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Introduction

Multiple sclerosis (MS) is the most common non-traumatic dis-
abling disease [1], showing a growing prevalence in develop-
ing and advanced countries [2]. MS is affected by various fac-

tors, such as genetics and environmental factors, vitamin D deficiency, 
Epstein-Barr virus infection, obesity, and smoking [3].

Magnetic resonance imaging (MRI) technique is increasingly used in 
research and clinical fields of MS [4]. This imaging method is used as 
the gold standard in the diagnosis of MS plaques in the clinic. MRI-
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ABSTRACT
Background: Multiple sclerosis (MS) is the most common non-traumatic disabling 
disease. 
Objective: The aim of this study is to investigate the ability of radiomics features 
for diagnosing active plaques in patients with MS from T2 Fluid Attenuated Inversion 
Recovery (FLAIR) images.
Material and Methods: In this experimental study, images of 82 patients with 
122 MS lesions were investigated. Boruta and Relief algorithms were used for feature 
selection on the train data set (70%). Four different classifier algorithms, including Multi-
Layer Perceptron (MLP), Gradient Boosting (GB), Decision Tree (DT), and Extreme 
Gradient Boosting (XGB) were used as classifiers for modeling. Finally, Performance 
metrics were obtained on the test data set (30%) with 1000 bootstrap and 95% confidence 
intervals (95% CIs). 
Results: A total of 107 radiomics features were extracted for each lesion, of which 
7 and 8 features were selected by the Relief method and Boruta method, respectively. 
DT classifier had the best performance in the two feature selection algorithms. The best 
performance on the test data set was related to Boruta-DT with an average accuracy of 
0.86, sensitivity of 1.00, specificity of 0.84, and Area Under the Curve (AUC) of 0.92 
(95% CI: 0.92-0.92).  
Conclusion: Radiomics features have the potential for diagnosing MS active plaque 
by T2 FLAIR image features. Additionally, choosing the feature selection and classifier 
algorithms plays an important role in the diagnosis of active plaque in MS patients. The 
radiomics-based predictive models predict active lesions accurately and non-invasively.
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based studies in MS patients with central 
nervous system atrophy and plaques have 
provided valuable information about this dis-
ease for physicians in the last two decades  
[5, 6]. This information has not only led to the 
creation of a framework for the diagnosis and 
management of this disease in the clinic, but 
has also been widely used in studies on the 
mechanism of this disease [5]. Special proto-
cols with specific sequences are used to im-
age the nervous system in patients with MS, 
including T2 weight images. In these images, 
the location of the plaque on the white matter 
is marked as points with high signals relative 
to the surrounding points. Fluid Attenuated 
Inversion Recovery (FLAIR) sequences are 
also used to examine and view periventricu-
lar plaques that may not be visible in T2 im-
ages due to the high cerebrospinal fluid signal. 
Other images that are valuable in MS studies 
are T1 weight images collected after intrave-
nous injection of a contrast agent. Violation 
of the blood–brain barrier, which is associ-
ated with active inflammation, is assessed by 
injecting a contrast agent 5 minutes before T1 
imaging. In these images, active plaques show 
an increased signal by drug uptake. Other se-
quences that are uncommon and requested in 
special cases include Diffusion-weighted Im-
aging (DWI), Magnetization Transfer Imaging 
(MTI), and Magnetic Resonance Spectrosco-
py (MRS) sequences [7, 8].

Radiomics is an emerging branch of image 
processing to link the qualitative and quanti-
tative information extracted from medical im-
ages [9]. This science is also based on the fact 
that all anatomical and functional images in 
medicine contain qualitative and quantitative 
information related to pathophysiology [10]. 
Quantitative radiomics information can be 
extracted from images using special software. 
Therefore, the quality of images and the accu-
racy in selecting parameters when processing 
images play an important role in the quality 
and acceptability of the extracted data. Obvi-
ously, the quality of the quantitatively extract-

ed features, the relationship between these 
features and clinical observations, as well as 
the model obtained from this data, will be af-
fected by the type of image collection, image 
processing, and segmentation of the target  
areas [10, 11]. 

Michoux et al. [12] examined the possibility 
of detecting active MS plaque in patient’s T2-
weighted images. In that study, they used 21 
MS patients who were imaged with the same 
protocol and the same device to extract quanti-
tative features of plaque area and normal white 
tissue area. The results showed that the use of 
different models, such as Linear Discriminant 
Analysis (LDA), Partial Least Squares (PLS), 
and Logistic Regression (LR) identifies the 
quantitative parameters that distinguish nor-
mal brain white tissue from MS plaques with 
76 to 88% accuracy. 

Zhang et al. [13] examined the difference be-
tween the texture of MRI images in the area 
of plaques with absorption of contrast material 
(active plaque) and chronic plaques (inactive) 
and normal areas of brain tissue. The group’s 
research showed that the texture of the images 
in the areas of active plaque is more coarse-
ness than in the areas of inactive plaques and 
normal brain tissue. In the conclusions of that 
study, it is stated that one of the signs of ab-
sorption of the contrast agent by the plaque is 
the change of texture of the images from soft 
to coarse mode. 

Yulinga et al. [14] showed that the radiomics-
based machine learning model has the poten-
tial to predict MS lesions and investigated 135 
inactive and 110 active plaques. In that study, 
they used Support-vector Machine (SVM), 
Logistic Regression (LR), and Random For-
est (RF) machine learning classifiers. The re-
sults showed that the SVM classifier had the 
best performance with Area Under the Curve 
(AUC) equal to 0.85.

To the best of our knowledge, MRI with 
Gadolinium contrast injection is the only 
method for distinguishing between active and 
inactive MS plaques in the clinic. On the other 
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hand, studies have shown that an increased 
dose of gadolinium (up to three times the nor-
mal dose) should be used to maximize the ap-
pearance of new MS plaques; additionally, a 
20- to 30-minute interval should be between 
the injection time and the start of collecting 
T1 weight sequences [15]. Apart from discuss-
ing the cost of preparing the contrast material 
as well as increasing the imaging time, the 
interpretation of the images is visual and can 
be prone to error under different conditions. 
Therefore, it is important to find a quantitative 
method to accurately distinguish plaque type 
from T2 images in terms of activity.

The aim of this study is to investigate the 
possibility of diagnosing active plaques in pa-
tients with MS from T2 FLAIR images before 
contrast injection using radiomics features of 
lesions and machine learning algorithms.

Material and Methods
This study is an experimental study. The 

workflow of the current study is presented in 
Figure 1.

Patients’ specification
In this study, images of 82 MS patients were 

used for periodic MRI imaging examinations. 
Out of all the studied patients, 16 (13.1%) and 
106 (86.9%) patients had active and inactive 
plaques, respectively. The standard imaging 

protocol for patients included T2, T2 FLAIR, 
and T1 with and without contrast agents. Ac-
cording to the standard protocol, there were 
at least 5 minutes between the injection of the 
contrast agent and the imaging of T1 sequenc-
es. Images of all patients were taken with a 1.5 
T GE signa explorer scanner (GE Healthcare, 
Milwaukee, USA) with the same protocol. T2 
FLAIR images were obtained with the follow-
ing condition: slice thickness: 1.2 mm, pixel 
size: 1×1 mm2, matrix size: 256×256 mm2, 
NEX: 1, TE: 124 ms, and TR: 6500 ms. T1  
images were obtained with the following con-
dition: slice thickness: 1.2 mm, pixel size: 1×1 
mm2, matrix size: 256×256 mm2, NEX: 1, TE: 
12 ms, and TR: 500.

Lesion segmentation
Region of Interest (ROI) must first be speci-

fied in all slices to extract the quantitative 
features of the images. For this purpose, the 
segment editor tool was used in the 3D Slicer 
software (version 4.10.0, Harvard Univer-
sity, National Institutes of Health). In the T2 
FLAIR images, the areas of the MS plaque 
had a completely defined margin relative to 
the surrounding texture and were segmented 
in consecutive slices. It is worth noting that 
T2 FLAIR images were collected in volume 
(3D), leading to examining the segmentation 
of the desired areas in different anatomical 

Figure 1: Schematic design of workflow in this study
Gray Level Dependence Matrix (GLDM), Gray Level Co-occurrence Matrix (GLCM), first order, 
Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), and Neighbor-
hood Gray Tone Difference Matrix (NGTDM).
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views (coronal, sagittal, and axial). In this 
section, 122 lesions were segmented by a spe-
cialist radiologist with over twenty years of  
experience.

Feature extraction
For the feature extraction, the software used 

in this study was 3D Slicer (version 4.10.0). 
A total of 107 features were extracted using 
the PyRadiomics module of this software [16]. 
The features type included shape, Gray Lev-
el Dependence Matrix (GLDM), Gray Level 
Co-occurrence Matrix (GLCM), first order, 
Gray Level Run Length Matrix (GLRLM), 
Gray Level Size Zone Matrix (GLSZM), and 
Neighborhood Gray Tone Difference Matrix 
(NGTDM).

Features selection 
The number of features extracted from the 

images was very large, given that many of 
these features were redundant and should be 
removed. There are different algorithms for 
feature selection and in this study Boruta, and 
Relief algorithms were used. Boruta’s algo-
rithm is a powerful and recently introduced 
feature selection method, which trained a ran-
dom forest classifier on a duplicate dataset 
(including original features and shadows) and 
mark an object as important by comparing its 
Z-score with the duplicate score [17, 18]. As 
a method of selecting individual rating filter-
ing features, Relief calculates proxy statistics 
for each feature that can be used to estimate 
the “quality” or “relevance” of that feature to 
the concept target (i.e., predict the value of the 
endpoint). These feature statistics are called 
feature weights (W [A]=feature weight “A”), 
or more simply “feature score” can range from 
−1 (worst) to +1 (best) [19]. Feature selection 
was performed by R software (version 3.5.1, R 
Core Team, Vienna, Austria).

Radiomics modeling
In this step, according to the clinical ob-

servations (absorption or non-absorption of 

contrast agent by MS plaque in the T1 im-
ages), the relationship between the extracted 
quantitative data and these observations was 
examined. The dataset was divided into train-
ing and testing cohorts with a proportion of 
70% to 30%. The Z-score method was used to 
normalize the training data, and the mean and 
standard deviation were applied to the testing 
data. Decision Tree (DT), Gradient Boosting 
(GB), Extreme Gradient Boosting (XGB), 
and Multi-Layer Perceptron (MLP) classifi-
ers were implemented in the R software (ver-
sion 3.5.1, R Core Team, Vienna, Austria) for  
diagnosing the active plaque from the features 
of T2 FLAR images because it was proven 
to be at the top of prediction performance  
[20-22]. According to the conducted studies, 
the advantages and disadvantages of these 
classifiers can be seen in Table 1. 

Hyperparameters were optimized by 3-fold 
cross-validation in the training data and the 
best hyperparameters were selected to train 
the model. Finally, the mean±standard devia-
tion values of sensitivity, specificity, accuracy, 
and Area Under the Curve (AUC) were calcu-
lated.

Validation of models
There are two internal and external meth-

ods for the validation of the model. The best 
validation method is the external method, but 
it was not possible due to the limitations and 
the need for a large sample size. Synthetic 
Minority Oversampling Technique (SMOTE) 
[28] was implemented on the training data to 
overcome imbalance followed by applying 
the trained model on the testing data by 1000 
bootstraps.

Results
In the current study, 82 patients and 122  

lesions were studied. As it can be seen from 
the data in Table 2, 16 (13.1%) active plaques 
and 106 (86.9%) inactive plaques were ex-
amined in this study. This study included 65 
(79.2%) women and 17 (20.8%) men with an 
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average age of 38.59 years, ranging from 16 
to 63 years.

Comparison of feature selection 
methods

As it was mentioned, Boruta and Relief algo-
rithms were used to select the robust features. 
Figures 2 and 3 show the results of feature se-
lection utilizing Boruta and Relief algorithms, 
respectively. As it is shown in Figure 2, out 
of the total of 107 extracted features, only 8 
features were selected as robust features in the 
Boruta method, including one demographic 
feature (age), three shape features (mesh vol-
ume, surface volume ratio, voxel volume), 

Classifiers Advantages Disadvantages Reference

GB

1. By providing optimization through functions rather 
than parameters, it makes it easier to use custom 
functions. 
2. It can handle large and very different datasets well 
since it is a step-by-step algorithm.

1. The trees are built sequentially, so training 
takes a long time.  
2. Noisy data produces errors in estimation or 
classification.

[21, 23, 24]

XGB

1. In the case of clean data, overfitting can be pre-
vented.  
2. It is capable of handling missing values.  
3. As a consequence, it optimizes the number of itera-
tions by allowing cross-validation at each stage of the 
process.

1. Unlike other linear algorithms, it is more chal-
lenging to understand.  
2. In the case of noisy data, overfitting may occur.

[21, 25, 26]

DT

1. Formulates rules that can be understood and inter-
preted without any statistical knowledge.  
2. Both numerical and categorical variables can be 
used to make classifications.  
3. This algorithm performs the classification with less 
computational complexity.  
4.Non-parametric

1. DT is commonly flawed by overfitting.  
2. Applied less to estimation tasks, such as pre-
dicting the value of continuous features.  
3. Applying DT to continuous values results in a 
loss of information.  
4. Non-optimal solution

[21]

MLP

1. Can be applied to complex non-linear problems.  
2. Works well with large input data.  
3. Provides quick predictions after training.  
4. It is possible to achieve the same accuracy ratio 
even when the data is smaller.

1. It is not known to what extent each independent 
variable is affected by the dependent variable.  
2. Computations are difficult and time consuming.  
3. The proper functioning of the model depends 
on the quality of the training data. If the model 
does not work properly, generalization problems 
arise.

[21, 27]

MLP: Multi-Layer Perceptron, GB: Gradient Boosting, DT: Decision Tree, XGB: Extreme Gradient Boosting

Table 1: Advantages and disadvantages of the classifiers used in the present study

Parameter Value (percentage)
Total number of patients 82

Sex
Female 65 (79.2%)

Male 17 (20.8%)
Age (Year)

Mean±standard deviation 38.59±9.46
Range 16-63

Total number of lesions 122
Active 16 (13.1%)

Inactive 106 (86.9%)

Table 2: Characteristics of multiple sclerosis 
patients in the present study
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Figure 2: Result of Boruta feature selection method: blue boxplots=shadow attributes (minimum, 
mean and maximum attribute), red boxplots: unimportant features, green boxplots: important  
features, yellow boxplots: tentative features

Figure 3: Results of Relief feature selection method
M2DDR: Maximum 2D Diameter Row, VV: Voxel Volume, MV: Mesh Volume, GLCM: Gray Level 
Co-occurrence Matrix, FO: First Order

GLCM_IMC1: Gray Level Co-occurrence Matrix_ Informational Measure of Correlation 1, GLSZM_GLNU: Gray Level Size Zone Matrix_ Gray Level Non-
Uniformity, NGTDM: Neighbouring Gray Tone Difference Matrix, M2DDR: Maximum 2D Diameter Row, GLCM_DA: Gray Level Co-occurrence Matrix_ Dif-
ference Average, M2DDS: Maximum 2D Diameter Slice, GLCM_IDN: Gray Level Co-occurrence Matrix_ Inverse Difference Moment, GLCM_IDNM: Gray 
Level Co-occurrence Matrix_ Inverse Difference Moment Normalized, GLCM_CS: Gray Level Co-occurrence Matrix_ Cluster Shade, GLCM_DV: Gray Level 
Co-occurrence Matrix_ Difference Variance, GLSZM_LAHGLE: Gray Level Size Zone Matrix_ Large Area High Gray Level Emphasis, GLRLM_RV: Gray 
Level Run Length Matrix_ Run Variance, GLRLM_RE: Gray Level Run Length Matrix_ Run Entropy, GLCM_IV: Gray Level Co-Occurrence Matrix_ Inverse-
Variance, GLCM_MP: Gray Level Co-Occurrence Matrix_ Maximum Probability, FO: First Order, GLSZM_ZV: Gray Level Size Zone Matrix_ Zone Variance, 
GLSZM_SAE: Gray Level Size Zone Matrix_ Small Area Emphasis, GLDM_LDLGLE: Gray Level Dependence Matrix_ Large Dependence Low Gray Level 
Emphasis, GLCM_JA: Gray Level Co-Occurrence Matrix_ Joint Average, GLSZM_LGLZE: Gray Level Size Zone Matrix_ Low Gray Level Zone Emphasis, 
GLRML_LRLGLE: Gray Level Run Length Matrix_ Long Run Low Gray Level Emphasis, GLDM_SDHGLE: Gray Level Dependence Matrix_ Small De-
pendence High Gray Level Emphasis, GLCM_CT: Gray Level Co-Occurrence Matrix_ Cluster Tendency, GLSZM_LALGLE: Gray Level Size Zone Matrix_ 
Large Area Low Gray Level Emphasis, FO_IQR: First Order_ Interquartile Range, GLRLM_HGLRE: Gray Level Run Length Matrix_ High Gray Level Run 
Emphasis, GLRLM_GLV: Gray Level Run Length Matrix_ Gray Level Variance, GLDM_HGLE: Gray Level Dependence Matrix_ High Gray Level Emphasis, 
FO_MAD: First Order_ Mean Absolute Deviation, GLSZM_ZE: Gray Level Size Zone Matrix_ Zone Entropy, GLDM_LDE: Gray Level Dependence Matrix_ 
Large Dependence Emphasis, GLDM_SDLGLE: Gray Level Dependence Matrix_ Small Dependence Low Gray Level Emphasis, GLSZM_GLNUN: Gray 
Level Size Zone Matrix_ Gray Level Non-Uniformity Normalized, GLCM_SS: Gray Level Co-occurrence Matrix_ Sum Squares, GLDM_GLNU: Gray Level 
Dependence Matrix_ Gray Level Non-Uniformity, M3DD: Maximum 3D Diameter, GLDM_DNUN: Gray Level Dependence Matrix_ Dependence Non-Uniformity 
Normalized, GLDM_DV: Gray Level Dependence Matrix_ Dependence Variance, FO_RMS: First Order_ Root Mean Squared, SVR: Surface Volume Ratio
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two first-order features (root mean squared, 
total energy), and two GLDM features (de-
pendence non-uniformity normalized, depen-
dence variance). As seen in Figure 3, in the 
Relief method, eight features were selected, 
including one demographic feature (age), five 
shape features (surface area, maximum 2D 
diameter row, voxel volume, mesh volume, 
maximum 2D diameter column), one GLCM 
feature (correlation), and one first-order fea-
ture (range).

Comparison of performance metrics 
of models

In this study, four classifiers were used, in-
cluding GB, XBG, DT, and MLP. From the 
combination of these 4 classifiers with 2 fea-
ture selection methods, 8 models were ob-
tained. Table 3 shows the performance metrics 
of eight models including area under the curve 
with a 95% confidence interval, accuracy 
(ACC), sensitivity (SEN), specificity (SPE), 
positive predictive value (PPV), and negative 
predictive value (NPV). The bar chart and heat 
map of these metrics are shown in Figures 4 
and 5, respectively.

As seen in Table 3, in the Boruta method, 
GB, XGB, DT, and MLP classifiers had AUC 
values of 0.84, 0.70, 0.92, and 0.89, respec-

tively. Furthermore, in the Relief method, 
GB, XGB, DT, and MLP classifiers had AUC 
values of 0.81, 0.84, 0.90, and 0.83, respec-
tively. The corresponding Receiver Operating 
Characteristic (ROC) diagrams are presented 
in Figure 6.

Discussion
In this study, the ability of radiomic features 

was investigated in predicting active plaques 
of patients with MS from T2 FLAIR images. 
As seen in Table 2, based on the examinations 
and observations performed by a specialist 
radiologist, 13.1% of the lesions were active. 
The data collected from patients in this study 
are not balanced and machine-learning algo-
rithms may be adversely affected by imbal-
anced datasets. 

Misclassifications of prediction are often 
caused by an uneven distribution of major and 
minor classes [29]. In the current study, mi-
nority class events can include active lesions, 
which are examples of adverse incidents 
of low occurrence. The clinical impact of a 
wrong prediction within the minority group is 
greater than that of a wrong prediction with-
in the majority group. A patient incorrectly 
classified as being low or normal risk could 
inadvertently be treated as such, leading to 

Model AUC ACC SEN SPE PPV NPV
Boruta-GB 0.84±0.04 (95% CI: 0.84-0.84) 0.72±0.07 1.00±0.00 0.68±0.08 0.30±0.11 1.00±0.00

Boruta-XGB 0.70±0.14 (95% CI: 0.69-0.71) 0.85±0.06 0.50±0.27 0.90±0.06 0.42±0.24 0.93±0.05
Boruta-DT 0.92±0.03 (95% CI: 0.92-0.92) 0.86±0.06 1.00±0.00 0.84±0.07 0.48±0.15 1.00±0.00

Boruta-MLP 0.89±0.04 (95% CI: 0.89-0.89) 0.8±0.07 1.00±0.00 0.78±0.08 0.38±0.14 1.00±0.00
Relief -GB 0.81±0.04 (95% CI: 0.8-0.81) 0.66±0.08 1.00±0.00 0.61±0.09 0.27±0.10 1.00±0.00

Relief -XGB 0.84±0.11 (95% CI: 0.83-0.84) 0.91±0.05 0.74±0.22 0.94±0.05 0.63±0.23 0.96±0.03
Relief -DT 0.90±0.04 (95% CI: 0.90-0.90) 0.83±0.06 1.00±0.00 0.80±0.07 0.41±0.14 1.00±0.00

Relief -MLP 0.83±0.12 (95% CI: 0.82-0.84) 0.89±0.05 0.75±0.23 0.91±0.05 0.54±0.20 0.96±0.04
AUC: Area Under the Curve, ACC: Accuracy, SEN: Sensitivity, SPE: Specificity, PPV: Positive Predictive Value, NPV: Negative 
Predictive Value, MLP: Multi-Layer Perceptron, GB: Gradient Boosting, DT: Decision Tree, XGB: Extreme Gradient Boosting, 
CI: Confidence Interval

Table 3: Performance metrics of nine models used to diagnose active plaque (mean±standard 
deviation)

MS Diagnosis-MR Images Radiomics Features
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adverse outcomes [30, 31]. Re-sampling has 
been shown to be an effective pre-processing 
method for resolving imbalanced problems in 
previous studies [32, 33]. Prior to classifier 
training, resampling approaches modify the 
imbalance distribution between minority and 
majority classes. Under-sampling methods 
may eliminate potentially useful information 
inherently related to their selection process, 
and oversampling methods can cause overfit-
ting by simply creating repetitions of the mi-
nority class [34, 35]. 

There are different resampling methods, such 
as 1-random oversampling (ROS), 2- adaptive 
synthetic (ADASYN) [36], 3- SMOTE [28], 
and 4- borderline-SMOTE (bSMOTE) [37]. In 
a study conducted on 10 different resampling 
methods by Xie et al. [38], resampling tech-
niques have shown a significant positive effect 
on prediction performance in unbalanced data 

sets. Recently, several new resampling tech-
niques, such as the Synthetic Minority Overs-
ampling Technique (SMOTE) have been 
proposed and shown to be more appropriate 
in some studies [28, 39]. This study applied 
SMOTE to oversample the minorities and bal-
ance the distribution of classes.

As mentioned earlier, two feature selec-
tion methods and four classifiers were used 
in this study. The results presented in Table 3, 
showed that in both feature selection methods, 
the decision tree classifier has the best perfor-
mance. As seen in Table 3, Figure 4 (part a), 
and Figure 5 (part a), the area under the curve 
for Boruta-DT and Relief-DT were 0.92±0.03 
(95% CI: 0.92-0.92) and 0.90±0.04 (95% CI: 
0.90-0.90), respectively. The corresponding 
ROC diagrams are shown in Figure 6 (part c) 
and (part g). Additionally, the results show that 
in all classifiers, except for XGB, the perfor-

Figure 4: Bar chart of different feature selection and classifiers: Area under the curve (a);  
Accuracy (b); Sensitivity (c) and Specificity (d)
MLP: Multi-Layer Perceptron, GB: Gradient Boosting, DT: Decision Tree, XGB: Extreme  
Gradient Boosting, AUC: Area Under the Curve, ACC: Accuracy, SEN: Sensitivity, SPE: Specificity,  
NPV: Negative Predictive Value
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Figure 5: Heat map of different feature selection and classifiers: Area under the curve (a);  
Accuracy (b); Sensitivity (c); Specificity (d) and Negative predictive value (e)
MLP: Multi-Layer Perceptron, GB: Gradient Boosting, DT: Decision Tree, XGB: Extreme  
Gradient Boosting, AUC: Area Under the Curve, ACC: Accuracy, SEN: Sensitivity, SPE: Specificity,  
NPV: Negative Predictive Value

Figure 6: ROC diagrams of different feature selection and classifiers: Boruta-GB (a); Boruta-XGB 
(b); Boruta-DT (c); Boruta-MLP (d); Relief-GB (e); Relief-XGB (f); Relief-DT (g) and Relief-MLP (h)
ROC: Receiver Operating Characteristic, MLP: Multi-Layer Perceptron, GB: Gradient Boosting, 
DT: Decision Tree, XGB: Extreme Gradient Boosting, AUC: Area Under the Curve
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mance of the active lesion predictor model is 
better in Boruta feature selection method. Ac-
cording to the results obtained from this study, 
the Boruta is a more efficient feature selection 
method than the Relief method (Figure 6).

Some studies have been conducted on the 
possibility of using quantitative image- pro-
cessing methods to detect plaque in MS  
[12, 14]. But one of the limitations of these 
studies is the low number of their sample 
sizes. Therefore, in order to have reliable re-
sults from radiomics analysis, the sample size 
should be as large as possible. Furthermore, 
the validation methods used in these studies 
were based on the sample sizes of the stud-
ies, and the use of these validation methods, 
due to the use of learning data for testing data, 
can lead to false high sensitivity. In addition to 
these, the images of the patients in those stud-
ies were obtained in two-dimensional, while 
the analysis was done on volumetric (three-
dimensional) images in this study.

In a study by Yulinga et al. [14], three fea-
ture selection methods were investigated 
along with three different classifiers. They 
also evaluated Recursive Feature Elimination 
(RFE), the Relief algorithm, and Least Sbso-
lute Shrinkage and Selection Operator (LAS-
SO) as feature selection methods and logistic 
regression, random forest, and Support Vec-
tor Machine (SVM) as classifiers to build the 
models. Although the selection of algorithms 
in the present study was different from the 
study of Yulinga et al. [14], the final results of 
the present study are in good agreement with 
those of that study, showing that the radiomics 
features of T2 FLAIR images can be used as a 
non-invasive method to help clinicians in the 
diagnosis of active plaques in MS patients in 
the future. 

However, the clinical application of this re-
search field still faces many challenges. Ra-
diomics pipelines are challenged by the lack 
of a uniform methodology, the small sample 
size, and the lack of external datasets [40, 41].

Similar to other radiomics studies, the pres-

ent study faced some limitations in that the 
small sample size and lack of external valida-
tion are significantly important. Considering 
that the accurate contouring of the lesion af-
fects the extracted radiomc features, the use 
of auto-segmentation methods is suggested in 
future research. It is also necessary to use a 
larger sample size and examine other sequenc-
es of MRI images in future studies.

Conclusion
Radiomics features can lead to predicting 

active plaques of MS and in the future, ra-
diomics -based models could be viable alter-
natives to a non-invasive diagnosis of active 
plaques of MS.
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