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Introduction

The most prevalent form of cancer diagnosed is skin cancer, and 
Basal Cell Carcinoma (BCC) is the most typical kind of skin 
cancer worldwide [1]. Microscopic examination of histologically 

processed and chemically stained tissue is used to diagnose BCC [2]. 
Histological images provide valuable information regarding tissue sec-
tions, as follows: 1) tissue structures, phenotypes, and pathology and 
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ABSTRACT
Background: The use of Hematoxylin-and-Eosin (H&E) staining is widely  
accepted as the most reliable method for diagnosing pathological tissues. However, the 
conventional H&E staining process for tissue sections is time-consuming and requires 
significant labor. In contrast, Confocal Microscopy (CM) enables quick and high-reso-
lution imaging with minimal tissue preparation by fluorescence detection. However, it 
seems harder to interpret images from CM than H&E-stained images. 
Objective: This study aimed to modify an unsupervised deep-learning model to 
generate H&E-like images from CM images.
Material and Methods: This analytical study evaluated the efficacy of CM and 
virtual H&E staining for skin tumor sections related to Basal Cell Carcinoma (BCC). 
The acridine orange staining, combined with virtual staining techniques, was used to 
simulate H&E dyes; accordingly, an unsupervised CycleGAN framework, trained to 
virtually stain CM images was implemented. The training process incorporated adver-
sarial and cycle consistency losses to ensure a precise mapping between CM and H&E 
images without compromising image content. The quality of the generated images was 
assessed by comparing them to the original images. 
Results: The CM images, specifically focusing on subtyping BCC and evaluating 
skin tissue characteristics, were qualitatively assessed. The H&E-like images gener-
ated from CM using the CycleGAN model exhibited both qualitative and quantitative 
similarities to real H&E images.  
Conclusion: The integration of CM with deep learning-based virtual staining  
provides advantages for diagnostic applications by streamlining laboratory staining 
procedures.
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2) the microscopic details of tissues, leading 
researchers and clinicians to analyze and in-
terpret the complex architecture and cellular 
organization within different tissues [3]. Skin 
cancer pathological identification involves 
invasive biopsy, followed by several com-
prehensive tissue preparation processes and 
histological staining with H&E. However, 
the histological tissue processing and stain-
ing typically take one to five days, resulting 
in a delay in the final diagnosis for the patient  
[4, 5]. 

In the past few decades, some imaging tech-
nologies, such as Confocal Microscopy (CM) 
[6], Optical Coherence Tomography (OCT) 
[7], and Multiphoton Microscopy (MPM) [8], 
have been employed to modify the process 
of noninvasive imaging of skin cancers. CM 
shows a resolution at the cellular level, similar 
to that of tissue histology, enabling improved 
correlation between image outputs and histo-
logical findings due to its ability to capture in-
tricate cellular-level details [9]. Further, CM 
refers to a noninvasive optical imaging device 
using a low-intensity laser to create quasi-his-
tological images [10]. Despite rapid progress 
in CM pathology, providing cellular-level res-
olution, interpreting CM images remains chal-
lenging. It is crucial to note that CM does not 
display skin cell features equivalent to con-
ventional microscopic tissue histology assess-
ments. Several obstacles have to be addressed 
to accurately interpret CM images, necessitat-
ing extensive training for individuals new to 
the field [11].

In recent years, the use of deep learning 
approaches has shown promise in digitally 
enhancing the interpretation of pathologi-
cal images by transforming between differ-
ent microscopy modes. However, there are 
several challenges associated with applying 
deep learning models to image transforma-
tions. Deep learning algorithms perform bet-
ter when are provided with a large amount 
of high-quality training data. In “supervised 
learning,” a substantial number of images and  

corresponding annotations are required. How-
ever, the process of manually annotating these 
images is time-consuming and error-prone, es-
pecially for tasks involving pixel-level regis-
tration in image transformation. Additionally, 
due to hardware and experimental limitations, 
it can be difficult or even impossible to obtain 
a sufficient amount of high-quality ground 
truth data in paired datasets for certain deep 
learning models.

In response to these challenges, a set of “un-
supervised learning” models have been devel-
oped to achieve stain-to-stain transformations 
between two different image domains using 
unpaired datasets. Without paired data, these 
models can translate images between different 
domains and perform as well as supervised 
techniques. These frameworks have been suc-
cessfully applied to various microscopical 
image analysis tasks, such as virtual stain-
ing [12, 13], classification, and segmentation 
[14]. In this study, a modified deep learning-
based approach is present for rapidly generat-
ing ex-vivo virtual histology of fluorescently 
stained confocal microscopic images of skin 
tissue samples. The framework is based on 
unsupervised learning techniques. During 
the training phase, CM images of excised 
skin tissue stained with acridine orange are 
used to train Convolutional Neural Networks 
(CNNs). These fluorescently stained CM im-
ages provided valuable spatial guidance for 
the neural networks to establish correlations 
between features in CM images and their  
corresponding histological representations.

Material and Methods

Tissue Preparation
In this analytical study, skin tissue samples 

from 20 patients, after standard-of-care sur-
gery, resected primary BCC tumor specimens. 
The resected tissue was divided into two parts. 
The first part of the sample was stained with 
acridine orange followed by CM imaging 
within less than 15 minutes. The second part, 
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on the other hand, underwent conventional 
fixation, embedding, sectioning, and staining 
with H&E, taking approximately 24 hours, 
before brightfield Whole Slide Imaging (WSI) 
[15]. Consequently, a total of 20 large patholo-
gy microscopy images with H&E staining and 
an equal number of corresponding CM images 
were obtained for analysis.

In the CM imaging process, the tissue sec-
tions were stained with acridine orange to en-
hance the contrast between the nuclei and the 
dermal region. This fluorescent stain is known 
to improve the detection of tumors. To achieve 
the desired staining, tissue sections were sub-
jected to a sequence of solutions during the 
staining procedure. This involved immersing 
the sections in a series of solutions, including 
10 percent acetic acid and Dulbecco’s Phos-
phate-buffered saline, followed by incubation 
with acridine orange solution (0.6 mM), and 
subsequent immersion in Dulbecco’s Phos-
phate-buffered saline again, which takes 20 
seconds for each incubation phase [16]. After 
the staining process, the tissue samples were 
examined using a Nikon Eclipse Ti micro-
scope (Nikon Instruments Inc., Tokyo, Japan). 
The microscope was equipped with a ten-time 
objective lens and appropriate fluorescence 
filters to visualize the acridine orange-stained 
samples.

Formalin-Fixed Paraffin-Embedded (FFPE) 
samples were prepared by promptly fixing 
specimens in 10% formalin, embedding them 
in paraffin, and cutting them into approximate-
ly 7-µm thick sections. These sections were 
placed on standard glass slides and stored at 
room temperature for archival purposes. Stan-
dard H&E staining was applied to the slides, 
followed by imaging using the bright-field 
mode of a digital whole-slide scanning mi-
croscope (Zeiss Axio Scan.Z1, Germany) to 
produce histological WSI. The tissue prepa-
ration described above was specifically used 
during the training and evaluation phases; af-
ter the training the network, it was no longer 
required. Deep learning-based virtual staining 

was utilized to make CM histological images 
more recognizable to pathologists. Through 
deep learning, the network can learn the corre-
lations between two image domains and gen-
erate images that resemble the H&E staining 
commonly used by pathologists.

Image processing 
To address the challenge of handling high-

resolution whole-slide histology images with 
limited hardware memory, an approach was 
adopted, in which the images were randomly 
cropped into overlapping segments measur-
ing 512×512 pixels. This splitting strategy not 
only facilitated the analysis of individual tiles 
but also expedited the training process by en-
abling efficient processing of smaller image 
tiles. A single high-resolution WSI of a tis-
sue sample, which comprises numerous rep-
resentations of each histological structure of 
interest, would be sufficient to train the model. 
By dividing the WSI into smaller patches, 
approximately 5000 patches were obtained 
for each domain. The datasets were split into 
training and testing portions, roughly at a 5:1 
ratio. Moreover, WSIs of tissue samples con-
tain high-resolution images with millions of 
pixels, capturing numerous distinct represen-
tations of relevant histological structures. This 
abundance of data is sufficient for training 
deep neural networks effectively.

Unsupervised Virtual Staining  
Algorithm

In the context of staining style transfer, a 
tissue image consists of two components, in-
cluding content and style. The content refers 
to the primary structure and morphological 
information within the image, while the style 
encompasses the specific staining character-
istics, including variations, such as H&E and 
acridine orange staining [8]. The essence of 
stain transfer is to preserve the content of the 
original image while transferring its style to 
the target one [5]. The CycleGAN was used 
to learn the nonlinear mapping from CM  
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images to standard H&E histological staining 
of the sample. The CycleGAN architecture, 
initially proposed by Zhu et al. [17], was uti-
lized in the proposed application, but it was 
further enhanced to suit the proposed specific 
requirements. 

The aim of the model was to conduct image 
transformation using unpaired data. The gen-
erator G was designed to map images from 
domain X to domain Y. It accomplished this 
by generating a virtual H&E-stained image 
from real CM image, x, denoted as ŷ=G(x). 
The generator F was employed to map images 
from domain Y to domain X. The generator 
F accomplished this task by transforming a 
real H&E-stained image, y, into a generated 
a CM image, represented as x̂=F(y). The dis-
criminator DY classifies real H&E image y and 
virtual H&E image ŷ. Real CM image x and 
virtual CM image x̂ are distinguished by the 
discriminator DX. The initial component of the 
objective function is the commonly employed 
adversarial loss [17], formulated in its most 
prevalent form, as follows:

( )
( )

( )
( )

( )( )( )    , , , [log ] log 1
data y data xGAN Y y P Y x P YL G D X Y E D y E D G x→ →

 = + −  (1)

( )
( )

( )
( )

( )( )( )   , , , [log ] log 1
data x data yGAN X x P X y P XL F D X Y E D x E D F y→ →

 = + −  (2)

( )  data yy PE →  and 
( )  data xx PE →  were the expectation 

operators. 

CycleGANs enforce the principle of ‘cycle 
consistency’ in image translation, ensuring 
that when an image is translated from domain 
X to domain Y and then reversed back from Y 
to X, the resulting output closely resembles the 
original image. A CM image x is transformed 
into an H&E image using the generator G. To 
ensure cycle consistency, the translated H&E 
image G(x) is further transformed back into 
a CM image F(G(x)) using the generator F. 
The aim of the model is to minimize the loss 
between the genuine CM image x and the re-
transformed CM image F(G(x)). Similarly, 
starting with an H&E image y, it is first trans-
formed into CM image F(y) and then translated 

back into an H&E image G(F(y)). The L1 loss 
between original images and back-translated 
images as cycle consistency loss Lcyle(G,F) is 
thus defined as follows [17]:

( )
( )

( )( )
( )

( )( )    ,
data x data ycyle x P y PL G F E F G x x E G F y y→ →   = − + −       (3)

The complete objective function can be formu-
lated as follows:
( , , , ) ( , , , ) ( , , , ) ( , )X Y GAN y GAN X cyclel G F D D L G D X Y L F D X Y L G Fλ= + + (4)

where λ is a constant used to enforce the  
cycle-consistency loss. 

The generator’s initial three layers utilize 
stridden convolution to achieve downsam-
pling, enabling the extraction of low-level 
abstract representations. In order to capture 
high-level features, the model incorporates 
nine stacked residual blocks. The inclusion of 
these blocks plays a crucial role in determin-
ing the model’s capacity, with a higher number 
of blocks for more intricate tasks. The design 
of residual blocks effectively tackles the chal-
lenge of vanishing gradients, which often oc-
curs when employing deeper networks. Addi-
tionally, the use of residual blocks facilitates 
faster convergence in comparison to standard 
solvers. Moreover, within the network archi-
tecture, the last three upsampling layers em-
ploy stridden convolution for the integration 
of extracted features and image resizing. This 
approach contributes to the reconstruction 
of the image, ensuring it returns to its initial 
dimensions, thereby achieving the desired  
resolution.

This procedure is pivotal in restoring the 
image to its initial dimensions while seam-
lessly incorporating the relevant extracted in-
formation. Regarding the discriminator in this 
model, it is structured as a relatively shallow 
CNN. Each layer of the discriminator executes 
downsampling on the feature maps, concur-
rently doubling the number of channels. This 
design empowers the discriminator to effec-
tively capture and analyze essential features, 
facilitating accurate discrimination between 
real and generated images.

In the final convolution layer of the model, 
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a single-channel feature map is generated. The 
process is classified on each element of this 
feature map. Both the generator and the dis-
criminator are equipped with nonlinear activa-
tion units in each convolutional layer. 

Image Evaluation
Both qualitative and quantitative evaluation 

methods are employed to assess the virtual 
H&E-stained images for BCC tissue samples. 
One of the qualitative methods involved utiliz-
ing a t-stochastic neighbor embedding (t-SNE) 
plot to visualize the features extracted from 
the virtual H&E images on a two-dimensional 
graph [18]. This visualization technique led 
to comparing and analyzing the original CM 
images, H&E-stained images used for training 
the CycleGAN model, and the virtual H&E 
images generated by the CycleGAN model.

The virtual H&E-stained images were com-
pared with real H&E-stained images to analyze 
whether the translated images were realistic. 
Three board-certified pathologists, who were 
unaware of the staining techniques used for 
each image, were involved in the assessment. 
They were asked to apply a “real vs virtual” 
perceptual judgment to evaluate the realistic 
nature of the translated images. This process 
helped determine the extent to which the vir-
tual H&E images resembled the gold standard 
H&E images, providing valuable insights into 
the quality and accuracy of the translation. In 
the current study, the pathologists were in-
dependent of the research and evaluated 100 
images. Half of the 50 images were actual 
H&E-stained tissue sections, while the other 
half were virtual H&E images. Pathologists 
determined whether each image was real or 
virtual, leading to a comprehensive evaluation 
of image quality, considering different aspects 
of stain quality as rated by pathologists.

Also, the Structural Similarity Index (SSIM) 
[19] was calculated to measure the model 
structure preservation performances for a  
given dataset of images and the corresponding  
reconstructed image.

Results

Confocal Microscopy Pathology 
In the context of skin cancer diagnosis, 

pathologists commonly assess the shape of 
nuclei and the distribution of nuclei within 
the skin tissue as part of their examination 
process. The study focuses primarily on the 
identification of BCC tumors within the skin, 
encompassing the epidermis and dermis. Ad-
ditionally, features of various appendages e.g., 
hair follicles, sebaceous glands, and sweat 
glands were shown through CM images. Fur-
thermore, the subcutaneous tissue examined 
encompasses adipose tissue, collagen, blood 
vessels, and meibomian glands. As shown in 
Figure 1, acridine orange displayed a nuclear 
staining pattern, highlighting the densely nu-
clear tumor and epidermis. It also highlighted 
other structures, such as hair follicles, seba-
ceous glands, inflammatory cells, and eccrine 
glands. Ex-vivo CM imaging after acridine 
orange staining enhances cellular visualiza-
tion. However, its colors and structures differ 
greatly from standard H&E images.

Virtual Staining 
Subsequently, we proceeded to validate the 

efficacy of the computational staining method 
for histological imaging of CM on thin BCC 
sections. This approach allowed us to digitally 
simulate the staining process, offering valu-
able insights into the visualization and analy-
sis of histological features without the reliance 
on traditional physical staining techniques. 
Figure 2 illustrates a fundamental schematic 
of virtual staining. In the conventional meth-
od, biological tissue, such as a skin sample, 
is harvested and manually sectioned into thin 
slices. These slices undergo the standard FFPE 
process and are stained with H&E to gener-
ate histological images. In the virtual staining 
approach, thick tissue samples can be directly 
imaged using CM, eliminating the necessity 
for sectioning.
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Figure 1: Characteristics of skin tissue stained with acridine orange and imaging with confocal 
microscopy; (A) the epidermal layer, (*epithelium) (B) dermis with hair follicles, * hair follicles 
(C), (D), and (E) show the Nodular-micronodular Basal Cell Carcinoma (BCC), BCC tumor, BCC 
tumor surrounded by empty spaces (clefting) respectively (*). (F) shows the sebaceous glands 
(*). (G) and (H) show the dense cell nuclei in BCC tumors that define the margin (*). (K) shows 
the sweat glands (*). 

Figure 2: The workflow for obtaining histological images in conventional histopathology and 
virtual histopathology. The top pathway shows the traditional histopathology and the bottom 
pathway illustrates confocal microscopy (CM) imaging and deep-learning-based virtual staining
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Phase
Filter 

Number
Filter 
Size

Layer Type Stride Normalization Activation
Representation 

Size

Encoder
64 7×7 Convolution 1 Batch Norm ReLU n

128 3×3 Convolution 2 Batch Norm ReLU n/2
256 3×3 Convolution 2 Batch Norm ReLU n/4

Transformer

256 3×3 Residual Block 1 Batch Norm ReLU n/4
256 3×3 Residual Block 1 Batch Norm ReLU n/4
256 3×3 Residual Block 1 Batch Norm ReLU n/4
256 3×3 Residual Block 1 Batch Norm ReLU n/4
256 3×3 Residual Block 1 Batch Norm ReLU n/4
256 3×3 Residual Block 1 Batch Norm ReLU n/4

Decoder
128 3×3 Transpose 1/2 Batch Norm ReLU n/2
64 3×3 Transpose 1/2 Batch Norm ReLU n
3 7×7 Transpose 1 Batch Norm ReLU n

Table 1: Configuration of a generator during CycleGAN training process.

Filter Number Filter Size Layer Type Stride Normalization Activation
64 4×4 Convolution 2 - ReLU

128 4×4 Convolution 2 Batch Norm ReLU 
256 4×4 Convolution 2 Batch Norm ReLU 
512 4×4 Convolution 2 Batch Norm ReLU 

1 4×4 Convolution 1 - Sigmoid

Table 2: Configuration of generator and discriminator during CycleGAN training process

Hardware or Software Technical Parameter Parameter Value 
Operating system Windows 10 Optimizer Adam 

GPU RTX2080 Epoch 100
CPU Intel Learning Rate 10000

Memory 32 GB Step Decay 50
Deep learning library Pytorch 1.8.0 Bach Size 2

Programming language Python 3.7.6
GPU: Graphics Processing Unit, CPU: Central Processing Unit

Table 3: Configuration of hardware and software and network parameters

Training Configuration
Tables 1 and 2 provide a comprehensive 

overview of the network architecture and con-
figuration utilized during the training process 

of CycleGAN. The hardware and software 
configurations and also used network param-
eters are shown in Table 3. The training pro-
cess lasted approximately 30 hours. Once the 

VII



J Biomed Phys Eng

Mahmoud Bagheri, et al

training was completed, the pre-trained for-
ward generators were loaded for subsequent 
applications. Following the training process, 
the forward GAN could generate a 512×512 
H&E patch in approximately 2 seconds, show-
ing that the pre-trained model achieved a rela-
tively fast inference time, which can enable 
efficient generation of transformed images 
during subsequent applications.

Stain Translation Results
The efficacy of the virtual staining method 

was validated on tissue samples. Upon visually 
evaluating the sensitized images, we observed 
remarkable similarities to slides produced 
from the same tissue block that had undergone 
conventional staining. Figure 3 presents sam-
ple results from the test dataset, showcasing 
the outcomes of a CycleGAN trained on both 

Figure 3: Translated image examples from the Confocal Microscopy (CM) to Hematoxylin-and-
Eosin (H&E). Virtual stained samples (a row) and their closest real neighbors, H&E-stained  
images (b row). Black Arrows show smooth muscle fibers. (*) Sebaceous glands. Blue arrows 
show veins. The black star shows adipose tissue.

Figure 4: t-Stochastic Neighbor Embedding 
(t-SNE) graph; t-SNE visualizes the Confocal 
Microscopy (CM), Hematoxylin-and-Eosin 
(H&E), and virtual H&E image quality for 
Basal Cell Carcinoma (BCC) specimens. 

CM and H&E images. The virtually stained 
CM images exhibited a remarkable resem-
blance in morphology to the histopathologi-
cal images obtained from H&E slides. Various 
skin structures, including the epidermis and 
dermis, as well as features, such as hair fol-
licles, sebaceous glands, and collagen, were 
identifiable in both image types.

The similarity or difference was compared 
between CM, virtual H&E, and H&E images 
to assess the staining precision of the proposed 
approach. Figure 4 illustrates the t-SNE plot, 
highlighting the visual and color similari-
ties between virtual stained images and their 
counterparts subjected to traditional stain-
ing techniques. t-SNE graph showed a good 
correlation between real and translated im-
ages. The green, blue, and red dots represent 
CM, virtual H&E, and H&E-stained images,  
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respectively. The distribution of green dots has 
a clean boundary with the distribution of blue 
and red dots, showing that the original CM im-
ages belong to a different image domain than 
the virtual H&E, and H&E-stained images. 
The distribution of blue and red dots mixed 
together indicates that the virtual H&E im-
ages precisely imitate the look of the specified 
H&E-stained images.

In addition, SSIM scores are computed be-
tween the real and their reconstructed confocal 
microscopy image patches, and the average 
SSIM for all test patches was 0.91 (standard 
deviation=0.04). 

Clinical Evaluations of Virtually 
Stained Images

The current study is conducted on percep-
tual studies comparing real and fake images to 
evaluate the authenticity of translated images 
in qualitative analyses. Three pathologists 
were needed to determine whether a particular 
image was a genuine or virtual image as part of 
the blinded pathology study. The correspond-
ing indicators are summarized in Table 4. The 
assessment of the results involved the use of 
three indicators: sensitivity, specificity, and 
accuracy. True positives (real images), false 
positives, true negatives (synthetic images), 
and false negatives are represented by TP, FP, 
TN, and FN, respectively. The formulas for 
these indicators are provided, as follows [20]:

TP TNAccuracy  
TP TN FP FN

+
=

+ + +               (5)

TPSensitivity  
TP FN

=
+

                               (6)

TNSpecificity  
FP TN

=
+

                                   (7)

Discussion
CM is considered a potential tool for quick 

and affordable bedside pathology, enabling re-
operations and/or wound closures in much less 
time than traditional H&E pathology [21, 22]. 
In this study, a deep learning-based method 
was implemented to carry out virtual stain-
ing on CM images of skin tissue samples. We 
converted the CM images into H&E-like im-
ages, which closely resemble the appearance 
of H&E staining. This visualization format is 
widely utilized by pathologists for the evalu-
ation of histochemical-stained tissue biopsies 
on microscopy slides. First, the staining proto-
col was described for dermatological imaging 
that incorporates acridine orange, a dye used 
to image specimens. It accurately depicts cell 
nuclei and raises the contrast of cell structures, 
particularly the contrast between cells and 
stroma. Second, the CM imaging system com-
bined with CycleGAN, can quickly produce 
histological images (also known as virtual 
H&E) that are comparable to standard H&E-
stained images. The CycleGAN algorithm’s 
input images already exhibit a high degree of 
concordance with true H&E images. How-
ever, the CycleGAN algorithm helps achieve 
a level of realism that allows our virtual his-
tology method to offer better quality than CM 
images.

In this study, unpaired image-to-image trans-
lation techniques were used to convert CM im-
ages into virtual H&E images, applied to other 
medical imaging. The absence of quantitative 
metrics presents a substantial obstacle to train-
ing unpaired image-to-image translation algo-
rithms. Due to the utilization of paired data in 
most studies focusing on microscopic image 
conversion, objective evaluations were pos-

Virtual Staining using Deep Learning

Stain H&E
Indicators Sensitivity Specificity Accuracy

Histopathologist 1 0.70 0.38 0.54
Histopathologist 2 0.78 0.32 0.55
Histopathologist 3 0.64 0.42 0.53

Average 0.71 0.37 0.54
H&E: Hematoxylin-and-Eosin

Table 4: The sensitivity, specificity, and  
accuracy values calculated based on the  
evaluations of multiple participants regarding 
the realism of the stain translation results.
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sible using metrics that measure structural and 
perceptual similarity [23]. However, the most 
reliable metric for unpaired image-to-image 
translation techniques is still visual inspection 
by humans [24]. The proposed algorithm gen-
erated output images assessed by three expert 
pathologists and confirmed that the images 
were similar to those in routine. The results 
suggest that the judgments of the three partici-
pants were essentially random guesses, as they 
were unable to distinguish between real and 
virtual images. Table 4 presents the values of 
key indicators for synthesized H&E and real 
H&E images, revealing average sensitivity, 
specificity, and accuracy values of 0.71, 0.37, 
and 0.54, respectively. These findings align 
with those of Lo et al. in the context of stain 
translation for renal pathology images [25]. 
The outcomes underscore the remarkable real-
ism achieved by the translated images through 
the trained CycleGAN model. Additionally, 
the trained model effectively transitions into 
the intended color palette while preserving the 
structural contents of the original image [5, 
26]. This is facilitated through the application 
of cycle consistency constraints, resulting in 
SSIM scores surpassing 0.9 during the back-
translation of generated images to their origi-
nal source domain [5, 26]. 

In conclusion, our results illustrate that the 
virtual staining networks can effectively re-
construct skin tissue and BCC nodules, rep-
licating the features and color contrast com-
monly observed in histologically stained 
microscopy sections.

Further research is imperative to thoroughly 
evaluate the influence of digital pathology on 
diagnostic accuracy, sensitivity, and specific-
ity relative to the original images. It is crucial 
to acknowledge that our training dataset con-
sisted of normal skin samples, nodular, and 
superficial types of BCC. In future endeavors, 
we intend to broaden our dataset to incorpo-
rate a more extensive array of BCC samples, 
encompassing various subtypes. This expan-
sion will facilitate the assessment of the net-

work’s efficacy in detecting cell nuclei within 
basal cell tumor islands.

Conclusion
In conclusion, this study focused on assess-

ing an unpaired Stain-to-stain transformation 
model designed to convert CM images into 
H&E-stained images. To enhance practical 
applicability in clinical contexts, future efforts 
should explore the implementation of transfer 
learning techniques, larger batch sizes, and 
specialized hardware to expedite the training 
process. Moreover, a promising avenue for 
further investigation involves the development 
of a CycleGAN model capable of perform-
ing multiple stain conversions using confocal 
microscopy images. This proposed approach 
holds the potential to significantly advance the 
application of deep learning methods in the 
analysis of pathology images, paving the way 
for diverse stain styles within the pathology 
field.
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