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Introduction

Activities of Daily Living (ADLs) recognition is one of the key 
factors in evaluating the life quality and human health. The di-
agnosis of abnormal conditions can indicate serious health prob-

lems. Many researches have been focused on recognizing and monitor-
ing the activities of elderly-sick people [1]. Online recognition of ADLs 
can make it possible for real-time learning and acquiring knowledge 
from the environment for the subjects. So, using feedbacks, they can 
modify their movements. There are several classifiers used to recog-
nize ADLs such as Support Vector Machine (SVM) [2], Fuzzy Basis 
Function (FBF) classifier [3], decision tree [4], Hidden Markov Model 
(HMM) [5-8], etc. HMMs are the most common classifiers used for on-
line recognition of the sequences.

In ADL recognition, many researchers proposed a two-level hierar-
chical structure: at the first level, state recognition was done where a 
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Estimating the elbow angle using shoulder data is very important and valuable in 
Functional Electrical Stimulation (FES) systems which can be useful in assisting C5/
C6 SCI patients. Much research has been conducted based on the elbow-shoulder syn-
ergies.
The aim of this study was the online estimation of elbow flexion/extension angle from 
the upper arm acceleration signals during ADLs. For this, a three-level hierarchical 
structure was proposed based on a new approach, i.e. ‘the movement phases’. These 
levels include Clustering, Recognition using HMMs and Angle estimation using neu-
ral networks. ADLs were partitioned to the movement phases in order to obtain a struc-
tured and efficient method. It was an online structure that was very useful in the FES 
control systems. Different initial locations for the objects were considered in recording 
the data to increase the richness of the database and to improve the neural networks 
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The cross correlation coefficient (K) and Normalized Root Mean Squared Error 
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nuity intervals of the estimated angles. Using the post-processing, K and NRMSE were 
obtained at 91.19% and 12.83%, respectively. 
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state is classified as the static and dynamic 
then at the second level, the activities under 
each state were recognized separately [8-12]. 
In FES systems, the elbow angle estimation 
from the shoulder data is an important prob-
lem and can be useful in helping C5/C6 SCI 
patients [13-16]. In this field, many researches 
have been done based on the elbow-shoulder 
synergies. There is a nonlinear relationship be-
tween these two joints, so the Artificial Neural 
Networks (ANNs) are the most widely used 
tools that can learn to map the input space 
(shoulder data) to the output space (elbow 
position) [13,14,17,18,19,20]. Popovic et al. 
(2001) used inductive learning to determine 
the synergies between the movements of joints 
while reaching 2D spaces. This learning gen-
erated a decision tree to estimate the elbow 
flexion/extension angular velocity from the 
shoulder flexion/extension angular velocity 
[21]. In 2002, they continued their research to 
identify the coordinated synergies and their re-
lations with task phases [22]. Some research-
ers proposed an online practical hierarchical 
structure where at low level, a classifier recog-
nizes the classes then at high level, an estima-
tor such as ANN was trained for each class to 
estimate the elbow angle from shoulder data 
[14,23]. According to the previous researches, 
if the movements are clustered to some groups 
and an estimator is trained for each cluster, 
the estimation performance will be improved 
[24]. One ADL consists of several movement 
phases. For example, in answering the phone, 
the subject moves his/her hand from the ini-
tial position to the phone place and then picks 
up the phone and brings it to his/her ear. After 
holding it for a while, he/she returns it back 
to its first place. An ANN is not able to learn 
all the movement phases properly. In this ar-
ticle, the elbow flexion/extension angle was 
estimated during ADLs, using the upper arm 
acceleration data based on a new approach, i.e. 
‘the movement phases’. We proposed a three-
level hierarchical structure. These levels were 

comprised of clustering the movement phase, 
classification using HMMs and the angle es-
timation using ANNs. The proposed structure 
was online that was very useful in FES con-
trol systems. It must be noted that individual 
and environmental conditions are not constant 
all the time. For example, in answering the 
phone, the hand initial position or the phone 
place may be in different locations. This issue 
can have an adverse effect on ANNs perfor-
mance. Considering this problem, in this re-
search, different initial locations for different 
objects were considered in recording the data 
to increase the richness of the database and to 
improve the neural network generalization. 
This paper has been organized as follows: 
The next section describes the experimental 
workspace, data acquisition, pre-processing 
and different levels of the proposed structure. 
Afterwards, the results and discussion are de-
scribed. Finally, the conclusion is given in the 
conclusion section.

Material and Methods

Experiments
We focused on five common ADLs com-

prising of drinking, answering the phone, eat-
ing, replacing the object and pouring a glass 
of water. In these ADLs, we asked the subject 
to move his/her hand from the initial position 
(rest position) and after doing movements re-
turn it back to the first place. For example, in 
drinking, the subject moved his/her hand from 
the rest position to the glass place then picked 
up the glass and brought it to his/her mouth. 
After drinking some water, he/she returned the 
glass back to its first place and moved back 
his/her hand to the rest position. An experi-
mental workspace was designed as shown in 
Figure 1.

According to the sweeping region of the 
subject’s hand in the horizontal plane, a rect-
angle (46cm×70cm) was drawn (Figure 1). It 
was divided into four rectangles with the same 
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dimensions. Their centers were considered as 
the target points labelled ‘A’, ‘B’, ‘C’ and ‘D’. 
The hand rest position was constant in all 
ADLs as shown in ‘ 

 
’. For three ADLs: eat-

ing/dinking/answering the phone, there was 
one target point in the horizontal plane which 
was the dish/glass/phone location. So, there 
were four conditions for each of these three 
ADLs. In replacing the object/pouring a glass 
of water, the first and the second locations of 
the object/the jar and the glass locations were 
the target points, respectively. Thus, there 
were two target points and twelve conditions 
for each of these two ADLs.

Data Acquisition and Pre-
processing

We have recorded acceleration signals of the 
upper arm movement and the elbow flexion/
extension angle during ADLs. We used a wire-
less, tri-axial acceleration sensor based on the 
micro-electromechanical systems (MEMS) 
[25] and an electro-goniometer SG110. The 
accelerometer was attached to the upper arm 
in 35% distances from the infraglenoid tuber-

cle of scapula to the olecranon process inter-
val. The x-axis of the sensor was aligned to the 
humerus. Also, when the subject kept his/her 
arm in the vertical position next to the body, 
x-y plane of the sensor would be parallel to the 
subject’s sagittal plane. The electro-goniome-
ter was attached to the elbow joint to record 
the flexion/extension angle. The subject was a 
17-year-old woman. Signals were filtered with 
a 4th order Butterworth low-pass filter using a 
cut-off frequency of 2.5 Hertz.

Proposed Structure for Online 
Estimation of Elbow Angle

Each ADL consists of several movement 
phases. An ANN is not able to learn all the 
movement phases properly due to the variety. 
In this research, we focused on ADLs phas-
es. We partitioned the upper arm acceleration 
signals in correspondence to the maximum 
and minimum locations of the elbow angle. 
In order to estimate the elbow angle from the 
upper arm acceleration data, we proposed a 
three-level hierarchical structure. These levels 
included Clustering, Recognition and Angle 
estimation that would be introduced thorough-
ly. Figure 2 shows the block diagram of the 
proposed method.

The levels of the proposed structure are de-
scribed as follows:
The first level
Movement phases of the data train were 

clustered at the first level. The upper arm ac-
celeration signals were partitioned in cor-
respondence to the maximum and minimum 
locations of the elbow angle. In this manner, 
160 movement phases were achieved. The 
movement phases were clustered by K-means 
algorithm, using the following features:

φ(t), ax(t), φ(t) - φ(t-1), ax(t) - ax(t-1). Where 
φ, ax and t are the elbow angle, x-axis accel-
eration and time, respectively. The number of 
clusters was selectable in the program. It is 
necessary to emphasize that the data train was 
used only at this level.

 

17.5 cm 

46 
 cm 

35 
 cm 

11.5 
cm B C 

70 cm 

A D 

Figure 1: Experimental workspace. The hand 
rest position was constant in all ADLs as 
shown in ‘ 

 
’. The target points in the hori-

zontal plane were labeled ‘A’, ‘B’, ‘C’ and ‘D’.

307



J Biomed Phys Eng 2017; 7(3)

www.jbpe.org

The second level
At this level, the cluster (class) recognition 

of the samples was done. Using the data train, 
a five-state left-to-right HMM [26] was trained 
for each cluster. Figure 3 shows the state tran-
sition diagram of these HMMs.

HMMs were trained with the following fea-
tures:

ax(t), ay(t), az(t), ax(t) - ax(t-1), ay(t) - ay(t-1), 

az(t) - az(t-1), atan
( )
( )

x

y

a t
( )
a t

Where ax, ay, az and t are x, y, z-axis accel-
eration data and time, respectively. After train-
ing HMMs, online recognition of the data test 
was done from the sliding windows with 40 
samples. For each sample of the data test, its 
corresponding window was comprised of the 
current sample and its 39 previous samples. 
This window was used as HMMs input. After 
calculating log-likelihood of the HMMs, the 
sample was assigned to the class with the big-
gest log-likelihood value. This online process 
was done for each sample of the data test. 
The third level
At this level, the online estimation of flexion/

extension elbow angle was done using the up-
per arm data. A feed-forward, one-layer ANN 
was trained for each cluster. 25 neurons have 
been considered in the hidden layer. The “tan-
sig transfer function” and the “linear transfer 
function” were used for the hidden and out-

Figure 2: The block diagram of the proposed method. In the left and right panels, the offline 
training stages and the online estimation of the elbow angle are shown, respectively. The differ-
ent colors are for the correspondence between the right and left panels.

Figure 3: The state transition diagram of the 
HMMs.
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put layer, respectively. The scaled conjugate 
gradient algorithm was utilized as the training 
function. The following features have been 
used to train the ANNs: 

ax(t), ay(t), az(t), ax(t) - ax(t-1), ay(t) - ay(t-1), 
az(t) - az(t-1), ax(t-5), ay(t-5), az(t-5)

Experimental Results and Discus-
sion

The data set was randomly divided into two 
parts: 80% as the training set and 20% as the 
testing set. To choose the appropriate number 
of clusters, the train and test processes were 
done for a different number of clusters as list-
ed in Table 1, then the cross correlation co-
efficient (K) and the Normalized Root Mean 
Squared Error (NRMSE) were calculated be-
tween the estimated and desired (actual) el-
bow angles of the data test.

Table 1: The results for a different number 
of clusters

Number of clusters K (%) NRMSE (%)
15 74.84 24.02
25 82.25 17.20
40 86.02 16.38
55 87.19 15.41
70 90.25 13.64
85 86.83 15.39
85 86.83 15.39

According to Table 1, selecting 70 clus-
ters was appropriate due to the least value of 
NRMSE and the biggest value of K. As the clus-
ters increased from 15 to 70, K and NRMSE 
would become higher and lower respectively, 
i.e. the estimation results would improve. But 
with a further increase, the estimation results 
weakened. As a reason, increasing clusters 
caused their within-class variances would be-
come lower, so HMMs would better train for 
online recognition using the clusters data. But 

excessive increase of clusters has an adverse 
effect on the results, because the structure gen-
eralization weakened, and also the data of the 
clusters used for training HMMs would de-
crease, accordingly, HMMs parameters would 
not have proper values due to inadequate data 
train. In this research, 70 was chosen as the 
proper number of clusters. To represent the de-
tailed results of 70 clusters, K and NRMSE are 
shown for each ADL and each target point in 
the horizontal plane (Table 2).

To improve the estimation results, a post-
processing method has been proposed. It was 
based on the second maximum of log-likeli-
hoods of HMMs.

For example, if a sample is placed near the 
decision boundary between two classes, it will 
be probable to recognize its class incorrectly 
because the boundary decision is rigid and the 
decision regions have not been formed ideally. 
The regions belonging to the two classes with 
the first and the second maximum of log-like-
lihoods are close to each other.

In this research, if a discontinuity interval 
was created in the estimated elbow angle, it 
would be modified by checking some condi-
tions, then angle estimation would continue in 
the usual manner. The post-processing method 
is comprised of the following sections:

1. For each cluster, the Difference Absolute 
of Elbow Angle time series (DAEA) was cal-
culated as follows:

|φ(t) - φ(t-1)|
Where φ and t  are the elbow angles of data 

train and time, respectively, then the Maxi-
mum value of DAED (MDAEA) was deter-
mined for each cluster. It must be emphasized 
that the data train was used only in this step. 

2. In online estimation, the difference ab-
solute of the estimated angle was calculated 
based on the current and the previous sample:

|φ1(t) - φ1(t-1)|
Where φ1 and t  are the elbow angles of the 

data test and time (sample number), respec-
tively. 

309



J Biomed Phys Eng 2017; 7(3)

www.jbpe.org

If this value was ‘n’ times greater than 
MDAEA of two clusters assigned to the cur-
rent and previous samples, the next step would 
be done.

As ‘n’ parameter’s value increases, the sen-
sitivity becomes larger but may sometimes 
have undesirable performance. Considering a 
trade-off between these two cases, this value 
was set to 1.2.

3. One cause of the discontinuity may be the 
improper class recognition of the sample. For 
detecting this case, if two recognized clusters 
of the current and previous samples were dif-
ferent, these two clusters would be saved in 
the discontinuity location.

4. The mentioned steps would continue until 
another discontinuity was detected.

5. In this step, for the continuity interval, the 
samples were labelled to the classes with the 
second maximum of log-likelihoods and then 
the elbow angles were estimated again. 

6. At the beginning and end of correspond-
ing interval, if the jumps decreased and using 
these new estimated angles did not create any 
discontinuities and the current continuity in-
terval was not bigger than the previous conti-
nuity interval, these modifying (new) estimat-
ed angles would be replaced with the earlier 
estimated angles. 

Figure 4 illustrates two examples of the re-
sults with/without post-processing. In the top 
panels, the recognized clusters of the samples 
with/without post-processing are shown in red 
and blue, respectively. In the middle panels, 
the actual and the estimated angles (without 
post-processing) are shown in green and blue, 
respectively, and in the bottom panels, the ac-
tual and the estimated angles (with post-pro-
cessing) are shown in green and red, respec-
tively

It is seen qualitatively that the discontinuity 
intervals are modified by the post-processing 
method. 

Using post-processing, K and NRMSE be-
tween the estimated and real angles of the data 

Number of 
clusters

Target 
points K (%) NRMSE (%)

Drinking

A 92.18 13.33
B 75.11 23.68
C 79.28 24.71
D 55.46 25.38

Answering 
the phone

A 97.58 7.28
B 98.43 7.14
C 95.17 8.79
D 87.67 13.35

Eating

A 90.87 13.65
B 94.11 10.13
C 98.41 5.98
D 94.87 12.54

Replacing 
the object

A-B 97.62 8.14
A-C 97.27 9.18
A-D 81.28 19.45
B-A 97.74 7.09
B-C 96.69 8.50
B-D 97.69 7.56
C-A 85.24 16.11
C-B 77.27 23.77
C-D 98.65 5.94
D-A 96.90 8.68
D-B 86.48 16.99
D-C 98.28 7.56

Pouring 
glass of 

water

A-B 93.80 15.03
A-C 94.40 11.04
A-D 91.52 13.72
B-A 98.53 6.31
B-C 83.07 16.92
B-D 99.06 5.66
C-A 97.50 8.42
C-B 87.71 15.40
C-D 97.56 7.03
D-A 82.38 22.78
D-B 80.81 31.33
D-C 89.77 17.03

Table 2: The results of 70 clusters, for each 
ADL and each of the target points in the hori-
zontal plane.
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Figure 4: Two examples of the results with/without post-processing. In the top panels, recog-
nized clusters of the samples with/without post-processing are shown in red and blue, respec-
tively. In the middle panels, the actual and the estimated angles (without post-processing) are 
shown in green and blue, respectively and in the bottom panels, the actual and the estimated 
angles (with post-processing) are shown in green and red, respectively.
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test were obtained at 91.19% and 12.83%, re-
spectively, where 0.94% and 0.81% improve-
ment was achieved.

Conclusion
In this research, we estimated the elbow 

flexion/extension angle using the shoulder ki-
nematic information. For this aim, we suggest-
ed a hierarchical structure comprising of three 
levels: clustering, recognition and the elbow 
angle estimation. Before clustering, the data 
train was partitioned to the movement phases 
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according to the locations with zero elbow an-
gular velocity. Then, at the first level, the ob-
tained phases were clustered using K means 
algorithm. At the second level, for each cluster 
(class), a HMM was trained for online class 
recognition of the samples. At the third level, 
an ANN was trained for each cluster to esti-
mate the elbow flexion/extension angle. The 
advantages of the proposed structure could be 
mentioned as follows:

1. An ANN cannot learn all the movement 
phases properly because of their variety. So, 
partitioning ADLs to the phases facilitated the 
ANNs functions.

2. There were some advantages due to hier-
archical structure. At the first level, the move-
ment phases of data train were clustered. Ac-
cording to previous studies [24], clustering 
improves the estimation results because the 
ANNs will have specialized performance. At 
the second level, online cluster (class) recog-
nition was done by HMMs which was an im-
portant issue.

3. The proposed structure was online, being 
very suitable in the real-time FES control sys-
tems.

4. Different initial locations for the objects 
were considered in recording the data set to 
increase the richness of the database and to 
improve the neural networks generalization.

The number of clusters changed at the first 
level to achieve the optimal number, then, K 
and NRMSE between the estimated and ac-
tual elbow angle of the data test (108 data 
test) were calculated (Table 1). As clusters in-
creased from 15 to 70, K and NRMSE would 
become higher and lower, respectively, i.e. the 
estimation results would improve. But with a 
further increase, the estimation results became 
weak. In this study, 70 was taken as the appro-
priate number of clusters. The reason could be 
mentioned as follows:

 As clusters increased, their within-class 
variances would become lower; so HMMs 

would better train for online recognition using 
cluster data. But excessive increase of clusters 
has negative effects on the results because the 
structure generalization would reduce, and 
also the clusters data used for training HMMs 
would decrease, as a result, HMM parameters 
would not have the proper values due to inad-
equate data train. 

K and NRMSE between the estimated and 
real angles of the data test were obtained at 
90.25% and 13.64%, respectively which were 
acceptable values with regard to the variety of 
movements studied in this research. In order to 
improve the results, a post-processing method 
was proposed. This method modified the dis-
continuity intervals of the estimated angles in 
the presence of some conditions. Regarding 
the small lengths of the discontinuity intervals, 
it would not cause serious problems for being 
an online method. Comparing the middle and 
the bottom panels of Figure 4, its positive ef-
fects on the discontinuity intervals would be 
clear. In this manner, K and NRMSE between 
the estimated and real angles of the data test 
were obtained at 91.19% and 12.83%, respec-
tively which were 0.94% and 0.81% better 
than previous results.
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