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Introduction

Gliomas, as Central Nervous System (CNS) tumors, are greatly 
common with 80% of malignancy [1]. In the United States, gli-
omas were diagnosed in approximately 6 out of every 10,000 

individuals from 2000 to 2013 [2]. According to molecular data, the 
World Health Organization (WHO) classifies gliomas into four grades: 
grades I & II as Low-grade Glioma (LGG) and III & IV as High-grade 
Glioma (HGG) [3, 4]. The most common glioma is glioblastoma (Grade 
IV) with 15.1% and 46.1% of all primary and malignant brain tumors, 
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Background: Gliomas, as Central Nervous System (CNS) tumors, are greatly com-
mon with 80% of malignancy. Treatment methods for gliomas, such as surgery, radiation 
therapy, and chemotherapy depend on the grade, size, location, and the patient’s age. 
Objective: This study aimed to quantify glioma based on the radiomics analysis and 
classify its grade into High-grade Glioma (HGG) or Low-grade Glioma (LGG) by vari-
ous machine-learning methods using contrast-enhanced brain Computerized Tomogra-
phy (CT) scans.
Material and Methods: This retrospective study involved acquiring and seg-
menting data, selecting and extracting features, classifying, analyzing, and evaluating 
classifiers. The study included a total of 62 patients (31 with LGG and 31 with HGG). 
The tumors were segmented by an experienced CT-scan technologist with 3D slicer 
software. A total of 14 shape features, 18 histogram-based features, and 75 texture-based 
features were computed. The Area Under the Curve (AUC) and Receiver Operating 
Characteristic Curve (ROC) were used to evaluate and compare classification models. 
Results: A total of 13 out of 107 features were selected to differentiate between 
LGGs and HGGs and to perform various classifier algorithms with different cross-
validations. The best classifier algorithm was linear-discriminant with 93.5% accuracy, 
96.77% sensitivity, 90.3% specificity, and 0.98% AUC in the differentiation of LGGs 
and HGGs.  
Conclusion: The proposed method can identify LGG and HGG with 93.5% accura-
cy, 96.77% sensitivity, 90.3% specificity, and 0.98% AUC, leading to the best treatment 
for glioma patients by using CT scans based on radiomics analysis.
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respectively. The relative and median survival 
of high-grade glioma patients, depending on 
their age, is less than 15 months; patients with 
LGG have long-term survival [1]. 

Treatment methods for gliomas, such as 
surgery, radiation therapy, and chemotherapy 
depend on the grade, size, location, and the pa-
tient’s age, in which surgery as the first step of 
treatment to remove the tumor is usually fol-
lowed by radiation therapy and chemothera-
py, especially in high-grade gliomas [5]. The 
grading of gliomas determines the treatment 
planning and evaluates treatment response and 
the prognostic patients [6]. 

However, the grading of gliomas as a funda-
mental factor affects the treatment plan, Mag-
netic Resonance Imaging (MRI) and Comput-
ed Tomography (CT) may not precisely predict 
the grading of gliomas [7, 8]. The histopatho-
logical analysis as the current gold standard 
for grading gliomas depends on tumor biopsy 
methods [4], including open biopsies and ste-
reotactic needle biopsies, in which needles are 
used for deeper brain tumors. Stereotactic, an 
invasive and high-risk method, leads to bleed-
ing, brain swelling, seizures, stroke, infection, 
blood clots, reaction to anesthesia and sample 
errors, and variability in interpretation [9, 10]. 

However, some advanced techniques of 
MRI, such as Diffusion Tensor Imaging (DTI), 
Magnetic Resonance Spectroscopy (MRS), 
and perfusion have been recently used for 
grading gliomas, no methods have been de-
finitively approved yet by WHO [11-13]. In 
addition, a long scan time in MRI is known as 
a major disadvantage due to motion artifacts. 
Another non-invasive method to decode the 
characteristics of tumors is radiomics, extract-
ing non-visible features to quantify the prop-
erties of tumors [14]. The extracted features 
are classified into three statistical groups: 1) 
the first-order statistical methods to describe 
the distribution of values of individual voxels 
without spatial relationship (e.g. mean, medi-
an, maximum, minimum, skewness, flatness, 
and kurtosis), 2) the second-order statistical 

methods to describe “texture” features and 
statistical interrelationships between voxels 
with similar (or dissimilar) contrast values; 
the Texture Analysis (TA) potentially provides 
a promising imaging biomarker to assess the 
heterogeneity of tumors, and 3) higher-order 
statistical methods to impose filter grids on the 
image and extract repetitive or nonrepetitive 
patterns [15, 16]. Moreover, radiomics stud-
ies consist of data acquisition, segmentation,  
extraction and qualification of the features, 
and data analysis [16].

However, CT scans have more advantages 
over MRIs, including less time, more avail-
ability, and the possibility for patients, who 
use implantable medical devices, most of the 
studies have been conducted on MRI in ra-
diomics [17]. 

The current study aimed to quantify glioma 
based on the radiomics analysis and classify 
its grade into HGG or LGG. Therefore, the 
radiomics approach was combined with vari-
ous machine-learning methods using contrast-
enhanced brain CT scans.

Material and Methods
This retrospective study consists of data 

acquisition, segmentation, feature selection 
and extraction, classification, analysis, and  
evaluation of classifiers.

Patient Selection and Population 
This study was approved by the Ethics Com-

mittee of the Faculty of Medical Science, 
Mashhad University of Medical Sciences, 
Mashhad, Iran, and examined 130 patients who 
performed stereotactic biopsies from 2013 to 
2019 in Mashhad, Imam Reza Hospital, Iran. 
All patients, who participated in this study, 
signed the informed consent. Further, the in-
clusion criteria for patients were as follows: 1) 
histopathologic diagnosis of gliomas grouped 
into LGGs and HGGs according to the WHO 
criteria and 2) CT images without any beam-
hardening artifacts in the Region of Interest 
(ROI). The lack of pathological information 
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and CT scan images led to the exclusion of 35 
and 26 patients from the study, respectively. 
Also, 7 patients were excluded due to beam 
hardening artifacts in the tumor area. Finally, 
62 patients were included with 31 LGG and 31 
HGG patients.

Image data acquisition 
All patients underwent a brain contrast- 

enhanced CT scan using a 16-slice multi-de-
tector CT scanner (Neusoft Medical System 
Co., Ltd, Shenyang, China, www.neusoftmed-
ical.com ), with the acquisition parameters as 
follows: axial scan mode, 120 kV, 180 mAs, 
detector collimation, 4×0.75 mm2, and matrix 
size 512×512. Contrast-enhanced CT was per-
formed after 5-7 min following intravenous 
administration of 90 mL of iodinated contrast 
medium (Iodixanol 652 mg/mL; Visipaque 
320 mg I/mL; GE Healthcare Biosciences, 
Little Chalfont, UK). All CT scan images 
were obtained with the same scanner and pro-
tocol to reduce the influence factors on image  
intensity variation.

Tumor segmentation 
In this study, the segmented tumor was 

performed by a 25-year experienced CT-
scan technologist using 3D slicer software  
(version 4.10.2) and used for delineating tu-
mor core Volume of Interest (VOI) in each 
patient. Some quantitative histograms and  
textural features were calculated on the  
selected VOI of each patient.

Feature extraction
The current study aimed to extract high-di-

mension features to describe quantitative at-
tributes of VOI (16) by an open-source soft-
ware Pyradiomics (available at https://www.
radiomics.io/pyradiomics.html). Further, 14 
shape features (e.g., surface area, elongation, 
and minor axis length), 18 histogram-based 
features, and 75 texture-based features were 
computed. The histogram-based features 
(first-order features) describe the distribution 

of voxel intensity in medical images, such as 
mean, median, min, max range, skewness, and 
kurtosis. Furthermore, texture-based features 
illustrate statistical intercorrelation between 
voxels with similar (or dissimilar) contrasts, 
which measure intratumoral heterogeneity, 
like the Gray Level Co-occurrence Matrix 
(GLCM), Gray Level Size Zone (GLSZM), 
and Neighborhood Gray Level Dependence 
Matrix (NGLDM).

Feature Selection
Feature normalization prevents some fea-

tures from a greater or lower weight. Ac-
cordingly, a z-score normalization for feature 
values was used to uniform the range of each 
feature. On the other hand, feature selection 
results in removing redundant features and 
keeping important features for the next step. 

In the present study, 13 out of 107 fea-
tures, including 3 and 10 histogram and tex-
ture-based features, respectively, without 
any shape features were selected by Least 
Absolute Shrinkage and Selection Operator  
(LASSO) or L1 regularization to design  
models for HGG and LGG differentiations.

Model building 
A total of 13 out of 107 features were used 

to avoid data overfitting in designing ma-
chine-learning classification models. Five 
classification algorithms, including Decision 
Tree, Discriminant Analysis, Logistic Regres-
sion, Support Vector Machine (SVM), and the  
k-nearest Neighbor (KNN) were applied 
to differentiate between HGG and LGG.  
Furthermore, pathological grading was ap-
plied as a golden standard to train the proposed  
supervised classification technique, imple-
mented on the MATLAB R2017 platform.

Performance evaluation
The Area Under the Curve (AUC) and Re-

ceiver Operating Characteristic (ROC) curve 
were employed to evaluate and compare the 
performance of the classification models. Two 
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different cross-validation values, including the 
5- and 10-fold cross-validation were used to 
validate models. For example, in the 5-fold 
cross-validation, the entire dataset was ran-
domly separated into five subsets so that one 
subset was used as a testing set, and the others 
were used as a training set. The training-test-
ing procedures were also repeated five times 
until each sample in the dataset was used as 
a training and testing sample. The accuracy, 
sensitivity, specificity, AUC, ROC of the pre-
diction models, and confusion matrix were 
also evaluated in the current study.

Results
The tumor area was identified by contrast-

enhanced CT scans, and the histogram and 
textural features were then extracted, in which 
the top 13 features from the LASSO feature-
selection algorithm were considered signifi-
cant (Table 1). Algorithms were classified into 
3 different cross-validations, and each perfor-
mance value was computed based on mean 
different cross-validation results to determine 
the best classifier algorithms between LGG 
and HGG.

A total of 107 features were extracted from 
selected VOIs, and Z-score was used to  
normalize features inserted into the LASSO 
feature selection algorithm to avoid overfitting 
and removing redundant features. Finally, 13 
out of 107 features were selected to differen-
tiate between LGGs and HGGs and perform 

various classifier algorithms with different 
cross-validations. In this study, 3 of the best 
group classifiers were presented so that the 
best classifier algorithm was linear-discrimi-
nant with 93.5% accuracy, 96.77% sensitivity, 
90.3% specificity, and 0.98% AUC in differ-
entiation LGGs and HGGs (Figures 1 and 2). 
Table 2 shows the best three classifier algo-
rithms with 5- and 10-k-fold cross-validations.

Discussion
According to the findings of the current 

study, the proposed method can be consid-
ered a diagnostic aid for identifying LGG and 
HGG, and treatment of gliomas depends on 
the grade, size, type, and location of the tu-
mor. However, the biopsy is known as the gold 
standard to diagnose a brain tumor and deter-
mine its grade, it is an invasive and high-risk 
method, leading to problems, such as bleed-
ing, seizures, and long queues. However, some 
MRI techniques: MRS, Diffusion-weighted 
Imaging (DWI), and perfusion not only are 
non-invasive but also evaluate the histopatho-
logical features of gliomas, and determine the 
tumor grading, they are not available to all pa-
tients. Thus, in the current study, CT scans and 
radiomics techniques were used to determine 
tumor grade. To the best of our knowledge, no 
study has been conducted on glioma grading 
by radiomics using the CT scan.

Zacharaki et al. used MRI textural and shape 
features to classify brain tumors with 0.878 and 

Type of Features
First-Order Features  

(Histogram) Second-order Features (Textural)

Median    glcm_Contrast    glrlm_LowGrayLevelRunEmphasis
Skewness    glcm_ClusterShade    ngtdm_Complexity

Interquartile Range    glcm_InverseVariance    glrlm_LongRunEmphasis
   glszm_GrayLevelVariance    glrlm_ShortRunLowGrayLevelEmphasis
   glszm_LargeAreaEmphasis    glszm_GrayLevelNonUniformityNormalized

Table 1: Top 13 significant features selected by Least Absolute Shrinkage and Selection Operator 
(LASSO) 
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0.896 accuracy and AUC, respectively, using 
SVM with a leave-one-out cross-validation, 
leading to overfitting while the current study 
reduced overfitting with various cross-valida-
tions [18]. Bonte et al. applied radiomics on 
structural MRI to differentiate between LGG 
and HGG with 84.5% accuracy on CT scan 
images obtained from different sources with 
various protocols, resulting in a high degree of 
noise in the ground-truth diagnosis [19]. In the 
present study, all CT scans were obtained from 
one medical imaging center with the same 
scan protocol. Ditmer et al. applied MRI tex-
ture analysis for glioma grading on 94 patients 
(14 LGGs and 80 HGGs) with 93% sensitiv-
ity, 86% specificity, and 0.90 AUC [15]; more-
over, they studied two patient groups (14.8% 
and 85.2%) that this unbalanced data might 
lead to miss-diagnosis. In the present study, 2 
groups of 31 patients were selected to avoid 
miss-diagnosis. Further, Zhang et al. classi-
fied HGG and LGG using radiomics features 
on DTI with an AUC of 0.93, 94% accuracy, 
98% sensitivity, and 86% specificity by using 

SVM [20]. The textural features are the most 
common factor to classify glioma grading tu-
mors using radiomics, considered in 77% of 
selected features of the present study.

The current study was conducted with some 
limitations, as follows: 1) the relatively small 
number of the patient; however, the cross-
validation method was used to avoid overfit-
ting, this study is still at risk of overfitting, 2)  
manual segmentation, which was time-con-
suming and susceptible to reader variability, 
and 3) the lack of CT-based radiomics study 
for glioma grading classification to compare 
the results.

Conclusion
According to the findings, the proposed ra-

diomics-based technique with high sensitivity 
(96.77%) and specificity (90.3%) can provide 
a proper estimate of the tumor grade and also 
design a suitable treatment for patients who 
cannot undergo surgery. It is believed that 
the non-invasive radiomics method of CT  
imaging can be replaced by non-invasive 

Figure 1: Workflow of study
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methods in future studies.

Authors’ Contribution
M. Maskani and A. Zamanpour did the 

study; H. Abdolahi analyzed the data; S. Ab-
basi wrote the article and checked the concept, 
H. Etemad-Rezae and A. Montazerabadi re-
checked the whole of the study and analysis 
as supervisors. All the authors read, modi-
fied, and approved the final version of the  
manuscript.

Ethical Approval
This study was approved by the Mash-

had Faculty of Medical Sciences with the  
code number: IR.MUMS.MEDICAL.
REC.1399.055.

Informed Consent
All patients who participated in this study 

signed the informed consent.

Conflict of Interest
None

References
 1. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda 

R, Kromer C, et al. CBTRUS Statistical Report: 
Primary Brain and Central Nervous System Tu-
mors Diagnosed in the United States in 2008-
2012. Neuro Oncol. 2015;17(Suppl 4):iv1-62. 
doi: 10.1093/neuonc/nov189. PubMed PMID: 
26511214. PubMed PMCID: PMC4623240.

Figure 2: Linear discriminant classification 
confusion matrix and Receiver Operating 
Characteristic curve (ROC) curve with 5-fold 
cross-validation (High Grade (HG), Low 
Grade (LG))

Model k-fold AUC Accuracy Sensitivity Specificity

Linear Discriminant
5 0.98 93.5 90.9 96.5

10 0.98 91.9 90.6 93.3

SVM
5 0.94 90.3 90.3 90.3

10 0.98 88.7 85.2 92.8

KNN
5 0.87 87.1 87 87

0.92 87.1 87.5 89.6
AUC: Area Under the Curve; SVM: Support Vector Machine; KNN: K-Nearest Neighbor

Table 2: Classification of the performance 

156



J Biomed Phys Eng 2024; 14(2)

Gliomas Grading by Radiomics

 2. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite 
K, Kruchko C, Barnholtz-Sloan JS. CBTRUS 
Statistical Report: Primary Brain and Other 
Central Nervous System Tumors Diagnosed 
in the United States in 2012-2016. Neuro On-
col. 2019;21(Suppl 5):v1-100. doi: 10.1093/
neuonc/noz150. PubMed PMID: 31675094. 
PubMed PMCID: PMC6823730.

 3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, 
Burger PC, Jouvet A, et al. The 2007 WHO 
classification of tumours of the central nervous 
system. Acta Neuropathol. 2007;114(2):97-
109. doi: 10.1007/s00401-007-0243-4. 
PubMed PMID: 17618441. PubMed PMCID: 
PMC1929165.

 4. Louis DN, Perry A, Reifenberger G, Von Deim-
ling A, Figarella-Branger D, Cavenee WK, et al. 
The 2016 World Health Organization Classifica-
tion of Tumors of the Central Nervous System: a 
summary. Acta Neuropathol. 2016;131(6):803-
20. doi: 10.1007/s00401-016-1545-1. PubMed 
PMID: 27157931.

 5. Wen PY, Reardon DA. Neuro-oncology in 2015: 
Progress in glioma diagnosis, classification 
and treatment. Nat Rev Neurol. 2016;12(2):69-
70. doi: 10.1038/nrneurol.2015.242. PubMed 
PMID: 26782337.

 6. Coons SW, Johnson PC, Scheithauer BW, 
Yates AJ, Pearl DK. Improving diagnostic ac-
curacy and interobserver concordance in the 
classification and grading of primary gliomas. 
Cancer. 1997;79(7):1381-93. doi: 10.1002/
(sici)1097-0142(19970401)79:7<1381::aid-
cncr16>3.0.co;2-w. PubMed PMID: 9083161.

 7. Law M, Cha S, Knopp EA, Johnson G, Arnett 
J, Litt AW. High-grade gliomas and solitary 
metastases: differentiation by using perfusion 
and proton spectroscopic MR imaging. Radi-
ology. 2002;222(3):715-21. doi: 10.1148/ra-
diol.2223010558. PubMed PMID: 11867790.

 8. Law M, Yang S, Babb JS, Knopp EA, Golfi-
nos JG, Zagzag D, Johnson G. Comparison 
of cerebral blood volume and vascular perme-
ability from dynamic susceptibility contrast-
enhanced perfusion MR imaging with glioma 
grade. Am J Neuroradiol. 2004;25(5):746-55. 
PubMed PMID: 15140713. PubMed PMCID: 
PMC7974484.

 9. Mizobuchi Y, Nakajima K, Fujihara T, Matsuzaki 
K, Mure H, Nagahiro S, Takagi Y. The risk of 

hemorrhage in stereotactic biopsy for brain tu-
mors. J Med Invest. 2019;66(3.4):314-8. doi: 
10.2152/jmi.66.314. PubMed PMID: 31656296.

 10. Raab SS, Grzybicki DM, Janosky JE, Zarbo RJ, 
Meier FA, Jensen C, Geyer SJ. Clinical impact 
and frequency of anatomic pathology errors in 
cancer diagnoses. Cancer. 2005;104(10):2205-
13. doi: 10.1002/cncr.21431. PubMed PMID: 
16216029.

 11. Davanian F, Faeghi F, Shahzadi S, Farshifar Z. 
Diffusion Tensor Imaging for Glioma Grad-
ing: Analysis of Fiber Density Index. Basic Clin 
Neurosci. 2017;8(1):13-8. doi: 10.15412/J.
BCN.03080102. PubMed PMID: 28446945. 
PubMed PMCID: PMC5396168.

 12. Hakyemez B, Erdogan C, Ercan I, Ergin N, 
Uysal S, Atahan S. High-grade and low-grade 
gliomas: differentiation by using perfusion MR 
imaging. Clin Radiol. 2005;60(4):493-502. doi: 
10.1016/j.crad.2004.09.009. PubMed PMID: 
15767107.

 13. Kousi E, Tsougos I, Tsolaki E, Fountas KN, 
Theodorou K, Fezoulidis I, et al. Spectro-
scopic evaluation of glioma grading at 3T: 
the combined role of short and long TE. Sci-
entific World Journal. 2012;2012:546171. 
doi: 10.1100/2012/546171. PubMed PMID: 
22919334. PubMed PMCID: PMC3417198.

 14. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar 
C, Grossmann P, Carvalho S, et al. Decoding tu-
mour phenotype by noninvasive imaging using 
a quantitative radiomics approach. Nat Com-
mun. 2014;5:4006. doi: 10.1038/ncomms5006. 
PubMed PMID: 24892406. PubMed PMCID: 
PMC4059926.

 15. Ditmer A, Zhang B, Shujaat T, Pavlina A, Lu-
ibrand N, Gaskill-Shipley M, Vagal A. Diagnos-
tic accuracy of MRI texture analysis for grad-
ing gliomas. J Neurooncol. 2018;140(3):583-9. 
doi: 10.1007/s11060-018-2984-4. PubMed 
PMID: 30145731.

 16. Gillies RJ, Kinahan PE, Hricak H. Radiomics: 
Images Are More than Pictures, They Are Data. 
Radiology. 2016;278(2):563-77. doi: 10.1148/
radiol.2015151169. PubMed PMID: 26579733. 
PubMed PMCID: PMC4734157.

 17. Stadler KL, Ruth JD, Pancotto TE, Werre SR, 
Rossmeisl JH. Computed Tomography and 
Magnetic Resonance Imaging Are Equivalent 
in Mensuration and Similarly Inaccurate in 

157



J Biomed Phys Eng 2024; 14(2)

Mohammad Maskani, et al

Grade and Type Predictability of Canine In-
tracranial Gliomas. Front Vet Sci. 2017;4:157. 
doi: 10.3389/fvets.2017.00157. PubMed PMID: 
28993810. PubMed PMCID: PMC5622299.

 18. Zacharaki EI, Wang S, Chawla S, Soo Yoo 
D, Wolf R, Melhem ER, Davatzikos C. Classi-
fication of brain tumor type and grade using 
MRI texture and shape in a machine learning 
scheme. Magn Reson Med. 2009;62(6):1609-
18. doi: 10.1002/mrm.22147. PubMed PMID: 
19859947. PubMed PMCID: PMC2863141.

 19. Bonte S, Goethals I, Van Holen R. Individual 

prediction of brain tumor histological grading 
using radiomics on structural MRI. In: 2017 
IEEE Nuclear Science Symposium and Medical 
Imaging Conference (NSS/MIC); Atlanta, GA, 
USA: IEEE; 2017. p. 1-3.

 20. Zhang Z, Xiao J, Wu S, Lv F, Gong J, Jiang 
L, Yu R, Luo T. Deep Convolutional Radiomic 
Features on Diffusion Tensor Images for Clas-
sification of Glioma Grades. J Digit Imaging. 
2020;33(4):826-37. doi: 10.1007/s10278-020-
00322-4. PubMed PMID: 32040669. PubMed 
PMCID: PMC7522150.

158


