
specificity of 96.49%, 96.50%, 96.40%, and 
96.59%, respectively. The SSVM which used 
FS1 and FS2 performed lower with all terms 
of about 91%. 

The performance of the proposed method 
is presented in Table 3 and compared to other 
studies. Four algorithms: Logistics Regres-
sion, AdaBoost Tree, Bagged Tree, and k-
nearest neighbors (KNN) were studied for 
hypertension detection [15] using PAT and 10 
PPG features. These algorithms also carried 
out the three trials, as the proposed method 
did. As presented in Table 3, the performances 
of these algorithms were lower than SSVM 
(the proposed method). Among those four 
algorithms, KNN performed the highest in 
terms of F1-score. For Trial-B with PAT and 
10 PPG features, this KNN obtained F1-Score 

of 94.84%, lower than SSVM’s performance, 
of 96.49%. 

The proposed method also outperformed 
the GoogleNet algorithm [19]. For Trial-B 
with Continuous Wavelet Transform (CWT)  
scalogram, the GoogleNet performed 92.55%. 
Moreover, hypertension detection using SVM 
without QDPSO was also studied. This SVM 
with PAT and 4 PPG features performed 
94.58% for Trial-B. Multilayer Perceptron 
(MLP) was also investigated. The MLP re-
sulted in the performance of 93.47% for Trial-
B, lower than SSVM using PAT and four PPG 
features. 

Discussion
This article introduces a strategy for hyper-

tension detection using SSVM and ECG-PPG 
features. The SVM as a famous machine learn-
ing is used for applications in various fields, 
such as healthcare [10, 20], agriculture [21], 
manufacturing [22], and finance [23]. Prior 
studies reported the superiority of SVM over 
other methods [24]. 

The optimal SVM hyperparameters C and 
gamma were needed to obtain an SVM with 

Trial
Feature 

Sets
F1-Score 

(%)
Accuracy 

(%)
Sensitivity 

(%)
Specificity 

(%)

Trial-A (Normotension vs  
Prehypertension)

FS1 87.04 87.14 85.57 88.47
FS2 87.95 88.06 85.95 89.83
FS3 93.58 93.63 92.46 94.62

Trial-B (Normotension vs 
Hypertension)

FS1 91.55 91.55 91.58 91.51
FS2 91.44 91.44 91.48 91.41
FS3 96.50 96.50 96.40 96.59

Trial-C (Normotension-Prehy-
pertension vs Hypertension)

FS1 88.08 89.07 84.52 91.59
FS2 88.56 89.58 83.72 92.83
FS3 93.76 94.32 90.50 96.43

Feature FS1: PAT (Pulse Arrival Time), D1, A1

Feature FS2: D1, A1, D2, A2

Feature FS3: PAT, D1, A1, D2, A2

Table 2: The performances of hypertension detections using SSVM (Support Vector Machine) 
with three different trials using three different feature sets. 
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good performance. The optimal values could 
be obtained using the grid search algorithm 
[25], in which the search space of parameters 
is divided into groups of possible parameters 
for testing. Alternatively, a global optimiza-
tion algorithm can be used to find the opti-
mal hyperparameters, such as particle swarm 
optimization (PSO). This study used an en-
hanced PSO, QDPSO, forming SSVM. Theo-
retical and experimental studies showed that 
QDPSO outperformed the traditional PSO 
[12]. The hypertension detection performance  

improved F1-score from 94.58% to 96.49%, 
and the hypertension detection performance 
was 96.49%, higher than when the SVM was 
without optimization, at 94.58% using SSVM.

The hypertension detection using the pro-
posed SSVM performed higher than the 
GoogleNet [19]. The GoogleLeNet was a 
convolutional neural network that had been 
extended with deeper architectures [26]. In 
the hypertension detection method using the 
GoogleNet, a transformation of PPG signals 
with a continuous wavelet transform (CWT) 

Trial Features Classifiers F1-Score (%)
Trial-A

PAT and 10 PPG features Logistic Regression by [15]
63.92

Trial-B 79.11
Trial-C 62.26
Trial-A

PAT and 10 PPG features AdaBoost Ttee by [15]
74.67

Trial-B 90.15
Trial-C 79.71
Trial-A

PAT and 10 PPG features Bagged Tree by [15]
83.88

Trial-B 94.13
Trial-C 88.22
Trial-A

PAT and 10 PPG features KNN by [15]
84.34

Trial-B 94.84
Trial-C 88.49
Trial-A

CWT Scalogram The The The GoogleNet [19]
80.52

Trial-B 92.55
Trial-C 82.95
Trial-A

PAT and 4 PPG features MLP
90.71

Trial-B 93.47
Trial-C 87.54
Trial-A

PAT and 4 PPG features SVM
90.71

Trial-B 94.58
Trial-C 92.68
Trial-A

PAT and 4 PPG features SSVM
93.38

Trial-B 96.49
Trial-C 93.76

PAT: Pulse Arrival Time, PPG: Photoplethysmogram, KNN: K-Nearest Neighbors, CWT: Continuous Wavelet Transform, MLP: 
Multilayer Perceptron, SVM: Support Vector Machine, SSVM: Swarm Support Vector Machine

Table 3: Performance comparison of SSVM (Support Vector Machine) and other methods 
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was used for the input of the GoogleNet. The 
transformation aimed to convert the PPG  
signals to Red-Green-Blue (RGB) images.

The hypertension detection using the pro-
posed SSVM also performed higher than that 
of the classification algorithms, such as Ada-
Boost Tree, Bagged Tree, Logistic Regression, 
and KNN [15] that represented different classi-
fication theories, such as bagged decision tree, 
regression, and clustering. The Bagged Tree 
and the KNN outperformed the GoogleNet. 
Furthermore, in SVM without any optimiza-
tion, the hyperparameters outperformed Mul-
tilayer Perceptron (MLP), a type of Artificial 
Neural Network (ANN).

The present study includes PPG features for 
hypertension detection. Essentially, PPG com-
prises infrared light to estimate the volumetric 
alteration of blood circulation and can depict 
important information about the cardiovascu-
lar system [27]. The initial functions of PPG 
aimed to measure heart rate and pulse oxim-
etry. Further studies are conducted to explore 
other valuable information from PPG, such as 
arteriosclerosis and vascular aging [28-31].

One cycle of PPG comprises two parts, 
showing systolic and diastolic components 
[32], represented by the left and the right sides, 
respectively, of the PPG peak. The systolic 
part shows the pressure transmission from the 
aortic root to the finger. Moreover, the diastol-
ic part indicates the pressure transmitted from 
the ventricle to the lower body, reflected along 
the aorta to the finger. 

The PPG parameters extracted from the de-
rivative of PPG signals were included, and the 
first and second derivatives were used in the 
current study. The derivative could be used 
to obtain more detailed information about the 
original PPG signal. For example, feature D1 
(Figure 1) represented the period between the 
PPG peak and the minimum of the PPG first 
derivative, which coincided with the diastolic 
peak of the original PPG. Therefore, D1 rep-
resented the period between the PPG peak and 
the diastolic peak. The feature A1 represented 

the area under the curve D1. In clinical stud-
ies, the area under curve is frequently used as 
an indicator [33, 34]. 

Recently, the second derivative of PPG is 
favorable for researchers to estimate vascular 
aging [35], arterial distensibility [36], heart 
rate variability [37], the risk of coronary heart 
disease in the general population [38], and 
other clinical problems.

The ECG-PPG features utilized in this pro-
posed method consisted of four PPG-features 
and one feature from ECG-PPG. All the fea-
tures were extracted from time-domain signals 
instead of frequency or other more complicat-
ed forms. The processes for locating the fea-
tures were not overly complicated. The main 
process for ECG processing was to identify 
QRS-peaks, which was a well-known process 
with many alternative algorithms available 
[39]. For the PPG processing, it just needed 
to find the first and second derivatives of the 
PPG signal and get the maximum and mini-
mum of these derivatives. Methods to find the 
derivative, maximum, and minimum of the 
signal were basic computational algorithms 
[40]. The uncomplicated process can be eas-
ily reproduced and implemented in a real-time 
application. 

The MIMIC dataset was used with records 
containing ABP, ECG (II), and PPG. The ABP 
and PPG records, in which their systolic and 
diastolic waves’ morphology cannot be dis-
tinguished and are highly distorted, were not 
used. Besides, the ECG records with distorted 
QRS-complex peaks were also not used. Fi-
nally, 121 records with a 120-second length 
signal were found for each record.

Hypertension detection using only PPG can 
provide advantages in terms of simplicity. 
However, the detection using only PPG still 
provided lower performance than that used 
both ECG and PPG. The lower performance 
of which used PPG only also reported in [19]. 
Therefore, further studies are still needed to 
increase the performance of hypertension 
detection using only PPG. The reasons to  

Cuffless Hypertension Detection
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select PPG alone are low cost, easy to use, easy  
implementation, and non-invasiveness.

Conclusion
A cuffless method was introduced for hyper-

tension detection using a swarm-based SSVM 
algorithm and ECG-PPG. SSVM was an SVM 
optimized using QDPSO. In this hyperten-
sion detection, SSVM outperformed various 
machine learning algorithms. ECG, original 
PPG, and the first and the second derivatives 
of PPG significantly contributed to hyperten-
sion detection. SSVM using ECG and PPG 
had an adequate performance for hyperten-
sion detection, with an F1-Score of 96.49%. 
However, hypertension detection showed low 
performance utilizing PPG only. Further stud-
ies to find a method for hypertension detec-
tion, which uses PPG alone, are still needed to 
improve the performance.
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