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Introduction

In pediatric radiography, bone age assessment is used for diagnostic 
and therapeutic objectives to investigate endocrine problems, chil-
dren’s growth, and genetic disorders [1]. Hand X-ray images are 

commonly applied to assess bone maturation due to their availability 
and the low radiation dose required for capturing images. Currently, two 
clinical techniques that radiologists use are the Greulich and Pyle (GP) 
[2] and the Tanner-Whitehouse (TW) techniques (including TW2 [3] 
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ABSTRACT
Background: Accurate bone age assessment is essential for determining the actual 
degree of development and indicating a disorder in growth. While clinical bone age as-
sessment techniques are time-consuming and prone to inter/intra-observer variability, 
deep learning-based methods are used for automated bone age estimation. 
Objective: The current study aimed to develop an unsupervised pre-training ap-
proach for automatic bone age estimation, addressing the challenge of limited labeled 
data and unique features of radiographic images of hand bones. Bone age estimation is 
complex and usually requires more labeling data. On the other hand, there is no model 
trained with hand radiographic images, reused for bone age estimation.
Material and Methods: In this fundamental-applied research, the collection 
of Radiological Society of North America (RSNA) X-ray image collection is used to 
evaluate the efficiency of the proposed bone age estimation method. An autoencoder 
is trained to reconstruct the original hand radiography images. Then, a model based on 
the trained encoder produces the final estimation of bone age. 
Results: Experimental results on the Radiological Society of North America 
(RSNA) X-ray image collection achieve a Mean Absolute Error (MAE) of 9.3 months, 
which is comparable to state-of-the-art methods.  
Conclusion: This study presents an approach to estimating bone age on hand ra-
diographs utilizing unsupervised pre-training with an autoencoder and also highlights 
the significance of autoencoders and unsupervised learning as efficient substitutes for 
conventional techniques.
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and TW3 [4]). 

The GP approach is mostly used because of 
its simplicity and compares the entire X-ray 
image with a standard reference atlas [1]. On 
the other hand, the TW method is more accu-
rate with consideration of specific regions of 
interest from carpal and phalangeal joints and 
scores each region based on bone morphologi-
cal features [5]. These two methods usually 
take considerable amounts of time and are 
subject to observer variability; two observers 
may report different scores, or even an observ-
er may have different scores at different times. 
Therefore, automated and efficient techniques 
are required for bone age assessment.

Before the advent of deep learning, bone age 
estimation was performed with traditional ma-
chine learning methods; however, deep learn-
ing has recently become very popular because 
of its superior accuracy when trained with 
large amounts of data, especially for clinical 
radiological tasks, such as meniscus tears [6], 
musculoskeletal radiology [7], shoulder pain 
on radiographs [8], predicting pain progres-
sion in knee osteoarthritis [9], and automated 
detection/classification of shoulder arthroplas-
ty [10]. For bone age estimation, deep learning 
methods have also achieved attention, due to 
the ability to automatically realize discrimina-
tive features of the images [11]. However, es-
timating bone age is a challenging supervised 
task that needs a large amount of labeled data 
for training (which is usually hard to acquire). 
In addition, X-ray images of hand bones dif-
fer fundamentally from non-radiographic im-
ages, and existing models trained on datasets, 
such as ImageNet, are not suitable for transfer 
learning. Therefore, in this research, an unsu-
pervised pre-training approach for automated 
bone age estimation is proposed, which trains 
an autoencoder to reconstruct original hand 
radiography images to provide an efficient en-
coder capable of extracting essential features 
of the images. Then, the final network uses the 
trained encoder for bone age assessment using 
pediatric hand radiographs.

Material and Methods
In this fundamental-applied research for 

bone age estimation that is a regression-based 
task, we follow these general steps:

Data preparation: We gathered our dataset 
consisting of input images and corresponding 
target values. Also, pre-processing, such as re-
sizing and normalization was done on the im-
ages appropriately.

Unsupervised pre-training with autoen-
coder: As a preliminary step, an unsupervised 
pre-trained model is used based on an auto-
encoder. The autoencoder is trained on the in-
put images alone, without considering the tar-
get values. This pre-training step helps learn 
meaningful representations from the input 
data and can serve as a useful initialization for 
the subsequent regression task.

Network architecture: A CNN-suitable ar-
chitecture was designed for regression, incor-
porating the pre-trained autoencoder’s learned 
representations, including convolutional lay-
ers, pooling layers, and activation functions. 
In other words, this architecture has an en-
coder part of the pre-trained autoencoder to 
use learned features. Then these features pass 
through additional layers, such as fully con-
nected layers or global integration layers to 
capture high-level features.

Loss function: An appropriate loss function 
was selected for the regression tasks. Com-
mon selections, including Mean Squared Error 
(MSE) loss or Mean Absolute Error (MAE) 
loss. The loss function quantifies the differ-
ence between the predicted regression values 
and the ground truth values.

Training: The CNN was trained using our 
prepared dataset. During training, the network 
learns to minimize the loss function by adjust-
ing the weights of the network through back-
propagation. We fine-tuned the pre-trained 
layers of the autoencoder and updated the 
weights of the newly added CNN layers. Also, 
Adam’s optimization algorithm was used to 
update the weights of the network.

Evaluation: The trained CNN model was 
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evaluated on a separate test dataset. The re-
gression metrics, such as MSE and MAE, 
were calculated to assess the performance of 
the model in predicting the target values.

The code is developed in Python using Keras 
2.8.0 and TensorFlow as the backend. All the 
experiments were carried out on a computer 
equipped with an NVIDIA RTX 2060 graphics 
processing unit with 6 GB of memory.

Prediction: The model is trained and evalu-
ated to predict new, unseen data. We pass the 
input images through the trained CNN, and the 
network will output the predicted regression 
values.

The use of the unsupervised pre-trained au-
toencoder enhances the CNN’s ability to ex-
tract meaningful features from the input im-
ages, potentially improving the performance 
of the regression task. It can help capture rel-
evant patterns and reduce the need for large 
amounts of labeled training data.

Dataset
This fundamental-applied study uses the 

collection of Radiological Society of North 
America (RSNA) X-ray images [12] to evalu-
ate the proposed AE-BoNet method. This col-
lection is labeled by skilled pediatric radiolo-
gists using the GP approach. Figure 1 shows 
a sample image of the dataset with regions 

of interest corresponding to the TW method 
and different bones. RSNA dataset comprises 
12,611 images with the age distribution from 
1 to 228 months (with a concentration on 5- to 
15-year-old children), including 5778 female 
and 6833 male images. The data is imbalanced 
for the number of hand images in this data-
set for various age groups. Some bone ages 
include just one sample, while others have as 
many as 718. The dataset is randomly split 
into three sets: 200, 2323, and 10088 images 
for the test set, the validation set, and training, 
respectively.

Autoencoder architecture 
Two neural network models underpin the 

system (Figure 2): an autoencoder and a re-
gression network for age estimation. The en-
coder and decoder models are combined to 
create an autoencoder, which is a particular 
kind of neural network. The encoder com-
presses the input, and then the decoder uses 
this compressed information to reconstruct the 
original input. Eventually, the decoder model 
is discarded, and the encoder model is used in 
a new model for the regression task of bone 
age estimation.

Autoencoders are models based on neural 
networks used for unsupervised learning. An 
autoencoder consists of two basic compo-

Figure 1: (a) Different bones in a sample image of hand radiograph (image from the Radiological 
Society of North America (RSNA) dataset [12]), (b) Regions of interest in the Tanner-Whitehouse 
(TW) approach [1]. The green, red, and blue boxes refer to the phalangeal joints, carpal, and 
radius/ulna regions, respectively
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nents: an encoder converting input into code 
and a decoder reconstructing the input from 
the code. Reconstruction would be carried out 
by an optimum autoencoder as nearly as pos-
sible. The model frequently learns valuable 
features from the data as it needs to prioritize, 
which input aspects [13]. The autoencoder 
model incorporates down- and up-sampling. 
Shortly, an autoencoder consists of the follow-
ing components:

Encoder: to extract the proper features from 
the input and compress them to a bottleneck 
layer-defined internal representation.

Decoder: to receive the bottleneck as input 
and reconstruct the original image using the 
encoder.

Convolutional neural networks (convents) 
are appropriate for both encoding, and decod-
ing as inputs are images. The original data 
χ is mapped by the encoder function ϕ to a 
bottleneck’s latent space f. The latent space f 
at the bottleneck is mapped to the output via 
the decoder function, represented by φ. In this 
circumstance, the output function is the same 
as the input function. Thus, the original image 
is reconstructed after generalized non-linear 
compression, and minimizing reconstruction 
error is the learning aim of an autoencoder 

[14].
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The loss function utilized to train the neural 
network through the standard backpropaga-
tion procedure is defined as follows:
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.
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Regression model
When the autoencoder is trained, the decod-

er portion is discarded, and the model up to the 
bottleneck is utilized. Then, the Global Aver-
age Pooling (GAP) layer is used to lower the 
number of parameters in the model and help 
to reduce overfitting. The subsequent flattened 
layer flattens the input (without altering the in-
formation in the preceding GAP layer). Also, 
batch normalization is used to establish high 
learning rates [15], leading to the learning 
process more stable and significantly reduc-
ing the required number of training epochs. 
Following the flattened layer, two dense lay-
ers were added for further feature extraction 
and mapping. Fully connected layers connect 
each neuron to every neuron in the previous 

Figure 2: An outline of the proposed approach. (a) an autoencoder is trained to extract useful 
spatial features for hand bone images and to reconstruct original images (b) a regression net-
work to estimate the final bone age using the encoder component of the autoencoder in (a)
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layer. These dense layers will learn complex 
relationships in the data and cause the model 
to estimate the bone age based on the learned 
features.

The first dense layer used ten neurons with 
the Rectified Linear Unit (ReLU) activation 
function. Also, the L2 regularization tech-
nique is applied to avoid overfitting and pre-
vent learning complex models [16]. This is 
achieved by adding a penalty to the loss func-
tion during training based on the magnitude of 
the weights in the neural network. The value 
of 0.0001 was set as the strength of the penal-
ty. This approach enhances the model’s ability 
to generalize to unseen data. A single output 
neuron with a linear activation function was 
employed in the final dense layer. This type of 
setup is used for regression tasks, where the 
network’s output is directly predicting a con-
tinuous value.

Results

Evaluation metric
Mean Square Error (MSE) and Mean Abso-

lute Error (MAE) are taken into consideration 
as the metrics for assessing the final result:

1

1 N

i i
i
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In this equation, N is the total number of test 
points, fi is the actual bone age, and yi is the 
anticipated age.

Autoencoder results
The original X-ray image size for encoder 

input is 256×256. The encoder consists of 
four convolutional blocks (convolution, batch 
normalization, and pooling layer). The fil-
ters gradually increase (64,128, 256,512, and 
1024). Furthermore, the size of feature maps 
is progressively reduced as they pass through 
the convolutional block. At the decoder, the 

bottleneck is fed to complete the model sym-
metrically (the number of filters is 1024, 512, 
256, 128, and 64, respectively). The Adam op-
timizer [17] and mean squared error are used 
as the loss function. Table 1 indicates the pa-
rameters used for training the autoencoder.

The autoencoder trained for 900 epochs in 5 
stages. As can be seen in Table 2, both the loss 
value and metric value improved at each train-
ing step. This indicates the autoencoder model 
successfully reconstructed the input image 
with minimal error. Therefore, we utilized the 
trained weights of the encoder part for the sub-
sequent model.

Bone age estimation results
Table 3 demonstrates the parameters used 

Parameters Value
Activation function of CNNs Relu
Activation function of output Sigmoid

Optimizer Adam
Loss MSE

Metrics Accuracy
Batch size 8

Learning rate 0.001 
Image size 256×256

Relu: Rectified Linear Unit, CNNs: Convolutional Neural 
Networks, MSE: Mean Square Error

Table 1: Autoencoder parameters

Epoch
Loss Metric
MSE Accuracy

Step1 = 300 epoch 0.000206 0.4866
Step2 = 200 epoch 0.000172 0.6169
Step3 = 100 epoch 0.000166 0.6819
Step4 = 150 epoch 0.000156 0.6830
Step5 = 150 epoch 0.000148 0.6839

MSE: Mean Square Error

Table 2: Autoencoder results

V



J Biomed Phys Eng

Mojtaba Sirati-Amsheh, et al

ten epochs.
In order to visually assess the performance 

of the proposed model for bone age estima-
tion, the outcomes of the model’s predictions 
for the test set are displayed in Figure 4. The 
blue dot points show the anticipated values, 
while the green line indicates the real bone age. 
This 45-degree diagonal green line is used as 
a reference to gauge the accuracy of the model 
predictions, which represents the ideal case 
where the predicted ages perfectly match the 
actual ages. As can be observed, the predicted 
values are closely aligned with the green line, 
showing that the suggested approach performs 
well across all age ranges.

Comparing various bone age estimation 
techniques in related works is challenging 
since they employ various datasets with di-
verse evaluation protocols. Thus, conducting a 
fair comparison would be difficult. Here pro-
posed AE-BoNet method is compared with the 
two most related works (Wibisono et al. [18] 
and Gao et al. [19]) that use RSNA for evalu-
ation (Table 4).

In addition, results are compared with four 
well-known CNN networks (VGG16 [20], 
InceptionV3 [21], ResNet50 [22], Xcep-
tion [23], and MobileNet [24]) trained on the 
ImageNet dataset using a transfer-learning 
approach (i.e., for the backbone network) to 
investigate the effectiveness of the proposed 

Parameters Value
Activation function of CNNs Relu
Activation function of output Linear

Optimizer Adam
Loss MSE

Metrics MAE
Batch size 16

Learning rate 0.001
L2 regularization weight 0.0001

Image size 256×256
CNNs: Convolutional Neural Networks, Relu: Rectified  
Linear Unit, MSE: Mean Square Error, MAE: Mean Absolute 
Error

Table 3: Final proposed model parameters

for training the regression model for bone age 
estimation. Accordingly, the Adam optimizer 
is used to train our model with an initialization 
learning rate of 0.001. Again, a batch size of 
16 and the L2 regularization weight of 0.0001 
are selected for this phase.

Figure 3 provides the curves for the mean 
absolute error and mean square error of the fi-
nal model during training and validation. With 
the increase in the number of epochs, a sig-
nificant reduction is observed in both the mean 
absolute error and mean square error values. 
Eventually, both curves stabilize after about 

Figure 3: Training curves for the suggested final model. (a) shows mean absolute error curves 
for the train set and validation set (b) loss curves for the train set and validation set considering 
mean square error as loss function (MSE: Mean Square Error, MAE: Mean Absolute Error)
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AE-BoNet method. Table 5 shows the results 
for the RSNA dataset using two different im-
age sizes of 256×256 and 450×450. Therefore, 
these results are on the same data with differ-
ent sizes.

Discussion
BoNet [1] was one of the first studies to 

create an end-to-end convolutional neural 
network for deep learning-based bone age as-
sessments. Convolutional neural networks au-
tomatically learn the hierarchies of discrimi-
native features. Consequently, the requirement 
is eliminated for feature engineering [11, 25]. 
Supervised learning of deep networks requires 
a substantial amount of labeled data. However, 
annotating a large dataset in the medical field 
can be extremely time-consuming and expen-
sive. A typical approach is to use pre-trained 
networks and fine-tune them to the available 
data [26].

The proposed method in the study of Koit-
ka et al. [27] includes regression and detec-
tion networks; they used the Faster-RCNN 
architecture [28] with Inception-ResNet-V2 
[29] as a feature extractor and developed a 
network, trained using 240 manually labeled 
photographs. Gao Y et al. [19] manually seg-
mented one thousand samples from a data-
set to create the mask image before training 
U-Net. The trained U-Net was then used for 
segmenting the whole images of the original 
dataset. Pan et al. [30] also utilized transfer 
learning with various networks, including 
the Xception [23], the ResNet-50 [22], the 
Inception-ResNet-V2 [29], VGG-16-19 [20], 
and Inception- V3 [21], with weights already 
trained on ImageNet. Furthermore, they em-
ployed active learning (AL) [30] to segment 
images using 300 manually annotated images. 
Ren et al. [31] used transfer learning and de-

Method MAE 
(month) Dataset Year

Wibisono et al. [18] 14.78 RSNA 2019
Gao et al. [19] 9.997 RSNA 2020

AE-BoNet 9.3 RSNA 2023
MAE: Mean Absolute Error, RSNA: Radiological Society of 
North America, AE-BoNet: Autoencoder Bone Age Network

Table 4: Comparisons with related works

Pretrained Network
Image size=450×450 Image size=256×256
MAE MSE MAE MSE

Xception 14.7 352.8 16.1 413.6
VGG16 15.8 427.6 19.1 661.2

InceptionV3 13.6 295.5 16.1 416.3
MobileNet 12.5 268.8 12.9 296.8
AE-BoNet 9.9 161.1 9.3 144.6

MAE: Mean Absolute Error, MSE: Mean Square Error, VGG: Visual Geometry Group, AE-BoNet: Autoencoder Bone Age Network

Table 5: Comparisons results of the proposed method with conventional pre-trained Convolu-
tional Neural networks on RSNA (Radiological Society of North America) data

Figure 4: Prediction on 200 test set images. 
The green line displays the actual bone age, 
and the blue dots show the predicted values
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ployed the Inception-V3 network for feature 
extraction. Additionally, rectangular bounding 
boxes were created to trim and localize the 
foreground for one thousand images. Salim 
et al. [32] initially employed mask R-CNN 
[33] for instance, segmentation, and back-
ground removal. Then, a regression network 
architecture was employed with a pre-trained 
VGG-19 convolutional neural network model 
to estimate bone age. Liu B et al. [34] applied 
a CNN network (VGG-U-Net) previously 
trained on ImageNet, to segment the hand and 
wrist from the X-ray images. A conditional 
GAN network was established to determine 
bone age. Chen et al. [35] employed a local-
ization network with the InceptionV3 back-
bone and a regression network with the Xcep-
tion backbone. Zulkifley et al. [36] presented 
a method for bone age assessment using image 
registration. The hand image was segmented 
based on DeepLab V3+ architecture [37], 
which uses the Xception as its backbone, and 
then MobileNetV1 [24] was used for the key 
points regressor for angle alignment and angle 
calculating from the four key points of inter-
est. Hao et al. [38] suggested RT-FuseNet, in 
which residual block in ResNet was used to 
extract coarse feature maps with an attention 
mechanism. Three fully connected layers were 
utilized to extract textual features, and also the 
role of transfer learning was investigated. Hao 
et al. [39] used the transfer learning approach 
and used EfficientNet for feature extraction.

The primary issue with transfer learning us-
ing pre-trained networks like VGG, Xception, 
and MobileNet is that these models were not 
specifically trained on hand radiographic im-
ages. Instead, they were trained on large-scale 
datasets like ImageNet. To address this limita-
tion, this paper introduces the concept of un-
supervised pre-training using a CNN autoen-
coder trained specifically on hand radiography 
images, which directly relates to the bone age 
problem.

To investigate the effectiveness of the num-
ber of epochs, the training of the autoencoder 

was performed on the RSANA dataset in five 
steps. According to Table 2, the value of the 
loss decreased steadily at each stage of the 
training process, and as a result, the recon-
structed image would be highly comparable to 
the original. Therefore, by raising the number 
of epochs, the autoencoder model was able to 
learn the useful features from the input, lead-
ing to improved performance of the transferred 
weights for the final model. Consequently, the 
encoder portion can be reused for subsequent 
networks. The final model for estimating bone 
age reuses the extracted features previously 
learned by the encoder. Thus, this method al-
lows for a more efficient training process with 
less training data. 

A comparison between this paper and other 
related works is shown in Table 4. Wibisono 
et al. [18] utilized pre-trained VGG16 and 
MobileNet for a deep learning approach, in 
which the mean absolute error achieved by 
pre-trained VGG16 was 14.78 months. Gao et 
al. [19] used U-Net for hand bone region seg-
mentation and pre-trained VGG16 as a model 
backbone, and they reached the mean abso-
lute error of 9.997 months. Therefore, the ap-
proach adopted in this article performed bet-
ter than other works mentioned, as shown in  
Table 4. Furthermore, Table 5 demonstrates 
that the suggested approach in this study 
achieved better outcomes than other pre-
trained models.

Conclusion
This study highlights the significance of em-

ploying autoencoders and unsupervised learn-
ing as alternatives to conventional methods 
in the domain of medical image analysis. The 
proposed AE-BoNet model has shown encour-
aging outcomes, achieving a Mean Absolute 
Error score of 9.3 on the RSNA test set. More-
over, the experimental results suggest that this 
novel approach can be effectively utilized in 
various medical image decision-making sce-
narios, especially when there is a scarcity of 
labeled data or no similar pre-trained model is 
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