
J Biomed Phys Eng 2017; 7(1)

www.jbpe.org

A PCA/ICA based Fetal ECG Extraction 
from Mother Abdominal Recordings by 
Means of a Novel Data-driven Approach 
to Fetal ECG Quality Assessment

Karimi Rahmati A.1, *, Setarehdan S. K.1, Araabi B. N.1

1Control and Intelligent 
Processing Center of 
Excellence, School of 
Electrical and Computer 
Engineering, College of 
Engineering, University 
of Tehran, Tehran, Iran

*Corresponding author: 
A. Karimi Rahmati
Control and Intelligent 
Processing Center of 
Excellence, School of 
Electrical and Computer 
Engineering, College of 
Engineering, University 
of Tehran, Tehran, Iran
E-mail: karimi.rahmati@
ut.ac.ir 
Received: 11 June 2015
Accepted: 12 July 2015

Introduction

One way of examining fetal health is to study his/her cardiac func-
tion during pregnancy. Some possible complications in the sec-
ond trimester of the pregnancy such as hypoxia due to umbilical 

cord wrapping around the neck, could cause fetal heart failure [1]. On 
the other hand, cardiac deficiencies are among the most common con-
genital disorders which may remain hidden for a long time after birth, 
and have severe effects on the growth of the newborns [2]. Thus, moni-
toring fetal heart rate during pregnancy is essential for early diagnosis of 
fetal cardiac defects and provides the possible drug or surgical therapy 

Original

ABSTRACT
Background: Fetal electrocardiography is a developing field that provides valuable 
information on the fetal health during pregnancy. By early diagnosis and treatment of 
fetal heart problems, more survival chance is given to the infant.
Objective: Here, we extract fetal ECG from maternal abdominal recordings and 
detect R-peaks in order to recognize fetal heart rate. On the next step, we find a better 
and more qualified extracted fetal ECG by using a novel approach.
Materials and Methods: In this paper, a PCA/ICA-based algorithm is pro-
posed for extracting fetal ECG, and fetal R-peaks are detected as well. The method 
validates the quality of extracted ECGs and selects the best candidate fetal ECG to 
provide the required morphological ECG features such as fetal heart rate and RR inter-
val for more clinical examinations. The method was evaluated using the dataset which 
was provided by PhysioNet/Computing in Cardiology Challenge 2013. The dataset 
consists of 75 recordings of 4-channel ECGs each containing 1-minute length for train-
ing and 100 similar recordings for testing.
Results: When the proposed algorithm was applied to the test set, the scores of 
85.853 bpm2 for fetal heart rate and an error of 9.725 ms RMS for fetal RR-interval 
estimation were obtained. 
Conclusion: The results obtained with the mentioned algorithm shows the robust-
ness of the research, and it is suggested to be used in practical fetal ECG monitoring 
systems.

Keywords
Fetal Electrocardiography (fECG), Fetal Heart Rate (FHR), Abdominal Electro-
cardiography, Principal Component Analysis (PCA), Independent Component 
Analysis (ICA), Best Quality fECG
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before birth to prevent fatality. Besides, obste-
tricians would have the opportunity to think of 
special remedies for fetuses with heart disor-
ders at delivery time accordingly. Last but not 
least, curing cardiac problems in embryonic 
period or early after birth will hamper a pos-
sible mental shock of the parents.

In the late 19th century, embryologists had 
found that decelerations in fetal heart rate 
(FHR) was an indicator of fetal distress [3]. 
Moreover, cardiac disorders change the mor-
phological features of the electrocardiogram 
(ECG). Hence, interpretation of fetal ECG 
(fECG) morphology would offer valuable in-
formation that can be used in the diagnosis 
of fetal distress. Changes in parameters such 
as PR, PQ, ST and QT intervals and also the 
widths and amplitudes of P, QRS and T-waves 
show the functional conditions of heart [4]. 

R-peaks detection and QRS-wave can con-
vey some information about cardiac rhythm, 
pattern of the heart rate, speed of electrical 
wave propagation in the cardiac muscle and 
heart rate variability (HRV). Hence, fetal heart 
rate is one of the most leading and common 
clinical factors which reflects fetal health. 
More or less than normal FHR is a sign of 
tachycardia/bradycardia, respectively [5]. 

Although invasive fECG recording from fe-
tal scalp is more precise and reliable than non-
invasive ones captured from the mother’s ab-
domen, due to potential risks for both mother 
and fetus, it is not practical in many situations. 
Some advantages of non-invasive recordings 
of fECG include:

• Preventing stressful conditions and infec-
tions for mother and fetus (compared to inva-
sive fECG recordings)

• Possibility of recording fECG after 18th 
weeks of pregnancy [6], not just at the delivery 
time (compared to invasive fECG recordings)

• Possibility of continuous long term fetal 
heart monitoring at home without the need for 
an expert (compared to Doppler-based meth-
ods)

• Affordability (compared to magnetocardi-

ography) 
• … 
In spite of significant progresses in signal 

processing methods, following limitations 
complicate the extraction of fECG [7]:

• Overlap of the fetal signal with interfering 
signals/noise in both time and frequency do-
mains

• Interference of maternal physiological sig-
nals (such as ECG, EMG and respiration) with 
fetal ECG

• Fetus motion during signal recording pe-
riod

• Morphological similarity between the ma-
ternal and fetal ECG

• Common noise effects on bio-signals
• …
Various techniques for fECG extraction 

have been reported in the past [7, 8]. In a few 
works, the clinical features like FHR are ob-
tained from abdominal signal directly [9], but 
mostly such methods are based on the estimat-
ing and subtracting mECG from the abdomi-
nal signal using template generation [6, 10, 11, 
12]. Although these methods could achieve 
acceptable results [13], they usually suffer 
from variations in mECG complexes and the 
factors which prevent an exact template gen-
eration. Data-driven decomposition methods 
usually outperform temporal methods [7, 14] 
because the components are obtained by using 
basic functions achieved from the data itself.

This paper presents a multistep method based 
on principal component analysis (PCA) to lo-
cate fetal R-peaks and extract the morphology 
of fECG. Our data-driven method can eas-
ily separate the maternal and fetal complexes 
overlapped temporally. There is no complex-
ity in the implementation and the new pro-
posed method for selection of the best quality 
fECG based on features evaluation making the 
approach needless of operator’s interaction. In 
addition, this method can be used for single 
or multi-channel abdominal signals. The sen-
sitivity of the algorithm in detecting fetal R-
peaks is 93.103% which shows the effective-
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ness of the proposed method.

Material and Methods

Data
The dataset used in this work consists of 75 

recordings used as training data (available), 
100 recordings for test (available) and 100 
recordings for evaluation (unavailable). Each 
recording comprises of four different abdomi-
nal signals. The structure and morphology of 
fECG highly depends on the electrode loca-
tions, gestational age and fetal position [2]. 
The signals in this dataset have been acquired 
from women between 38 and 41 weeks of ges-
tation during labor. Four electrodes have been 
used around naval, a reference electrode above 
the pubic symphysis and a common mode ref-
erence electrode (ground) on the left leg [3]. 
The locations of fetal R-peaks have been de-
termined by experts and are available as refer-
ence annotations. These annotations are based 
on invasive fECG registered simultaneously 
using fetal scalp electrodes. The frequency 
content of the signals lies between 1 and 150 
Hz. All signals have been sampled synchro-
nously at 1KHz and 16 bit analogue; digital 
converters have been utilized. 

This dataset has been gathered from multiple 
sources using various instrumentations. The 

proposed extraction method should be flexible 
enough to work with different signals having 
similar, but not the same, characteristics [3].

The entries of FHR series are evaluated by 
the organizers of the challenge 2013 of Physi-
oNet [3]. The evaluation (scoring) method is 
based on beat by beat classification error (unit: 
bpm2) [8]; that is, the mean squared error be-
tween the estimated fetal heart rate and the 
reference one is computed [15]. The lower the 
score, the higher the performance achieved.

Proposed Algorithm
The block diagram of the proposed algorithm 

is demonstrated in Figure 1. As seen, each of 
four ECG channels recorded from the moth-
er’s abdomen goes through the pre-processing 
procedure. After the pre-processing stage, the 
maternal ECG (mECG) is attenuated by apply-
ing PCA on the maternal complex sub-signals. 
The residual signals from four channels are 
then decomposed by independent component 
analysis (ICA) followed by a signal selection 
stage that picks the signal bearing the most 
fetal information. The chosen signal is then 
stacked to the four residual signals to form a 
set of 5 channels. Since fECG may be extract-
ed completely using ICA on the four original 
abdominal signals, the best decomposed fetal 
signal is selected and stacked to five other sig-
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Figure 1: Block diagram of the proposed technique
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nals. Now, there are six signals representing 
fetal ECG, among which the best one should 
be picked for further morphological feature 
extraction e.g. FHR and RR-intervals. The dif-
ferent stages of the proposed method are sum-
marized in block diagram of Figure 1.
Pre-processing
The abdominal ECG contains a weak fetal 

ECG in comparison with the existing con-
taminators. The most significant interference 
and noise sources are: mECG, maternal EMG 
caused by uterine contractions, respiration, 
power line interference, maternal and fetal 
movement artifacts, noise of electronic de-
vices and the artifacts of electrode contacts. 
Thus, a pre-processing step is required to re-
duce both the noise and the data size. At this 
stage, the abdominal signal is filtered by a 
band-pass filter to remove low and high fre-
quency noises. In order not to distort the signal 
and preserve its morphology, a zero phase and 
flat frequency filter have to be utilized. Given 
the fact that Butterworth filters provide a max-
imally flat frequency response with no ripples 
in the passband, we opt for this class of filters 
at the pre-processing stage [16]. To select the 
cutoff frequencies of the filter, one should pay 
particular attention to challenge a tradeoff be-
tween the amount of noise removal and pres-
ervation of the frequency contents of fECG. 
While in pathological cases such as bradycar-
dia and tachycardia FHR lies on the frequency 
range of 1.3 to 3.3 Hz, movements are primar-
ily reflected as  frequencies in the range of 2 to 

10 Hz [4]. In this paper, the cutoff frequencies 
of the band-pass filter are designed at 3 and 80 
Hz which turns out to remove the wandering 
baseline and low frequency noise efficiently 
preserving the time domain information suf-
ficiently. Next, a notch filter at 50/60 Hz is 
applied to remove the power line interference 
and finally, the signals are normalized. Figure 
2 shows a representative example of the raw 
and pre-processed abdominal signals.
Maternal ECG Attenuation
The fetal ECG amplitude is several orders 

of magnitude smaller than that of the mater-
nal ECG [4]. The first step in the cancellation 
of mECG is the detection of R-peaks. To this 
end, the famous Pan and Tompkin’s QRS de-
tector algorithm [17] is used. This algorithm is 
one of the most reliable QRS detectors which 
recognizes QRS complexes based on slope, 
amplitude and width of the wave. When R-
peaks have been detected, the sub-signals of 
QRS complexes are created for mECG. As 
the width of P-wave is smaller than that of 
T-wave, the duration of sub-signals is chosen 
such that 200 ms of it falls before and 300 ms 
after R-peak. By aligning these sub-signals 
under each other, we end up with a matrix of 
maternal complexes. 

PCA is able to find the directions in the data 
with the highest variations. For abdominal 
ECG signals, the highest variation corresponds 
to the maternal ECG. Hence, by performing 
PCA on the matrix of maternal complexes 
and eliminating the first few PCs, we can sup- 
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Figure 2: (a) Four original abdominal signals, (b) Pre-processed signals
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press maternal ECG signal to a good extent. 
The choice of the number of omitted PCs is 
guided by considering 90% of signal variance 
as mECG. The remaining PCs correspond to 
fECG and noises. Then the resulting sub-sig-
nals with no or little mECG are aligned one 
after another forming the residual fetal ECG. 

Figure 3 shows an example of mECG at-
tenuation stage. As the figure demonstrates, 
fetal QRS complex remains intact even when 
mQRS overlaps with fQRS in time domain. In 
fact, fECG is left unaltered because its vec-
tors are dissimilar to mECG vectors [18]. So 
far, we have analyzed the channels individu-
ally and four residual fetal ECGs have been 
obtained. Each residual fECG can be used to 
attain FHR in a high SNR condition.
ICA Decomposition
One of the ECG applications of ICA is arti-

fact and noise removal [19, 20]. For instance, 
when fECG is extremely weak so that it is 
buried in the background noise, applying ICA 
may be useful [21]. In our scenario, each of 
four obtained residual fECGs represents a 
combination of pure fECG and multiple re-
maining noise and artifacts. After applying 
ICA to these signals, it is expected that one of 

the components carry the fECG information. 
However, sometimes noise or artifacts are 
not independent of fetal signal. For example, 
in actual measurements, the motion artifacts 
and ECG are not exactly independent and 
cardiac dynamics such as heart rate and ECG 
morphology are affected by body movements 
[22]. Hence, the appearing fetal IC may not be 
the best one. One of the limitations of ICA is 
that one has to rely on visual inspection of ICA 
components for further processing [20]. In this 
paper, a new approach is introduced to solve 
this problem. Among four signals recovered 
after ICA, the best signal representing fECG 
is picked through a selection procedure (ex-
plained in 2.2.4). This signal is the additional 
fECG stacked to four residual fECGs forming 
a set of five fECG signals. The ICA algorithm 
used for this purpose is Jade [23] because it 
performs slightly better than Fast ICA [24] 
when applied to the residual fECGs [13, 25].

Since the maternal and fetal hearts are physi-
cally separate sources and generate indepen-
dent cardiac signals, we also applied ICA on 
four pre-processed abdominal signals. Pre-
processing before applying ICA is important 
because artifacts quickly increase the number 
of true sources whereas ICA can only find as 
many ICs as the input signals [26]. However, 
in some cases, ICA cannot decompose abdom-
inal ECG to the real underlying sources. This 
may be due to the small amplitude of fetal IC 
which is sometimes even less than background 
noise [21]. Furthermore, the number of ab-
dominal channels is very small and the fetal 
IC may be buried in a mixture of sources in 
the ICs [26]. 

After applying ICA on the abdominal sig-
nals, we may have a signal representing fECG. 
The four signals resulting from ICA then en-
ter the selection box (see 2.2.4) and the sig-
nal with utmost similarity to the fECG will be 
chosen. This additional signal is stacked with 
five former fECGs to form a set of six candi-
date fECG signals. The next stage would be 
selection one of these six fECGs having the 

Figure 3: mECG attenuation stage. The pre-
processed abdominal signal and the acquired 
residual fECG for each of the four channels
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best quality. For this purpose, we use the se-
lection box one more time.
Selection Box
In many fECG analyses, finding the best 

processed fECG among several channels is 
a problem (e.g. [6] and [27]). Some methods 
have been introduced to do so in different 
papers such as [13], [28] and [29] but, rare-
ly have they mentioned their success rate. In 
most papers corresponding to signal quality 
assessments, the quality of abdominal signals 
has been assessed by different tools [30, 31], 
but the success rate they achieved in selecting 
the best abdominal signal in different record-
ings was not high and that is due to putting a 
fixed threshold for their parameters. 

Another important issue is how to auto-
matically recognize fECG among different 
signals achieved after various source separa-
tion techniques. The selection box introduced 
here is able to find the best fECG (i.e. the one 
that contains the most fetal cardiac informa-
tion) among several fECGs and even among 
the sources forming abdominal signals like 
mECG and other interferences.

The selection box is used 3 times in this 
work. In the first 2 times, the fECG should be 
selected among 4 signals resulted after ICA. 
In the last utilization of the selection box, the 
goal is to recognize the best fECG among six 
possible fECGs. To achieve this, several fea-
tures are defined and calculated for each sig-
nal. These features are explained in Table 1.

We have found out that the greater the values 
of the above-mentioned features (except FHR, 
RMS and sample entropy), the better the qual-
ity of the corresponding fECG signal (see Fig-
ure 4). High SNR fECGs have typically lower 
sample entropy and RMS values. Hence, we 
defined a vector of flag for every signal. The 
values of each feature for all the input signals 
are compared. For each feature (except FHR), 
two of the signals with the highest (or low-
est in the case of RMS and sample entropy) 
feature values are assigned a predetermined 
weight as the flag for that feature, and the 

rest of the signals receive 0 as flags (Table 1). 
Since some features (like FHR and skewness) 
play more important roles in distinction of the 
best fECG, the assigned weights for these fea-
tures are greater, and in the conditions with 
equal total-flag values, these features are de-
terminant. When there are a lot of signals in 
the input of the selection box as in the last time 
the selection box is used for each recording, 
assigning the weight of -1 to the worst fea-
ture’s value will improve the selection accu-
racy. As the construction of the flag vectors is 
completed for all signals, the sum of elements 
of each flag vector is calculated to yield total-
flag value. As a result, we end up with a single 
scalar value for each input signal that repre-
sents its quality. The higher the value of the 
total-flag, the better the fECG. 

 The criterion used to assess the accuracy 
of the selection procedure is the positive pre-
dictive value (PPV) acquired by the selected 
signal when its R-peaks are detected and com-
pared against the timing of actual fetal R-
peaks. It turns out that the proposed method 
works effectively with an accuracy of 91%. 
The accuracy is calculated as a ratio of the 
correctly selected signals to the total number 
of the selections within a specific tolerance for 
PPV (less than 5). In other words, if the differ-
ence between the PPV of the selected signal 
and the best PPV among the inputs is less than 
5, the selection is assumed to be correct. Fig-
ure 4 shows an example of the features values 
for a representative case (record-id a42). By 
comparing “Total-Flag” (obtained from the se-
lection box) and the “PPV” column values, we 
realize that the selection box has done a very 
good job in sorting fECG signals according to 
the quality.

Next, we compared the performance of our 
proposed selection method with those of Deci-
sion Tree, K-Nearest Neighbors (KNN), Dis-
criminant Analysis, Artificial Neural Network 
(ANN) and Support Vector Machine (SVM) 
classifiers. The classification is meant to di-
vide fECG signals into one of the two groups 
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FHR

Normal range for FHR is 110-120 to 160 bpm with a particular focus on the lower band [32]. In 
pregnancy, maternal HR increases by 25% [33]i.e. 85-90 bpm. So FHR is an important feature 
for separating mECG and fECG. Since these two signals are similar morphologically and 
the other feature values for mother and fetus may be close to each other, a negative penalty 
weight (-3) is imposed for heart rates less than 120 and more than 175 bpm.
Since during active pushing of delivery time, the mother’s HR may reach 170 bpm [34], this 
feature alone may not be reliable enough.

Skewness

The fECG signal (like mECG) has a non-Gaussian distribution. Skewness shows the level of 
asymmetry of a signal statistically. The absolute value of the skewness for mECG is larger 
than fECG [35] and the fetal skewness value lies in a specific range distinguished from other 
signals and noises [28]. However, among the fECGs, the one with higher skewness shows 
better SNR. As this feature plays a major role in the best fECG selection, a higher weight is 
attributed to this feature (3).  

Kurtosis
ECG has typically a super-Gaussian distribution [36-38]. The absolute kurtosis value of mECG 
is higher than fECG but among the fECGs those with higher kurtosis value and stronger non-
Gaussianity are more suited for representative fECG.

Sample Entropy
Entropy describes the behavior of a signal in terms of randomness [39]. Sample entropy is a 
good parameter to assess the quality of a signal. The larger the values for sample entropy, the 
larger the amount of noise contaminating the signal [30]. Thus, the fECGs with lower sample 
entropy are better candidates. 

Mean and Median
The absolute mean and median value of a de-noised ECG is higher than the original (raw) 
one [40]. So signals with higher mean and median values are likely to be less contaminated 
by noise.

RMS
The root mean square is a statistical parameter that reflects the magnitude of a varying signal. 
In [41] it is demonstrated that the RMS value of a better de-noised ECG signal is less than a 
noisy one. Thus lower RMS values indicate better quality for a fECG.

Mean of the R-peaks
A higher mean for the R-peaks, implies higher SNR, because it means that the fetal R-peaks 
are not buried in the background noise. The mECG is put aside by imposing a weight condition 
on the FHR.

Peak frequency and 
magnitude of PSD

Power Spectral Density (PSD) shows the corresponding power of the frequencies of a signal. 
The spectral content for each abdominal channel is similar, but the energy at each frequency 
may differ. For mECG, the peak of PSD lies around 17 Hz, while for the abdominal signal there 
is a shift to 15 Hz, and for the fECG (obtained from fetal scalp) it lies between 20 and 30 Hz 
[42]. Therefore, the peak frequency of the PSD can also be a recognizer of fECG. Hence, the 
magnitude of the PSD in the frequency range of 20 to 30 Hz can be considered as another 
feature. 

Table 1: Features included in the selection box

 

Figure 4: Feature values for a representative recording (a42)
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in terms of quality: good or bad. The procedure 
of the classifier training is shown in Figure 5.

For each recording, we use the selection box 
three times. Each time several signals enter the 
selection box. We calculated the mentioned 
features for each signal. On the other hand, 
we estimated fQRS positions and calculated 
PPV for each signal. The label for each sig-
nal was assigned based on PPV. Signals with 
PPV below 90 were labeled 0 (bad) and those 
with higher PPV were labeled 1 (good). The 
signal with label 1 is better and more qualified 
fECG than the signal with label 0. We have 
74  recordings in set-A (Record 54 is omitted 
due to inaccurate reference annotations). For 
each recording, 12 non-repetitive signals enter 
the selection box. So, we have 12*74 signals 
to train and test the classifiers. To compare 
the performance of classifiers (Decision Tree, 
KNN, Discriminant Analysis, ANN and SVM) 
in discriminating input signals to good or bad, 
we used 60% of 888 signals for training the 
classifiers and the remaining for testing. The 
results showed that Decision Tree classifier 
outperforms other four classifiers with less 
misclassification error shown in Figure 6.

On the next step, we compared Decision Tree 
classifier with the selection box performance. 
The selection box is able to compare input sig-
nals and choose the best fECG relative to oth-
ers, but the Decision Tree may classify several 
signals or no signals to the class with label 1. 
Thus, we need to force the classifier to choose 
just one signal by multiple labelling and clas-

sifications. First, we classify the input signals 
according to 2-label trained classifier. If the 
classifier chooses only one signal as label 1, 
we have achieved the desired outcome. But 
if the classifier chooses some or no signals as 
label 1, we select the one closer to the mean 
vector of the features for class 1. 

The final score gained by using Decision 
Tree classifier and the selection box revealed 
that the selection box outperforms to choose 
the best fECG. Even when the Decision Tree 
was used together with the proposed method, 
classification accuracy did not improve re-
markably. The scores for using just selection 
box, just Decision Tree classifier and the com-
bination of both the selection box and decision 
tree classifier are shown in Table 2.
Final fetal ECG
The fetal R-peaks of the selected fECG are 

detected by Pan and Tompkin’s method [17] 
with a time length of 150 ms for the fetal QRS 
complex. The detected R-peaks are smoothed 
by Liu’s method [43] to remove the false posi-
tive and false negative detections [30]. The 
fECG is divided into QRS-complex sub-sig-
nals. This time, the duration of sub-signals 
has been supposed to be 350 ms according 
to the fetal ECG intervals mentioned in [44]. 
The fetal complex sub-signals are arranged to 
form a matrix in which the detected R-peaks 
are exactly aligned under each other. The first 
three principal components of this matrix rep-
resent fetal ECG, and the remaining is omit-
ted. Then, the reconstructed sub-signals are 
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Figure 5: The procedure of the classifier training
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merged to form a more reliable fECG with the 
least noise. Figure 7 shows a sample abdomi-
nal signal, the extracted fECG and the final 
post processed fECG.

Results
Figure 8 demonstrates the results of applying 

the proposed method on sample ECG signals 
(record-id a03). The first four signals are the 
processed abdominal channels. The fifth and 
sixth ones are the fECGs selected from apply-
ing ICA on the four residual fECGs and ICA 
on the abdominal signals, respectively. The se-
lected fECG (red plots) is the first signal with 
the highest total-flag value and PPV and the 
least score. Further post-processing is applied 
on this signal and the final R-peaks are located 
(red circles). The reference locations of fetal 
R-peaks are shown with green star. It is shown 
that the estimated R-peaks are the same as ref-
erence ones with a good accuracy.

The scores obtained for training data (Set-A) 
and test data (Set-B) are summarized in Table 
3, where the error in estimation of FHR and 
fetal RR interval on the training and test data 
have been mentioned separately. Moreover, 
the sensitivity of the algorithm (when using a 

Fetal ECG extraction

Table 2: Comparison between the performance of the selection box and Decision Tree classifier
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FHR SCORE ON SET-A FHR SCORE ON SET-B
Decision Tree classifier 60.192 (bpm2) 122.112 (bpm2)

Selection Box 38.086 (bpm2) 90.923 (bpm2)
Selection Box+Desicion Tree 34.839 (bpm2) 85.853 (bpm2)
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Figure 7: Sample fECG extraction: Abdominal signal, extracted fECG, post-processed fECG
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threshold of 0.09 second) is 93.103%.
Figure 9 compares our results with those of 

other participants during challenge 2013 of 
PhysioNet. The score for FHR is 8th score and 
the score for RR Interval is 7th score among 

top scores of PhysioNet 2013 Challenge [45].

Discussion
In this study, the fetal ECG is extracted from 

non-invasive abdominal recordings and the 
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fetal R-peaks are detected. The presented al-
gorithm utilizes PCA to attenuate mECG and 
ICA to enhance fECG. The exploitation of 
ICA can help extract fECG when buried in the 
background noise. All abdominal signals for 
each record are processed individually and the 
best extracted fECG is selected for evaluation. 

A new method is proposed to specify the 
best quality fECG among several signals ob-
tained from different processing approaches. 
This method of selection can be very efficient 
when there are a large number of leads spe-
cially to determine the best fECG after source 
separation techniques like ICA. An additional 
superiority of the selection box over the clas-
sifiers is that it selects relatively better fECG, 
and also sorts the signals according to their 
quality with good accuracy. Since no thresh-
old is determined, even in cases where fECGs 

are not of high quality and the classifiers fail 
to assign any signal to the desired class, the 
selection box is still able to choose the best 
signal at hand. 

The presented approach for FHR estima-
tion can be used even for a single abdominal 
channel in low noise condition or for an arbi-
trary number of leads. The results confirm the 
reliability of the method for monitoring fetal 
ECG, hence fetal well-being.

The algorithm is highly dependent on the 
correct detection of maternal R-peaks. More-
over, there is a trade-off between mECG can-
cellation and fECG preservation in the mECG 
attenuation stage. 

The selection box introduced here can assess 
the quality of fECG relative to other existing 
signals. It is also able to select fECG among 
other bio-signals and noises with the same dis-
cipline and no change in the features weights. 

Many previous works have acceptable re-
sults in processing abdominal ECGs, but they 
could not choose the best processed fECG 
achieved from each channel. Ten features have 
been named here some of which have individ-
ually been used in previous works for quality 
assessment of abdominal ECG e.g. [30],[31]. 

SET-A SET-B
FHR (bpm2) 34.839 85.853

RR Interval (ms) - 9.725

 

Figure 9: Sample fECG extraction: Abdominal signal, extracted fECG, post-processed fECG

Table 3: The scores for training and test da-
taset
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All mentioned features help improve the selec-
tion box performance; none of them can get to 
the selection box accuracy singly. The weights 
chosen for each feature has been determined 
equally except for FHR, skewness and RMS. 
FHR is an important factor to discriminate 
fECG and mECG. Skewness and RMS work 
more effectively than other features when they 
are used alone to select the best fECG. That is 
why the weights assigned to these three fea-
tures are greater than the others. 

In pathological ECGs with prolonged QT (or 
ST segment), the duration of P-QRS-T com-
plex increases. Therefore, it is preferred to 
estimate P-QRS-T duration dynamically for 
each record when forming complex matrix. 
Defining more relevant features with proper 
weights in fECG selection stage can also fur-
ther improve the efficiency of the selection 
box. The authors also intend to evaluate their 
algorithm on a dataset acquired from women 
in earlier stages of pregnancy as an extension 
to this research work.
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