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Introduction

The term “Trauma” is employed to characterize injuries that result 
in substantial physical and psychological harm [1]. Injuries can 
result from various causes, such as car accidents, falls, drowning, 

burns, self-harm, or violence toward oneself or others [1] that some of 
them (29%) were associated with road incidents [2]. Road fatalities in 
low-income and developing nations have consistently exceeded those in 
developed countries, as highlighted in the 2018 global status report on 
road safety [3].

The variation in mortality rates across different locations and countries 
also corresponds to disparities in the demographics of individuals most 
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ABSTRACT
Background: By analyzing information from trauma centers, hospitals can identify 
crucial performance indicators that affect budgets and present growth opportunities, 
potentially leading to lower mortality rates and improved health status indicators. 
Objective: This study aims to determine the best-supervised algorithm for diag-
nosing the discharge status of trauma patients.
Material and Methods: This retrospective study used the data, collected by 
the Kashan Trauma Registry from March 2018 to February 2019. Several supervised 
algorithms, including Naive Bayes, Logistic Regression, Support Vector Machine, 
Random Forest, and K-Nearest Neighbors, have been evaluated for predicting the 
discharge status of trauma patients. The performance metrics of accuracy, precision, 
recall, and F-measure were used. The hold-out technique was applied to train the data. 
Results: The Random Forest algorithm had the best performance among the other 
algorithms. The best accuracy, precision, recall, and F-measure for Gini index were 
84/2%, 79/7%, 78/3%, and 76.4%, and for information gain were 84.6%, 79.6%, 
76.8%, and 76/20%, respectively.  
Conclusion: The results of this research showed that the supervised algorithms, 
with proper parameter settings, can help diagnose the discharge status of trauma pa-
tients. In addition, data balancing can help improve the performance of the algorithms. 
However, this claim cannot be generalized because it depends on the type of algorithm 
and the values of the parameters.
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affected while traveling on roads. Globally, 
pedestrian and cyclist fatalities contribute to 
26% of all deaths, while motorized two- and 
three-wheeled vehicle-related fatalities ac-
count for an additional 28%. Car occupants 
make up 29% of the fatalities, while the re-
maining 17% are attributed to unidentified 
road users. In Africa, pedestrians and cyclists 
constitute the largest proportion of fatalities, 
accounting for a significant 44% of all deaths. 
In SouthEast Asia and the Western Pacific, 
motorized two- and three-wheeled vehicle rid-
ers account for the majority of fatalities, com-
prising 43% and 36% respectively [4].

Conversely, the discharge outcomes of trau-
ma patients involve various factors, including 
the length of hospitalization, rates of mortal-
ity, rates of readmission, and the distinction 
between discharge to home and discharge to 
healthcare facilities [5-8].

Through a research investigation conducted 
in the United States, an examination was made 
into the discharge practices at trauma centers, 
revealing the factors that influence post-hos-
pital disposition. The study revealed that pa-
tient characteristics, such as race, insurance 
status, and injury severity, played a predictive 
role in determining the type of care received 
after hospitalization. Notably, individuals with 
self-pay status and Black patients exhibited a 
diminished likelihood of being discharged to 
secondary care facilities [6]. In another study, 
the relationship between discharge destination 
and the 30-day readmission rate among elderly 
trauma patients was explored. The findings in-
dicated that being discharged to extended care 
and inpatient rehabilitation facilities indepen-
dently posed risk factors for hospital readmis-
sions within this demographic [8].

In 2009, the World Health Organization 
(WHO) published a comprehensive guide 
aimed at improving the quality of trauma 
treatment. The primary objective of this guide 
was to reduce the mortality rate resulting from 
trauma in low- and middle-income countries, 
while drawing inspiration from successful 

strategies implemented in other regions [9]. 
Emphasized within this document was the ne-
cessity to establish hospital trauma care sys-
tems and implement quality assessment pro-
grams to ensure the provision of high-quality 
care. Among the various instruments utilized 
for quality assessment, the trauma registry was 
identified as the most crucial [9]. For several 
decades, trauma registries have played a piv-
otal role in the trauma systems of high-income 
countries, with substantial evidence support-
ing their numerous benefits. These registries 
have significantly enhanced the methods of 
record-keeping and are commonly utilized to 
demonstrate the advantages associated with 
trauma systems [10]. 

Machine Learning (ML) plays a crucial role 
in the healthcare industry, enabling the discov-
ery of new knowledge and the identification 
of patterns to inform decision-making. This 
cutting-edge field aims to extract valuable 
and essential information from vast datasets. 
Analytical methods are necessary to identify 
crucial information for decision-making in 
healthcare data. The application of ML of-
fers several benefits, including disease detec-
tion, management, and prevention, as well as 
cost reduction in medical care. It also assists 
in formulating efficient healthcare policies, 
developing patient recommendation systems, 
and creating health profiles. The healthcare in-
dustry generates significant amounts of data, 
so maintaining accurate patient diagnosis and 
treatment requires effective database manage-
ment [11].

The complexity and volume of healthcare 
data make it challenging to extract meaningful 
insights about patients’ health status. This data 
encompasses various aspects such as therapy 
costs, hospitals, medical claims, patients, phy-
sicians, and medical history. ML techniques 
are crucial for analyzing and drawing con-
clusions from such complex data to improve 
patient care and management. ML can aid in 
the classification of patients’ disorders, as-
sist in treatment and management, predict  
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hospital admission duration, and maintain 
accurate management information systems. 
Current technologies and ML approaches are 
helping reduce costs and identify factors con-
tributing to diseases [12]. Machine learning 
techniques have found extensive applications 
in the healthcare field, including predicting 
the development of type 2 diabetes [13], diag-
nosing breast cancer [14], indicating chronic 
diseases [15], solving multi-object fusion de-
tection problems in e-healthcare [16], analyz-
ing COVID-19 through clustering algorithms 
[17], evaluating healthcare facility perfor-
mance [18], and enhancing mutual privacy 
in healthcare IoT systems through clustering 
strategies [19]. 

Machine learning has also been extensively 
utilized in the field of trauma and injury. For 
example, Roberta et al. conducted a study 
comparing different machine learning algo-
rithms and a classical linear regression model 
to evaluate traumatic brain injury patients at 
different time points [20].

Jen Kuo et al. aimed to develop and vali-
date machine learning models for predicting 
the mortality of hospitalized motorcycle riders 
using logistic regression, support vector ma-
chine, and decision tree analyses [21]. Fen et 
al. compared the predictive abilities of twenty-
two machine learning models with a logistic 
regression model, using performance mea-
sures such as ROC, AUC, accuracy, F-score, 
precision, recall, and decision curve analysis 
[22]. Another research focused on evaluating 
diagnostic accuracy for traumatic brain in-
jury in elderly patients using various machine 
learning algorithms [23]. Rau et al. predicted 
patient deaths using logistic regression, sup-
port vector machine, decision tree, naive 
Bayes, and artificial neural network models 
[24].

Machine learning has diverse applications 
in trauma registry systems, encompassing pa-
tient classification, predictive modeling, data 
analysis, and system integration. For instance, 
machine learning models have demonstrated 

high prognostic performance and medical va-
lidity in predicting recovery post-trauma [25]. 
These models have also been utilized to antici-
pate blood product transfusion needs in pedi-
atric patients undergoing craniofacial surgery 
[26]. Furthermore, machine learning has been 
applied to identify geospatial and structural 
factors influencing youth violence [27] and 
predict the risk of prolonged mechanical ven-
tilation for patients with traumatic brain injury 
[28]. Finally, machine learning has been ap-
plied to surgical imaging for diagnosing and 
treating spine disorders [29].

Research indicates that supervised algo-
rithms are increasingly being used in trauma 
treatment; despite these studies, no conclusive 
evidence has been found. 

The algorithms that showed acceptable per-
formance were logistic regression, SVM, and 
random forest. This study focused on super-
vised methods to diagnose the discharge sta-
tus of trauma patients because Kashan Trauma 
Registry data are local, and machine learning 
has not been applied to them.

The current study will address these ques-
tions at the conclusion of this study:

Among the different algorithms used to clas-
sify trauma patients, which one performed 
better at predicting their discharge status? 
How does data balancing affect algorithm per-
formance? Which of the following indicators 
of accuracy, precision, recall, and F-measure 
is most influenced by data balancing? This pa-
per is arranged in the following manner: The 
second section will introduce the dataset and 
algorithm and discuss the methodology.

The model evaluation is discussed in Section 
3. A detailed description of the experimental 
procedures and findings can be found in Sec-
tion 4. Section 5 presents the research results 
and discusses its main goals. The conclusion is 
stated at the end of the paper.

Material and Methods
It is a retrospective study of patients who 

have received trauma treatment at the Kashan 
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Trauma Center. A specific time frame of pa-
tient treatment at the Kashan Trauma Center 
is scrutinized in this study. In order to im-
prove trauma care, supervised algorithms are 
employed to analyze the discharging status of 
trauma patients, distinguishing between those 
who have improved and those who haven’t.

Dataset
Data from the Kashan Trauma Registry was 

collected between March 2018 and February 
2019. We removed noisy data and outliers af-
ter data collection. We excluded missing data, 
split the data, and then balanced these classes 
based on SMOTE (Figure 1). A total of 3,930 
records were obtained after preprocessing the 
data. We categorized features numerically and 
categorically (Table 1). The class label was 
based on the patient’s discharge status, which 
was either improved (2,642) or non-improved 

Figure 1: Implementation Framework (SMOTE: Synthetic Minority Over-sampling Technique, 
SVM: Support Vector Machine, KNN: K-Nearest Neighbors)

Numerical 
variables

- Age 
- Total expenditures 
- The number of days admitted

Categorical 
variables

- Place birth 
- Type of insurance 
- Sex 
- Occupation 
- Education 
- Type of conveyance carrying to        

emergency 
- ICD-injuries 
- ICD-external causes  
- State of discharge

ICD: International Classification of Diseases

Table 1: Trauma dataset features after  
preprocessing

(1,288).

Algorithm selection
During the learning step, a classification 

model is built, followed by the classification 
step, a two-part procedure for classifying data 
(using the model to predict class labels). In 
the first stage, a classifier is built to describe 
a preset set of data classes or concepts. Dur-
ing the training phase of the learning stage, a 
classification algorithm creates the classifier 
by “learning from” a training set of database 
tuples and their associated class labels. Since 
each training tuple has a class label, this pro-
cess is also known as supervised learning; As a 
result, the classifier’s learning is “supervised” 
since it knows to which class each training tu-
ple belongs [30, 31]. The following are some 
descriptions of supervised algorithms used in 
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this article.
SVM
Support Vector Machine (SVM) is a su-

pervised machine learning model that can be 
utilized for both regression and classification 
tasks. A key advantage of SVMs is their use 
of kernels, mathematical functions that proj-
ect input data into higher-dimensional feature 
spaces to facilitate separation between classes 
[32-34]. This projection into hyperspace en-
ables SVM to construct optimal separating 
hyperplanes between data points of different 
class labels, improving generalizability and 
classification accuracy. By effectively sepa-
rating complex and nonlinear data, SVMs can 
generate robust predictive models.
KNN
The k-nearest neighbors (KNN) algorithm 

is a nonparametric, supervised machine learn-
ing technique used for both classification and 
regression predictive modeling. Unlike para-
metric algorithms, KNN does not make as-
sumptions about the underlying statistical dis-
tribution of the data. A key hyperparameter, 
k, must be predefined to specify the number 
of neighbors examined during prediction. To 
determine neighbors, KNN utilizes distance 
metrics to quantify the similarity between 
data points, with common choices being Eu-
clidean distance, Manhattan distance, cosine 
similarity, and Jaccard distance [33, 35]. A 
key advantage of KNN is that it adapts to the 
local structure of the data, classifying new 
points based on their proximity to points in the  
training set.
Naive Bayes
The Naive Bayes classifier is a probabilis-

tic machine learning algorithm for categorical 
data predicated on Bayes’ theorem. It relies 
on the simplifying assumption that predic-
tor variables are conditionally independent 
given the class label - the “naive” conditional 
independence assumption. Despite this over-
simplification, Naive Bayes has demonstrated 
high predictive performance, especially when 
dealing with high-dimensional feature spaces 

[34, 36]. As it requires relatively few training 
data to estimate parameters, Naive Bayes is 
an efficient and effective supervised learning 
technique for multivariate classification tasks. 
The algorithm calculates posterior probabili-
ties for each class and assigns new data points 
to the most probable class. Though naive, this 
Bayesian approach has proven surprisingly ro-
bust and applicable across multiple domains.
Logistic Regression
Logistic regression is a statistical technique 

for modeling the relationship between a cat-
egorical dependent variable and one or more 
independent predictor variables, which may 
be continuous or categorical [37, 38]. It esti-
mates the probability of particular outcomes, 
most often binary, based on logistic functions 
of the linear predictor. Logistic regression fa-
cilitates explanatory modeling and prediction 
of categorical response variables.
Random Forest
Random forest is an ensemble machine 

learning algorithm that can be utilized for 
both regression and classification tasks. It op-
erates by constructing a multitude of decision 
trees during training and aggregating their in-
dividual predictions, thereby improving pre-
dictive performance and reducing overfitting 
compared to single decision tree models [34, 
39, 40]. To determine the optimal feature split 
at each node when building individual trees, 
random forest employs metrics such as infor-
mation gain, Gini impurity, and gain ratio. By 
training each tree on a random subset of fea-
tures and data points, the resulting forest mod-
el incorporates diversity while capitalizing on 
averaging to enhance generalization capabil-
ity. The algorithm’s combination of bagging 
and random feature selection yields robust and 
accurate predictions.
SMOTE
SMOTE is a data preprocessing approach 

that handles class imbalance in machine learn-
ing datasets where one class is underrepresent-
ed compared to others [41, 42]. Algorithms 
can struggle to adequately learn patterns and 
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properties of the minority class due to insuf-
ficient instances. To mitigate this, SMOTE 
synthetically generates new minority class 
examples by interpolating between existing 
minority data points in feature space [42, 43]. 
Augmenting the minority class via oversam-
pling improves class balance and enhances 
model performance on the rare class. By 
compensating for skewed class distributions, 
SMOTE facilitates more robust learning from 
imbalanced data.

Implemented framework
Various supervised machine learning models 

were implemented for binary patient diagno-
sis, including support vector machines with 
linear, radial basis function, and polynomial 
kernels; k-nearest neighbors’ algorithm with 
Manhattan, Euclidean, Jaccard, Chebyshev, 
and cosine distance metrics and varying k 
values; Naive Bayes; logistic regression; and 
random forests with information gain, gain 
ratio, and Gini impurity criteria. Algorithms 
were implemented using Python and Jupyter 
Notebook.

The dataset was partitioned into 70% train-
ing, 15% testing, and 15% validation sets 
using the hold-out method to enable robust 
model development, rigorous evaluation, 
and reliable performance validation. To ad-
dress the class imbalance in the training data, 
the SMOTE was applied at sampling rates of 
0.5, 0.75, and 1.0 to synthetically generate  
additional minority class instances.

Evaluation
A confusion matrix is a summarizing the 

performance of a classification machine learn-
ing model by tabulating its True Positive (TP), 
True Negative (TN), False Positive (FP), and 
False Negative (FN) predictions [44, 45]. The 
confusion matrix facilitates the evaluation of 
key classification metrics including accuracy, 
precision, recall, and F1-score.

The four confusion matrix categories are 
[44, 45]:

TP: Correctly predicted non-improved  
instances

TN: Correctly predicted improved instances
FP: Incorrectly predicted as non-improved 

when improved
FN: Incorrectly predicted as improved when 

non-improved
By condensing results into a confusion  

matrix, model performance on binary classifi-
cation tasks can be visualized and quantified.

( )
( )

TP  TN
Accuracy  

TP  TN  FP  FN
+

=
+ + +

           (1)

( )
TP Precision  

TP  FP
=

+
                                  (2)

( )
TPRecall 

TP  FN
=

+
                                        (3)

( )
( )

2  Precision  Recall
F measure 

Precision  Recall
× ×

− =
+

  (4)

A confusion matrix with high accuracy in-
dicates the model correctly classified a sub-
stantial proportion of samples [34, 44, 45]. 
However, accuracy alone can be misleading, 
especially with imbalanced datasets where 
one class predominates. While high accuracy 
is desirable in a confusion matrix, additional 
metrics should be examined for comprehen-
sive model evaluation. High recall signifies 
the model correctly identified most actual 
positives, while high precision indicates few 
false positives were produced. A high F1 
score demonstrates proficiency in both preci-
sion and recall, balanced by the F1 measure. 
Consequently, accuracy, precision, recall, 
and F1 score were calculated to evaluate the 
performance of the implemented algorithms. 
Though accuracy provides an overall measure 
of correct predictions, precision, and recall 
offer deeper insight into positive and nega-
tive classification capabilities on imbalanced 
data. The F1 score synthesizes precision and 
recall into a singular metric, facilitating model  
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selection and performance benchmarking.
Therefore, we calculated the algorithms’  

accuracy, precision, recall, and F-measure.

Results
Table 2 presents the dataset partition sizes 

for training, validation, and testing based on 
the 70/15/15 hold-out split. This allocated 
2,751 records for training, 589 for validation, 
and 590 for testing. After SMOTE oversam-
pling of the training set at rates of 50%, 75%, 
and 100%, the validation and testing partitions 
remained unchanged while the training set in-
creased in size as shown in Table 2. Oversam-
pling enabled compensation for class imbal-
ance in the training data only, while preserving 
untouched validation and test sets for unbiased 
model evaluation.

The results of executing the algorithms on 
the test and validation data using SMOTE are 
shown in Tables 3 and 4. Among the KNN 
models, K=10 yielded the best performance.

The validation data (Table 3) showed SVM 
achieved a maximum accuracy of 81.5% with 
the linear kernel and SMOTE 100%. The lin-
ear kernel with SMOTE 75% also yielded the 
highest precision of 81.5%. Additionally, the 
linear kernel coupled with SMOTE 100% pro-
duced the top recall of 64.8% and the F1 score 
of 68.4%.

For KNN, Euclidean and Manhattan distanc-
es attained a peak accuracy of 80% without 
SMOTE. Manhattan distance without SMOTE 

also achieved the highest precision of 79.1%. 
SMOTE 100% enabled the maximum recall of 
78% based on the Jaccard index. An F1 value 
of 63.6% was obtained using Manhattan dis-
tance and SMOTE 75%.

With Naive Bayes, the best accuracy of 
65.9% and precision of 46.2% resulted from 
no SMOTE and SMOTE 50%. SMOTE 100% 
generated the highest recall of 78% and F1 
score of 62.1%.

Logistic regression achieved its maximum 
accuracy of 81% using SMOTE 50%. The 
same configuration yielded the top precision 
of 79.3%. SMOTE 100% produced the highest 
recall of 76.4% and F1 of 67.4%

Random forest attained its best accuracy of 
86.2% and precision of 82.2% with the Gini 
index and SMOTE 50%. Top recall of 76.4% 
was seen with SMOTE 100% and 75% for 
Gini and Information indexes. The maximum 
F1 of 77% occurred using the Information in-
dex and SMOTE 75%.

The test data results (Table 4) showed SVM 
achieved its highest accuracy of 80.8%, recall 
of 67.2%, and F1 of 70.2% using the linear 
kernel and SMOTE 100%. The linear kernel 
with SMOTE 50% yielded the maximum pre-
cision of 85.8%.

In KNN, cosine distance with SMOTE 50% 
produced the top accuracy of 79.2%. The high-
est precision was 74.5% without SMOTE for 
Euclidean distance and with SMOTE 50% for 
Manhattan distance. SMOTE 100% enabled 

Balancing Split dataset
The number of class 

1 records
The number of 
class 2 records 

Before Balancing
Train 908 1843

Validation 182 407
Test 198 392

After Balancing
Train_resampled (100%) 1843 1843
Train_resampled (75%) 1382 1843
Train_resampled (50%) 921 1843

Table 2: Partitioning of data before and after balancing
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N
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)
LR

 
(%
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R
F

Linear 
(%

)
Polynom

ial 
(%

)
R

B
F 

(%
)

Euclidean 
(%

)
M

anhattan 
(%

)
C

hebyshev 
(%

)
C

osine 
(%

)
Jaccard 

(%
)

G
ini 

(%
)

Inform
ation-

G
ain (%

)

Accuracy

SMOTE (100)
81/5

72/5
70/3

73/9
74/5

72/0
72/8

70/6
64/2

78/6
84/4

85/6

SMOTE (75)
83/0

72/0
71/5

76/9
77/4

72/3
75/9

73/2
64/7

78/8
85/6

85/9

SMOTE (50)
80/0

73/3
73/5

79/6
79/6

72/2
78/6

74/2
65/9

81/0
86/2

85/6

SOMTE (0)
79/3

73/3
73/3

80/0
80/0

72/2
78/8

72/5
65/9

80/6
85/6

85/9

Precision

SMOTE (100)
72/4

55/4
51/7

55/9
57/0

59/6
54/7

51/6
45/3

63/7
73/9

77/1

SMOTE (75)
81/5

55/1
54/4

62/1
63/4

63/0
60/3

55/7
45/4

65/7
78/0

77/7

SMOTE (50)
81/4

59/8
60/8

76/7
77/7

70/5
72/6

59/3
46/2

79/2
82/2

81/7

SOMTE (0)
80/6

59/8
60/7

78/1
79/1

70/5
73/2

57/5
46/2

79/3
79/8

81/9

Recall

SMOTE (100)
64/8

56/6
57/7

73/1
71/4

29/1
70/3

78/0
76/4

71/4
76/4

75/8

SMOTE (75)
58/2

50/5
47/3

64/8
63/7

25/3
64/3

64/8
70/9

65/4
74/2

76/4

SMOTE (50)
45/6

41/8
40/1

48/9
47/8

17/0
49/5

52/7
63/7

52/2
70/9

68/7

SOMTE (0)
43/4

41/8
39/0

48/9
47/8

17/0
49/5

42/3
63/7

50/5
71/4

69/8

F-Measure

SMOTE (100)
68/4

56/0
54/5

63/3
63/4

39/1
61/5

62/1
56/9

67/4
75/1

76/5

SMOTE (75)
67/9

52/7
50/6

63/4
63/6

36/1
62/2

59/9
55/4

65/6
76/1

77/0

SMOTE (50)
58/5

49/2
48/3

59/7
59/2

27/4
58/8

55/8
53/6

62/9
76/1

74/6

SOMTE (0)
56/4

49/2
47/5

60/1
59/6

27/4
59/0

48/7
53/6

61/7
75/4

75/4

SV
M

: Support Vector M
achine, K

N
N

: K
-N

earest N
eighbors, N

B
: N

aive B
ayes, LR

: Logistic R
egression, R

F: R
andom

 Forest, SM
O

TE: Synthetic M
inority O

ver-sam
pling Technique, 

R
B

F: R
adial B

asis Function

Table 3: Perform
ance of algorithm

s based on the Confusion m
atrix criteria for different balances (Validation dataset)
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(%
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(%
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G
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)

Accuracy

SMOTE (100)
80/8

72/2
71/9

73/2
73/6

71/7
72/5

70/2
62/0

77/5
83/7

82/4

SMOTE (75)
80/0

72/2
71/5

75/9
76/3

72/5
75/9

70/7
62/9

78/8
83/9

83/4

SMOTE (50)
80/2

71/5
72/2

78/3
78/5

71/5
79/2

73/6
64/4

77/5
84/2

84/6

SOMTE (0)
79/8

72/0
72/0

78/5
78/6

71/5
78/8

72/4
64/7

77/3
84/2

84/6

Precision

SMOTE (100)
73/5

57/5
57/3

58/5
58/8

66/7
57/6

53/9
46/0

64/8
74/5

72/4

SMOTE (75)
77/0

58/7
58/1

64/0
64/5

73/1
63/9

55/4
46/6

68/9
77/0

75/5

SMOTE (50)
85/8

60/0
62/3

74/0
74/5

74/2
74/2

60/5
47/9

73/0
79/7

78/9

SOMTE (0)
85/6

61/1
62/0

74/5
75/0

74/2
73/9

60/9
48/2

72/9
79/7

79/6

Recall

SMOTE (100)
67/2

66/2
63/6

69/7
70/7

31/3
68/7

77/3
75/8

71/7
78/3

76/8

SMOTE (75)
57/6

58/1
54/5

64/6
65/2

28/8
65/2

65/2
72/7

67/2
74/2

74/7

SMOTE (50)
49/0

45/5
43/4

54/5
54/5

23/2
58/1

61/1
67/7

52/0
71/2

73/7

SOMTE (0)
48/0

46/0
42/9

54/5
54/5

23/2
57/1

49/5
67/7

51/5
71/2

72/7

F-Measure

SMOTE (100)
70/2

61/5
60/3

63/6
64/2

42/6
62/7

63/5
57/3

68/1
76/4

74/5

SMOTE (75)
65/9

58/4
56/3

64/3
64/8

41/3
64/5

59/9
56/8

68/0
75/6

75/1

SMOTE (50)
62/4

51/7
51/2

62/8
63/0

35/4
65/2

60/8
56/1

60/8
75/2

76/2

SOMTE (0)
61/5

52/4
50/7

63/0
63/2

35/4
64/4

54/6
56/3

60/4
75/2

76/0

SV
M

: Support Vector M
achine, K

N
N

: K
-N

earest N
eighbors, N

B
: N

aive B
ayes, LR

: Logistic R
egression, R

F: R
andom

 Forest, SM
O

TE: Synthetic M
inority O

ver-sam
pling Technique, 

R
B

F: R
adial B

asis Function 

Table  4: Perform
ance of algorithm

s based on the Confusion m
atrix criteria for different balances (Test dataset)
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the maximum recall of 77.3% per the Jacca-
rd index. Cosine distance with SMOTE 50% 
achieved the highest F1 of 65.2%.

With Naive Bayes, no SMOTE yielded 
the best accuracy of 64.7% and precision of 
48.2%. SMOTE 100% generated a peak recall 
of 75.8% and F1 of 57.3%.

For logistic regression, SMOTE 75% 
achieved the maximum accuracy of 78.8%. 
SMOTE 50% yielded the highest precision of 
73%. Top recall of 71.7% and F1 of 68.1% re-
sulted from SMOTE 100%.

In random forest, an equal high accuracy 
of 84.6% occurred with and without SMOTE 
50% using the information gain index. The 
Gini index attained its best precision of 79.7% 
with SMOTE 50%. Additionally, SMOTE 
100% enabled the maximum recall of 78.3% 
and F1 of 76.4% for the Gini index.

Discussion
Trauma and injury registration encompasses 

the collection of prehospital data and demo-
graphic information pertaining to the occur-
rence of the injury. The World Health Orga-
nization has recommended the utilization of 
this data for the purpose of effectively manag-
ing these patients and enhancing the standard 
of care provided to them [9]. The quantity of 
data in our progressively digitalized world is 
experiencing exponential growth, and big data 
analytics represents both a burgeoning trend 
and a prominent area of study. The algorithms 
employed in machine learning grant access to 
analyses, enabling the detection and predic-
tion of disease existence, as well as aiding 
medical professionals in decision-making by 
facilitating early disease identification and ap-
propriate therapy selection. 

Based on the outcome of the present study, 
the optimal outcomes were observed with 
SVM, Random Forest (depth=10), and KNN 
algorithms in which linear kernels were used, 
along with the Gini index and Information 
Gain, as well as the Euclidean and Manhattan 
distances with k set to 10.

In the majority of algorithms, SMOTE with 
a 50% oversampling rate yielded higher ac-
curacy compared to SMOTE with a 75% 
oversampling rate and SMOTAE with a 
100% oversampling rate. The precision met-
ric showed suboptimal performance with 
SMOTAE (75%) and SMOTE (100%) in most 
algorithms. Furthermore, recall, and F-score 
exhibited an upward trend across most algo-
rithms as the number of balanced records in-
creased.

Nevertheless, it cannot be definitively con-
cluded that SMOTE had a uniformly positive 
or negative impact on all indicators simulta-
neously. In certain algorithms, the application 
of SMOTE appeared to be necessary, while in 
others, better results were achieved without 
utilizing SMOTE.

A notable finding in our study was that Na-
ïve Bayes was the algorithm with the weakest 
performance, whereas Random Forest was the 
algorithm with the best performance.

In the study conducted by Ruschetta et al. 
[20] the performance of SVM, KNN, NB, DT 
algorithms, and an ensemble machine-learn-
ing approach was compared individually. The 
results indicated that the NB algorithm exhib-
ited the poorest performance when a two-class 
outcome (positive or negative) was employed. 
Similarly, in the current study, NB was also 
among the algorithms that demonstrated rela-
tively inferior performance.

 The machine learning techniques can be 
utilized to predict the mortality of motorcycle 
riders with a reasonable level of accuracy [21]. 
By integrating a machine learning model, par-
ticularly the SVM algorithm, into the trauma 
system, it may be possible to identify high-
risk patients and guide clinical staff towards 
the most suitable interventions. In the current 
study, the SVM algorithm with the linear ker-
nel exhibited satisfactory performance.

In the study conducted by Fen et al. it was 
found that the twenty-two machine learning 
models selected for outcome prediction in 
patients with Severe Traumatic Brain Injury 
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(STBI) exhibited capabilities comparable to 
the traditional Logistic Regression (LR) mod-
el. Notably, the cubic SVM, quadratic SVM, 
and linear SVM models outperformed LR 
in terms of performance [22]. In the present 
study, SVM with a linear kernel was identified 
as the SVM algorithm with the highest perfor-
mance. However, the random forest algorithm 
(using the Gini-Index) demonstrated the best 
overall performance among all the algorithms 
tested, although the results obtained with lo-
gistic regression were also deemed acceptable.

According to the findings of Abujaber et al. 
[46], the performance of the SVM algorithm 
surpassed that of traditional classical models 
employing conventional multivariate analyti-
cal approaches when predicting mortality in 
patients with TBI. In the current study, al-
though the SVM (linear) algorithm exhibited 
relatively good performance, it was not the 
top-performing algorithm.

Similar to the present study, the random for-
est algorithm showed the best performance, 
and Logistic Regression yielded acceptable 
results. In a study by Wang et al. [23], it was 
reported that prognostication tools utilizing 
Adaboost, Random Forest, and Logistic Re-
gression algorithms proved beneficial for phy-
sicians in assessing the risk of poor outcomes 
in geriatric patients with TBI and in guiding 
the selection of personalized therapeutic op-
tions. 

According to the findings of Matsuo et al. 
[47], both the Random Forest and Ridge Re-
gression algorithms demonstrated the highest 
performance in predicting poor in-hospital 
outcomes and mortality in cases of TBI. Their 
research indicates that modern machine learn-
ing techniques can effectively predict the oc-
currence of TBI. Similarly, in the current 
study, the random forest algorithm was identi-
fied as the best-performing algorithm among 
the ones tested.

According to the conclusions drawn from 
this study, equalizing class features can effec-
tively improve the performance of machine 

learning algorithms. However, it is important 
to note that the choice of algorithm, its param-
eters, and the quantity of added samples can 
directly impact the algorithm’s performance. 
Therefore, relying solely on accuracy values 
in scenarios with imbalanced data may not be 
feasible. The findings of this research suggest 
the potential use of supervised algorithms for 
predicting the discharge status of trauma pa-
tients.

Despite the advantages of this study, there 
are some limitations to consider. First, the 
data used in the study is retrospective, and it 
was not possible to access the paper records 
to verify the quality of the electronic data. Ad-
ditionally, in future research, alternative clas-
sification methods with different parameters, 
ensemble learning techniques, and clustering 
approaches could be explored to improve the 
diagnosis of discharge status for trauma pa-
tients.

Conclusion
The registration of health data in health 

systems can benefit from the application of 
machine learning techniques, which can help 
health stakeholders uncover hidden knowl-
edge in the data and support them in decision-
making and health prediction. While super-
vised algorithms are valuable in diagnosing 
the discharge status of trauma patients, the 
impact of data balancing on accuracy mea-
sures such as Precision, Recall, and F-measure 
varies across different algorithms. These mea-
sures do not consistently show a trend of in-
crease or decrease. Therefore, optimizing the 
performance of algorithms requires appropri-
ate parameter settings. Balancing imbalanced 
data may improve algorithmic performance, 
but it is important to note that the effectiveness 
of this approach depends on the specific algo-
rithm and the parameter values assigned to it. 
In summary, the success of data balancing in 
enhancing algorithmic performance hinges on 
carefully considering algorithm characteris-
tics and configuring parameters accordingly.

Supervised Learning for Trauma Patients
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