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Introduction

The rapid progress in wireless communication technologies has 
led to a significant increase in the general population’s exposure 
to Electromagnetic Fields (EMFs). Individuals are now con-

stantly exposed to various sources of EMFs, such as mobile phones, 
cordless phones, Wi-Fi routers, and power lines. Consequently, global  
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ABSTRACT
Background: The rapid increase in the number of Mobile Phone Base Stations 
(MPBS) has raised global concerns about the potential adverse health effects of ex-
posure to Radiofrequency Electromagnetic Fields (RF-EMF). The application of ma-
chine learning techniques can enable healthcare professionals and policymakers to 
proactively address concerns surrounding RF-EMF exposure near MPBS. 
Objective: The current study aimed to investigate the potential of machine learn-
ing models for the prediction of health symptoms associated with RF-EMF exposure 
in individuals residing near MPBS.
Material and Methods: This analytical study utilized Support Vector Machine 
(SVM) and Random Forest (RF) algorithms, incorporating 11 predictors related to par-
ticipants’ living conditions. A total of 699 adults participated in the study, and model 
performance was assessed using sensitivity, specificity, accuracy, and the Area Under 
Curve (AUC). 
Results: The SVM-based model demonstrated strong performance, with accura-
cies of 85.3%, 82%, 84%, 82.4%, and 65.1% for headache, sleep disturbance, diz-
ziness, vertigo, and fatigue, respectively. The corresponding AUC values were 0.99, 
0.98, 0.920, 0.89, and 0.81. Compared to the RF model and a previously developed 
model, the SVM-based model exhibited higher sensitivity, particularly for fatigue, 
with sensitivities of 70.0%, 83.4%, 85.3%, 73.0%, and 69.0% for these five health 
symptoms. Particularly for predicting fatigue, sensitivity and AUC were significantly 
improved (70% vs. 8% and 11.1% for SVM, Multilayer Perceptron Neural Network 
(MLPNN), and RF, respectively, and 0.81 vs. 0.62 and 0.64, for SVM, MLPNN, and 
RF, respectively).  
Conclusion: Machine learning methods, specifically SVM, hold promise in  
effectively managing health symptoms in individuals residing near or planning to settle 
in the vicinity of MPBS.
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concerns are rising regarding the potential  
adverse health effects of Electromagnetic  
Field (EMF) exposure. Researchers are active-
ly investigating the impact of low-intensity 
EMFs on human health and other organisms.

Several studies have investigated the poten-
tial health effects of exposure to microwave 
radiation, EMFs, Radiofrequency (RF), and 
radiofrequency electromagnetic radiation  
[1-15]. Individuals living within <300 me-
ters of mobile base stations reported more 
frequent symptoms of nausea, headache, diz-
ziness, irritability, discomfort, nervousness, 
depression, sleep disturbance, memory loss, 
and diminished libido compared to those liv-
ing further away (>300 meters) [16]. In a re-
view published in 2010, 8 out of 10 studies 
through PubMed reported an increased preva-
lence of adverse neurobehavioral symptoms 
in populations living within <500 meters of 
base stations, as well as other effects, such as 
headache, fatigue, sleep disturbance, and poor 
concentration [5]. 

The potential adverse health effects of human 
exposure to radiofrequency electromagnetic 
fields, including long-term effects are well-
documented. Jooyan and Mortazavi addressed 
the challenging issue of the carcinogenesis of 
radiofrequency radiation in their commentary 
published in JAMA Oncology and also high-
lighted the shortcomings of studies that do not 
support a potential link between exposure to 
radiofrequency radiation and increased cancer 
risk [17].

The exposure from broadcasting sites and 
base stations affects the entire body from a 
distance, while smartphones and smart gad-
gets only impact the head and hands in close 
proximity [18]. Recent studies show that mo-
bile phone base stations are the primary source 
of the radiofrequency radiation spectrum [19]. 
In 2022, a review conducted on the effects 
of base station antennas on human health re-
vealed three types of impacts: radiofrequency 
sickness, cancer, and changes in biochemical 
parameters. Among the globally reviewed 38 

studies, 28 indicated some forms of effect, 
with radiofrequency sickness being the most 
prevalent, accounting for 73.9% of the cases 
[20]. A case study conducted in Stockholm 
showed the effects of Electromagnetic Hyper-
sensitivity (EHS) near mobile phone base sta-
tions [21]. Epidemiology studies are the pri-
mary focus of RF research concerning human 
exposure, even though it is challenging to sep-
arate distance from a tower as an independent 
variable and determine actual exposure levels 
due to the prevalence of ELF and RF fields in 
daily life through personal wireless devices. 
This poses a potential weakness in such stud-
ies as it becomes difficult to find unexposed 
controls [22].

Given the exponential growth of wireless 
technology, developing a model to predict po-
tential adverse health effects in advance could 
help minimize health hazards and symptoms 
for those living or planning to settle in close 
proximity to mobile phone base stations. Such 
models could also be used as a precautionary 
measure when setting mobile base stations to 
minimize potential health hazards.

Although the negative impacts on health 
caused by living close to MPBS have been ex-
tensively studied, there is a lack of reports on 
the use of artificial intelligence models to fore-
cast subjective health symptoms in individu-
als residing or working near these stations. In 
the previous research, we introduced models 
based on Multilayer Perceptron Neural Net-
works (MLPNN) to anticipate subjective 
health symptoms in individuals living near 
cellular phone base stations [23]. The system 
provided promising results, but its sensitiv-
ity in predicting symptoms, such as fatigue 
was low. Therefore, a more accurate model is 
needed for early detection of health symptoms 
among individuals living near mobile stations.

In this work, we explored the possibility of 
developing a reliable and applicable model 
using the Support Vector Machines (SVM) 
algorithm, which has been shown to be a ro-
bust method for classification and pattern  
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recognition [24], particularly effective in ana-
lyzing medical data [24-26]. The rest of this 
paper includes a brief discussion of the clas-
sifiers used, a description of the methodology, 
and the results and discussion sections.

To our knowledge, this initial research rep-
resents a pioneering effort in utilizing Support 
Vector Machines (SVM) to predict personal 
health symptoms among individuals living 
in proximity to mobile phone base stations, 
despite certain limitations such as relying on 
personal symptom accounts. The significant 
advantage of the SVM-based model devel-
oped in the present study lies in its outstanding 
performance in terms of accuracy and the Area 
Under the Curve (AUC).

Material and Methods
The objective of this “analytical study ” was 

to develop a model for predicting the subjec-
tive health symptoms of individuals living 
near mobile base stations, with a focus on the 
five common complaints of headache, sleep 
disturbance, dizziness, vertigo, and fatigue. 
The desired model should determine whether 
an individual might have one or more of these 
symptoms. The development process included 
three main steps: data collection, data prepro-
cessing, and model development.

Data collection
A total of 699 adults, consisting of 363 men 

(average age 32±13 years) and 336 women 
(average age 32±12 years), who lived near 
cellular phone base stations in 11 different 
districts of Shiraz, Iran, were included in this 
cross-sectional study. The participants were 
randomly selected, with 20% of the base sta-
tions in each random district. Buildings locat-
ed within 1 km of the selected base stations 
were divided into four groups based on their 
distance from the nearest base station (D): 1) 
for distances less than 100 m, 2) for distances 
between 100 m and 300 m, 3) for distances be-
tween 300 m and 600 m, and 4) for distances 
between 600 m and 1000 m. These ranges were 

selected because individuals living within 300 
m of a base station may experience symptoms, 
such as tiredness, headache, sleep disturbance, 
discomfort, irritability, depression, memory 
loss, dizziness, and decreased libido [16].

A questionnaire was administered, contain-
ing questions on demographic data, subjective 
complaints, and occupational and environmen-
tal exposure to different sources of electromag-
netic fields. The average electric and magnetic 
field strengths were measured in each house-
hold using a recently calibrated EMF meter. 
Personal information, along with comprehen-
sive details of the participants’ lifestyles, was 
collected by trained interviewers. For each 
participant, age, gender, education level, mo-
bile phone usage during the day/week/month, 
and the distance of the living/working place 
to the base station tower were recorded. In the 
end, a total of 11 parameters were documented 
to assess the living conditions of each partici-
pant. Subjective complaints, such as nausea, 
headache, dizziness, irritability, discomfort, 
nervousness, depression, sleep disturbance, 
memory loss, and diminished libido were 
noted. Prior to their involvement in the study, 
all participants provided written consent. The 
data collection process involved conducting 
measurements at participants’ homes and con-
ducting interviews in person.

Statistical analysis and data  
preprocessing

The objective of this step was to identify 
and eliminate outliers or unusual observa-
tions, as well as select the variables to be uti-
lized in the model. To achieve this, graphical 
display methods such as scatterplots and box 
plots were employed, alongside quantitative 
techniques like the Interquartile Range (IQR). 
Inconsistent data, such as daily cellphone us-
age exceeding 24 hours, were considered 
unacceptable parameters. Each feature vari-
able was normalized using the min-max scal-
ing method (Equation 1), which scales the  
variables to a range of 0 to 1, as follows:
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where x and xَ are the original and normal-
ized values of a given variable, respectively.

Model Development
The model development process consisted 

of two main steps: feature selection and clas-
sification. The feature selection step aimed to 
identify relevant predictors and eliminate ir-
relevant ones. We utilized a neighborhood 
component analysis method, a non-parametric 
technique that estimates the relative weight 
of each variable by maximizing the expected 
classification accuracy [27]. Ultimately, af-
ter the selection process, 11 parameters were 
identified related to the individuals’ living sta-
tus that proved effective for the model. The list 
of these parameters and a description of each 
one is provided in Table 1.

The model aimed to forecast subjective 
health symptoms in individuals residing close 
to mobile base stations by utilizing the 11 liv-
ing status parameters described in Table 1. 
Specifically, the model aimed to determine 
whether a participant experienced one or more 
health symptoms, such as headache, sleep  

disturbance, dizziness, vertigo, and fatigue. 
This task belongs to the classification category 
in machine learning, where the class of a new 
sample is determined by leveraging known 
class labels within a given dataset. In the 
present study, SVM and RF algorithms were 
implemented to develop the desired predic-
tion models. The models were developed us-
ing Matlab’s Statistics and Machine Learning 
Toolbox (Mathworks, Natick MA, USA).

The SVM is a statistical supervised learn-
ing model that tackles common challenges in 
machine learning, such as overfitting and local 
minimum, by minimizing structural risk the-
ory [28]. By minimizing an upper bound on 
the generalization error, the SVM effectively 
addresses the objective of reducing errors in 
statistical pattern recognition and automated 
estimation systems. We trained the SVM using 
the Sequential Minimal Optimization (SMO) 
method [29]. 

The RF algorithm generates multiple deci-
sion trees, with each tree incorporating random 
features. The trees are constructed by select-
ing the most informative features to separate 
classes, and the process recursively continues 
based on the dataset. Training in the random 
forest occurs through bagging and replace-

Variable Description
                   Age                   Age (year), at the time of interview
                  Gender                   Gender (male/female/not declared)
                  Mobile phone call time                   Average daily call time (min)
                  History of mobile phone usage                   Number of months of mobile phone usage
                  Cordless phone use                   Average daily call time using cordless phones (min)
                  VDU use                   Average daily use of Video Display Units (VDUs) (min)
                  Distance from base station                   Distance from the nearest mobile base station (m)
                  Duration of residence                   Duration of residence in the present house (month)
                  Exposure time                   Average daily exposure time to mobile base stations (h)
                  Exposure to power lines                   Living in the vicinity of a power line (yes/no)
                  Other wireless devices                       Exposure to other sources of electromagnetic fields (yes/no)

Table 1: The list of variables included in subjective health symptoms prediction model 
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ment, in which random subsets are selected 
from the dataset, and a tree is fitted to each 
subset. To classify a test sample, it is classified 
by each tree, and the outputs of the trees are 
combined for the final decision. The RF model 
employed 100 decision trees to create a for-
est, and the Gini impurity metric was used to 
measure attribute importance. Aggregating the 
outputs of the classifiers through majority vot-
ing is a common practice in the RF algorithm.

Model Evaluation
The performance of the developed model 

was quantitatively assessed using sensitiv-
ity, specificity, and accuracy indices. These 
indices provide measures to evaluate the ac-
curacy and effectiveness of the classification 
process, determining the model’s ability to 
correctly identify individuals with or without  
symptoms, as follows:

100TPSensitivity
TP FN

= ×
+

                       (2)

100TNSpecificity
TN FP

= ×
+

                       (3)

100TP TNAccuracy
TP TN FP FN

+
= ×

+ + +
       (4)

where TP and TN are the count of subjects 
accurately identified as having a symptom and 
not having a symptom, respectively. Also, FP 
and FN are the count of individuals without 
a symptom who are mistakenly identified as 
having a symptom and with a symptom who 
are mistakenly identified as not having a 
symptom, respectively.

To estimate these indices, the subjective 
complaints recorded during data collection 
were considered as the “gold standard” for 
training and testing the model. To ensure un-
biased estimation and ultimately an unbiased 
evaluation of the model, the data were ran-
domly divided into three parts: a training set 
comprising 75% of the data, a validation set 
with 5% of the data, and a test set containing 
20% of the data.

The training set was used to find the support 

vectors and determine the parameters of the 
decision function [28]. The validation dataset 
was employed to select the optimal parameters 
for the model and optimize its performance by 
identifying the best values for regularization 
parameters, the kernel function, and its associ-
ated parameters.

The RF model was trained using the bagging 
method, which involves randomly sampling 
subsets of the training data, fitting a decision 
tree to each subset, and aggregating the pre-
dictions. This RF model utilizes the Gini im-
purity metric to measure the quality of nodes 
and branches to achieve the best results.

Finally, the test dataset was employed to 
evaluate the final model fitted to the training 
dataset. This evaluation involved comparing 
the predicted values for these examples with 
the actual values, providing a measure of the 
model’s performance.

Results
After developing the models, their perfor-

mance was evaluated using test data comprised 
of 140 samples. Four performance indices, 
namely sensitivity, specificity, accuracy, and 
AUC were utilized to assess the effectiveness 
of the models. The SVM-based model dem-
onstrated excellent performance in predicting 
health symptoms, such as headache, sleep dis-
turbance, dizziness, vertigo, and fatigue. For 
example, it achieved accuracies of 85.3%, 
82%, 84%, 82.4%, and 65.1% respectively. 
The corresponding AUCs were 0.99, 0.98, 
0.92, 0.89, and 0.81 respectively. Compared 
to the RF model and the previously devel-
oped model, the SVM-based model showed 
higher sensitivity (83.4%, 85.3%, 73%, 69%, 
and 70% for headache, sleep disturbance, 
dizziness, vertigo, and fatigue respectively).  
Significantly, the model demonstrated notable 
improvements in sensitivity and AUC for pre-
dicting fatigue. The sensitivity increased to 
70% and the AUC improved to 0.81. In com-
parison, the MLPNN model achieved a sensi-
tivity of only 8% and an AUC of 0.62, while 
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the RF model achieved a sensitivity of 11.1% 
and an AUC of 0.64 [23].

Figure 1 presents the relative attribute im-
portance for the variables included in the 
model. These numbers were estimated based 
on the average impurity for each class in the 
ratablendom forest algorithm. Figure 1 high-
lights three variables as the most important 
predictors of health symptoms: the distance 
from the mobile base station, the age of the 
participant, and the duration of residence in 
the area. Table 2 indicates that the SVM-based 
system demonstrates superior performance 
compared to other systems in predicting sub-
jective health symptoms in the majority of 
cases, as evidenced by elevated sensitivity and 
AUC values.

Discussion
The aim of this study was to explore the 

potential of AI in predicting the health risks 
associated with exposure to EMF. The results 
obtained in this study demonstrate that the 
SVM-based system outperforms other sys-
tems in predicting subjective health symptoms 
for most cases, as indicated by higher sensi-
tivity and AUC values. This finding is consis-
tent with previous studies highlighting the ef-
fectiveness of SVM in classification problems 
[26, 30]. However, the accuracy in predicting 
fatigue symptoms using the SVM-based model 
is slightly lower than that of other symptoms. 
The observed discrepancy in the performance 
can be attributed to the multifactorial nature of 
fatigue. Thus, other variables, which are not 
considered in the models, may contribute to 
the prediction of fatigue, leading to the differ-
ences in performance.

A comparison between the SVM-based 
model and the previously developed MLPNN-

Figure 1: Relative Importance of Attributes for Subjective Health Symptoms Prediction Mod-
els Estimated Using RF Model. (a) headache; (b) dizziness; (c) sleep disturbance; (d) fatigue  
(e) vertigo. (RF: Radiofrequency, VDU: Video Display Unit)
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based model revealed that SVM’s superior 
performance can be attributed to its focus on 
minimizing generalization errors during train-
ing [23]. In contrast, MLPNNs tend to overfit 
the training data, resulting in lower perfor-
mance on unseen data. These results align 
with previous research highlighting SVM’s 
capability in classification problems [26, 30].

There is one exception observed in Table 2, 
in which the accuracy of the SVM in predict-
ing fatigue symptoms is lower than both the 
MLPNN-based model and RF-based model. 
However, the sensitivity of the SVM-based 
model for fatigue symptoms is significantly 
higher than that of the other models [23]. The 
trade-off between sensitivity and accuracy 
shows that enhancing one metric may result in 
a compromise with the other. In this study, we 
tackled this trade-off by incorporating class 
weights during the classifier training process. 
Specifically, we assigned higher costs to false 
negative errors compared to false positive er-
rors (FN=2FP). As a result, the SVM model 
achieved a higher AUC value for predict-
ing fatigue symptoms compared to the other  
models.

The relative attribute importance results for 
the variables (Figure 1) indicate that “age” 
and “gender” have the most significant influ-
ence on health symptoms. Additionally, both 
“mobile usage factors (history and call time)” 

are among the top four influential parameters. 
However, the effect of other attributes on cog-
nitive symptoms is also comparable to that of 
the most important one. These findings are 
consistent with previously published works 
that reported “mobile phone usage” and “age” 
as among the top four influential features for 
each cognitive symptom [23].

From a broader standpoint, our findings are 
in line with studies that have reported that 
while there is an increasing concern regarding 
the potential negative health consequences of 
RF-EMF exposures from mobile phone base 
stations, the health complaints of individuals 
living near these base stations cannot be fully 
explained by these concerns alone [31]. No-
tably, previous large population-based studies 
have shown that residents who were concerned 
about or attributed detrimental biological ef-
fects of RF-EMF generated by mobile phone 
base stations, as well as those living closer 
to the base station (e.g., <500 m), had more 
health complaints compared to others [31]. 
Furthermore, our results support reports show-
ing the presence of sleep disturbances, head-
aches, dizziness, irritability, concentration 
difficulties, and hypertension in the majority 
of people residing near mobile phone base 
stations [32]. Additionally, the obtained re-
sults align with reports indicating a higher risk 
of developing neuropsychiatric problems in  

Symptom
Sensitivity (%) Specificity (%) Accuracy (%) AUC

MLPNN SVM RF MLPNN SVM RF MLPNN SVM RF MLPNN SVM RF
 Headache 71.8 83.4 75.1 90.9 85.5 93.4 83.8 85.3 86.7 0.95 0.99 0.98
 Sleep disturbance 82.1 85.3 71.1 83.3 82.1 91.9 82.9 82.0 85.9 0.96 0.98 0.95
 Dizziness 65.2 73.0 67.3 85.4 84.6 94.9 81.0 84.0 89.0 0.88 0.92 0.95
 Vertigo 65.0 69.0 52.2 84.7 83.5 91.3 81.0 82.4 81.3 0.87 0.89 0.84
 Fatigue 8.0 70.0 11.1 98.9 68.6 97.9 88.6 65.1 84.5 0.62 0.81 0.64

AUC: Area Under the Curve, MLPNN: Multilayer Perceptron Neural Network, SVM: Support Vector Machine, RF: Radiofrequency

Table 2: Performance Comparison of Prediction Models for Subjective Health Symptoms in Indi-
viduals Residing Near Mobile Phone Base Stations: SVM, MLPNN, and RF Models. (SVM: Support 
Vector Machine, MLPNN: Multilayer Perceptron Neural Network, RF: Radiofrequency)
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individuals living in the vicinity of mobile 
phone base stations. Headache, memory 
changes, dizziness, tremors, depressive symp-
toms, and sleep disturbance have been report-
ed to be significantly higher in individuals liv-
ing around mobile phone base stations [33].

Regarding the co-existence of proximity to 
power lines and mobile phone base stations, 
our results are in line with those of studies that 
associate perceived proximity to both with 
Non-specific Physical Symptoms. However, 
our findings contradict a limited number of 
studies that reported no significant association 
between measured RF-EMFs emitted from 
mobile phone base stations and adverse health 
effects [34].

The practical application of our study lies in 
utilizing AI to predict health risks associated 
with EMF exposure. By employing relatively 
simple and easily measurable variables as in-
puts, our model can predict the health status of 
individuals residing near cellular phone base 
stations. This predictive capability can help 
assess potential health risks for those currently 
living near these stations or individuals con-
sidering moving to such areas. Consequently, 
the model can contribute to the reduction of 
EMF-related health risks and inform decision-
making processes related to the management 
and establishment of mobile base stations. 

While this study presents promising results, 
it is essential to acknowledge its limitations. 
All variables, including both input and out-
put variables, rely on self-reports, which in-
troduce a degree of uncertainty in the values. 
Achieving accurate estimates for these param-
eters would require individual monitoring us-
ing specialized instruments, which may pose 
logistical challenges. However, the focus of 
this study was to develop a practical model  
using easily accessible variables. Furthermore, 
the findings should be considered preliminary, 
and further evaluation of the model’s predict-
ability and reliability is necessary using a 
more extensive dataset with long-term follow-
up, such as a five-year study. Future research 

should also explore the inclusion of additional 
variables, such as weight, hours of sleep per 
night, general health, and socio-economic fac-
tors. Deep statistical analysis, such as multi-
dimensional analysis, can provide deeper in-
sights, and the model’s performance should be 
assessed over an extended follow-up period.

Conclusion
The current study highlights that addressing 

the impact of microwave radiation on the hu-
man nervous system, and cognitive functions 
necessitates the consideration of multiple fac-
tors, such as environmental exposure to mo-
bile phone base stations and individual health 
conditions. By harnessing the power of AI, 
healthcare providers can better understand and 
predict the health risks associated with EMF 
exposure, leading to delivering targeted inter-
ventions and supporting affected individuals. 
In this study, an SVM classifier was success-
fully implemented to predict five subjective 
health symptoms, surpassing the performance 
of a previously developed MLPNN-based 
model. The findings of this research under-
score the potential of AI-based models in as-
sisting healthcare professionals, including 
physicians, in effectively managing symptoms 
associated with EMF exposure in individuals 
living near mobile phone base stations. Future 
work should include additional variables, sta-
tistical analyses, and longer follow-up periods.
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