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Introduction

An electromyographic (EMG) signal detected during a muscle 
contraction, reflects the electrical activity of the motor units 
(MUs) recruited during this contraction. In other words, an EMG 

signal is the sequence of voltages detected from a contracting muscle 
over time. The potentials are detected in the voltage field generated by 
the active muscle fibers of a contracting muscle. Surface and needle 
electrodes such as concentric, monopolar as well as single fiber needle 
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ABSTRACT
Background: Electromyographic (EMG) signal decomposition is the process by 
which an EMG signal is decomposed into its constituent motor unit potential trains 
(MUPTs). A major step in EMG decomposition is feature extraction in which each 
detected motor unit potential (MUP) is represented by a feature vector. As with any 
other pattern recognition system, feature extraction has a significant impact on the 
performance of a decomposition system. EMG decomposition has been studied well 
and several systems were proposed, but feature extraction step has not been investi-
gated in detail.
Objective: Several EMG signals were generated using a physiologically-based 
EMG signal simulation algorithm. For each signal, the firing patterns of motor units 
(MUs) provided by the simulator were used to extract MUPs of each MU. For feature 
extraction, different wavelet families including Daubechies (db), Symlets, Coiflets, 
bi-orthogonal, reverse bi-orthogonal and discrete Meyer were investigated. More-
over, the possibility of reducing the dimensionality of MUP feature vector is explored 
in this work. The MUPs represented using wavelet-domain features are transformed 
into a new coordinate system using Principal Component Analysis (PCA). The fea-
tures were evaluated regarding their capability in discriminating MUPs of individual 
MUs. 
Results: Extensive studies on different mother wavelet functions revealed that 
db2, coif1, sym5, bior2.2, bior4.4, and rbior2.2 are the best ones in differentiating 
MUPs of different MUs. The best results were achieved at the 4th detail coefficient. 
Overall, rbior2.2 outperformed all wavelet functions studied; nevertheless for EMG 
signals composed of more than 12 MUPTs, syms5 wavelet function is the best func-
tion. Applying PCA slightly enhanced the results.

Keywords
Electromyographic signal, EMG decomposition, Decomposability index, Fea-
ture extraction, Motor Unit Potential Classification, Wavelet Function, Wavelet 
Transform
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electrodes are the common types of electrodes 
that are used to detect EMG signals. The de-
tected signal using electrodes is, in fact, the 
superposition of the motor unit potential trains 
(MUPTs) and background noise. The signals 
acquired using surface electrodes are known 
as surface EMG signals and those recorded 
with indwelling electrodes are called needle 
EMG signals.

Surface electrodes are easy to use, nonin-
vasive and do not cause pain. However, the 
signals detected using these electrodes (i.e., 
surface EMG signals) do not contain detailed 
information about deep muscles, mainly due 
to the low pass filtering characteristics of the 
volume conduction properties of the overlying 
muscles as well as other subcutaneous tissues. 
Needle electrodes, on the other hand, provide 
selective recordings as they can be inserted 
in precise locations and have small recording 
areas. For diagnostic purposes, it is useful to 
obtain detailed temporal and spatial informa-
tion about the fibers of an MU, thus indwelling 
electrodes inserted into a muscle are used to 
acquire EMG signals.

The characteristics of an EMG signal re-
corded during a muscle contraction depend 
on several factors such as the level of muscle 
contraction, the shape and size of the electrode 
used, the position and orientation of the elec-
trode relative to the muscle fibers of the ac-
tive MUs, the anatomical and physiological 
features of the muscle and the age and state of 
health or fatigue of the muscle. Consequently, 
an EMG signal reveals valuable information 
for physiological investigation along with 
clinical examinations to diagnose, treat as 
well as to manage neuromuscular disorders. 
EMG signal decomposition, the procedure of 
resolving an EMG signal into its component 
MUPTs, is an efficient method for retrieving 
such information. The main target of EMG 
signal decomposition is extracting the firing 
pattern, MUP template along with MUP shape 
stability of each active MU which contributed 
significantly to the EMG signal being ana-

lyzed.
Various EMG decomposition systems and 

algorithms have been proposed. Parsaei et 
al. provided an extensive review of the algo-
rithms developed for the decomposition of 
intramuscular EMG signals in [1]. Several 
techniques, from signal acquisition to MUP 
grouping, as well as numerous types of elec-
trodes, both single and multi-channel, along 
with different signal processing, clustering 
and supervised classification techniques have 
been utilized in developing automated or semi-
automated EMG decomposition algorithms 
[1-20], but the main focuses of researchers 
was clustering and classifying steps. Each of 
these systems uses their own feature extrac-
tion, classification and clustering techniques. 
The performance of clustering and classifica-
tion algorithms in grouping MUPs have been 
studied and reported; however, the perfor-
mance and discrimination power of the fea-
tures have not been studied yet. Nevertheless, 
in an EMG decomposition system, like any 
pattern recognition system, the features used 
for representing examples and patterns play an 
important role in the overall performance of 
the system. Therefore, a cross comparison of 
the feature extraction methods used in EMG 
signal decomposition can assist in choosing 
the best features for representing MUPs and 
ultimately  may improve EMG decomposition 
results. The purpose of this work is to address 
this issue. Specifically, our target is to explore 
the potential of employing the coefficients 
from discrete wavelet transform of MUPs as a 
feature extraction method in order to achieve 
higher MUPT separability, and hence a greater 
EMG decomposition precision.

EMG Signal Decomposition
EMG signal decomposition is the procedure 

of partitioning a raw EMG signal into its con-
stituent MUPTs. An EMG decomposition sys-
tem could consist of four major steps: signal 
preprocessing, MUP detection, feature extrac-
tion along with clustering and supervised clas-
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the background noise contaminating a signal. 
The noise includes instrumentation noise and 
artifacts. A band-pass filter with adequate cut-
off frequencies can remove low-frequency 
baseline drifts and also high-frequency noise. 
In addition to improving signal-to-noise ra-
tio (SNR), an efficient filtering technique can 
enhance the contrast between the MUPs of 
different MUs. This technique can make the 
clustering easier [2, 3]. In general, band-pass 
filters or low-pass difference (LPD) filters are 
the most widely used filters in this step [1-3].
Signal Segmentation and MUP Detec-

tion
The objective of this step is to partition an 

EMG signal into segments containing possible 
MUPs. The threshold crossing technique usu-
ally is used for this purpose. In this method, 
the raw or filtered signal is inspected for nega-
tive or positive peaks which exceed a speci-
fied threshold. These peaks indicate candidate 
MUP positions. A window centered at each 
identified peak is then applied to the signal 
and the data points that falls in the window 
are stored as a MUP. The threshold can also 
be chosen manually or adaptively. An option 
for setting the threshold value is the root mean 
square (RMS) value of the signal multiplied 
by a constant [4-8]. Figure 2 shows an exam-
ple of a simple MUP detection technique. In 

Figure 2: Segmentation of a signal into MUPs

Figure 1: Main steps of an EMG decomposi-
tion system along with the objective of each 
step [9]

 

sification of detected MUPs. Figure 1 dem-
onstrates a short description of the objective 
of each step. A short description of each step 
is presented under sub-sections 2.1 to 2.4, re-
spectively.
Signal Preprocessing
As with any signal analysis method, the 

initial phase in decomposing of an acquired 
EMG signal is removing, as much as possible, 
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Figure 3 a shimmer plot of the MUPs detected 
in an EMG signal is illustrated.
Feature Extraction
In this step, each MUP which is detected in 

the previous step is represented by a set of fea-
tures called feature vector. The feature vector 
used to represent each MUP has a significant 
role in the overall accuracy and the speed of 
a decomposition algorithm. Ideally, a feature 
vector should be comprised of a minimum 
number of uncorrelated features that are easy 
to compute, capable of discriminating between 
different classes and minimally sensitive to 
contaminating noise [10].

To date, different types of  features have been 
used to represent detected MUPs in EMG de-
composition which can be categorized as: the 
MUP time samples, first or second derivatives 
of  time samples [4, 5, 7, 9, 11–20], morphol-
ogy of MUPs [8, 21–25], Fourier transform or 
power spectrum coefficients [2, 26, 27] and 
Wavelet coefficients [28-33]; see [1] for more 
information.

Different Wavelet decomposition tech-
niques, in terms of mother wavelet and de-
composition level, have been used for EMG 
decomposition [3, 28-34]. EMG-LODEC sys-
tem [29] based on the works of Zennaro [28] 
and Wellig [30] uses Daubechies wavelet co-

efficients as features. They showed both ana-
lytically and experimentally that lower bands 
of wavelet coefficients exhibit lower shimmer, 
and hence they are more appropriate to repre-
sent MUPs in a new feature space. They have 
reported that regarding accuracy, their system 
outperforms the method of Gut and Moschytz 
[7]. Yamada et al. [31], compared the accuracy 
of a decomposition system using either wave-
let coefficients or their principal components. 
After applying complete linkage clustering 
on both feature vectors, the ones enhanced by 
principal component analysis (PCA) improved 
decomposition accuracy. Ren et al. [32] have 
used and compared four different feature sets 
in the minimum spanning tree clustering algo-
rithm: original data, the waveform morpho-
logical features, wavelet coefficients and a 
fuzzy-based optimal wavelet packet features 
[34]. A fuzzy C-means (FCM) classification 
method is used to refine the results. Accuracy 
and processing time are compared for all the 
methods as well as refinements they have in-
troduced. The best choice was using the opti-
mal wavelet packet features including FCM-
optimized classification. Rasheed et al. [33] 
used both first-order discrete derivative along 
with wavelet-domain features. Daubechies-4 
mother wavelet was chosen and a 6-level dis-

Ghofrani Jahromi M., Parsaei H., Zamani A., Dehbozorgi M.

Figure 3: A shimmer plot of the MUPs detected in an EMG signal
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crete wavelet transform was executed. Only 
detail coefficients at levels 4 to 6 were fed to 
their hybrid classifiers.
Clustering and Classification
In machine learning and statistics, classifica-

tion is the problem of assigning a label to a 
new observation, according to a model which 
is extracted from a training set of data con-
taining observations whose category or mem-
bership is already known. On the other hand, 
clustering is the duty of categorizing a set of 
objects so that the objects in the same group, 
which are called a cluster, share similar fea-
tures. The EMG decomposition by its nature 
is a clustering task by which similar MUPs 
are sorted into several groups such that each 
group represents an MUPT. Grouping MUPs 
in EMG decomposition process could be com-
pleted using just a clustering algorithm or a 
clustering as well as a classification algorithm 
[1]. Common clustering techniques employed 
in EMG decomposition consist of single or 
complete linkage, minimum spanning tree, 
self-organizing neural networks, fuzzy c-
means and k-means. In addition, template 
matching, certainty-based methods and artifi-
cial neural networks are the most widely used 
methods for classification. See [1] for a list of 
methods using specific clustering or classifica-
tion algorithms.

If a full or complete decomposition is re-
quired, in addition to the four steps discussed, 
the employed decomposition system contains 
another step in which superimposed MUPs 
are resolved into their constituent MUPs [4, 
15], [22, 35-40]. However, for applications in 
which only mean MU firing rate and MU firing 
rate variability are of interest, such as clinical 
applications, resolving superimposed MUPs is 
not necessary because the desired MU firing 
parameters can be estimated from incomplete 
discharge patterns [1, 10].

Methods
One objective in this research was to find the 

most suitable wavelet for repressing MUPs in 

EMG signal decomposition. This section ex-
presses the details of the steps towards this 
aim.

Data
Several simulated EMG signals were used 

in this study. Forty four EMG signals were 
generated using physiologically-based EMG 
signal simulation algorithm developed by 
Hamilton-Wright and Stashuk [41]. In the pre-
sented model, primarily, the physical layout 
of a muscle together with the electrode posi-
tion is considered. Then according to a de-
fined value for maximum volume contraction, 
a number of motor units required to obtain the 
EMG signal are recruited. Therefore, this in-
tramuscular EMG signal simulator enables us 
to create intramuscular EMG signals with dif-
ferent complexities represented by the average 
number of MUP patterns per second (pps), the 
numbers of active motor unit (adjusted  by set-
ting the level of MVC), the amount of MUP 
shape variability represented by jitter and/or 
inter–discharge intervals (IDI) variability. The 
simulator, for each generated EMG signal, 
provides the discharge patterns for each MU 
contributed significantly to the EMG signal. 
These MU discharge patterns were used as a 
reference. Given the firing pattern of each MU 
in a given EMG signal, its MUP are extracted 
by placing a window of 161 samples  centered 
at each firing time. This window represents 
MUP intervals of 5.152 ms at a sampling rate 
of 31.25 kHz.

Discrete Wavelet Transform for EMG 
Decomposition

Transformations, in general, are applied to 
a raw signal in order to obtain further infor-
mation from that signal, which is not read-
ily available in the raw signal (i.e., time –do-
main). Wavelet transform (WT) of a signal 
is an efficient method for representing both 
time and frequency information of a given 
signal. In fact, the WT of a signal provides a 
two-dimensional time-frequency representa-

Comparative Study of DWT for EMG Decomposition
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tion of the signal. Although there are several 
methods such as Wigner-ville distribution 
and short–time Fourier transforms for time-
frequency representation of a signal, it has 
been shown that the WT outperforms such 
traditional methods as it transforms the sig-
nals with a flexible resolution in both time and 
frequency domains. Specifically, the WT is a 
useful tool for processing non-stationary and 
time-varying signals processing particularly 
the biomedical signals. 

The WT method is categorized into two 
types: continuous wavelet transforms (CWT) 
and discrete wavelet transforms (DWT). Con-
tinuous wavelet transform (CWT) of a square 
integrable signal, x(t), is defined by equation 
(1).

( ) *1( , )  t bCWT a b x t dt
aa

ψ
∞

−∞

− 
 
 ∫        (1)

where the real numbers a and b are called 
scale (or dilation) and translation parameters, 
respectively, and ψ(t) is the mother wavelet. 
In fact, the CWT illustrates how well a wave-
let function correlates with the mother wavelet 
ψ(t).

Discrete wavelet transform (DWT) of a sig-
nal with length N is attained by choosing a=2j 

and b=k2j and considering CWT as the convo-
lution of x(t) and 1( ) ( )

22  jj

th t ψ= − . Howev-
er, it is more common to view DWT from a 
filter bank perspective. By successively pass-
ing the given signal x[n] through a series of 
low-pass and high-pass filters, wavelet coeffi-
cients are computed. Passing the samples 
through a low pass filter results in approxima-
tion coefficients, and filtering the signal with a 
high pass filter provides detailed coefficients. 
Mathematically, DWT can be expressed as:
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Where h[n] represents the impulse response 
of low-pass filter, S[n] is approximation coef-
ficient, g[n] represents that of the impulse re-
sponse of high-pass filter and d[n] stands for 
detailed coefficients. This process is continued 
to further extract wavelet coefficients. Figure 
4 illustrates how an input signal x[n] is passed 
through three successive approximation and 
detail filters. The outputs contain the contents 
of the signal at different frequency sub-bands. 
The tree is known as a filter bank. If the detail 
coefficients decompose further wavelet packet 
decomposition is achieved. 

CWT and DWT have several advantages and 
disadvantages. CWT is more efficient and reli-
able than DWT, as it maintains all information 
without down-sampling. However, the com-
putational complexity of CWT is higher than 
that of DWT. In other words, DWT is faster 
than CWT. The issue with CWT is that it is 
highly redundant.

During analyzing a signal using WT method, 
two major factors should be considered: the 
type of wavelet and the level of decomposi-
tion. Different types of wavelets have different 
time-frequency structures.

One objective of this study was to find the 
most suitable wavelet for repressing MUPs in 
EMG signal decomposition. To achieve this 
purpose, different wavelet families including 
Daubechies (db), Symlets, Coiflets, bi-orthog-
onal, reverse bi-orthogonal and discrete Meyer 
have been investigated. Table 1 lists different 
types of wavelet functions with their families 
examined in this study. The wavelet-domain 
features are extracted by taking the DWT of 
each detected MUP. By decomposing a given 
MUP using DWT, the MUP pattern feature 
vector would be the concatenation of the de-
tail coefficients at all scale levels and the ap-
proximation coefficients at the last scale level. 
Mathematically, the wavelet-domain feature 
vector of an MUP obtained by applying an M– 
level of DWT  ( i.e., V(M) ) ) can be represented 
as v(M)=(sM, dM, dM-1, dM-2, …, d2, d1) where sM 
stands for approximation coefficients and dM 
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stands for detailed coefficients estimated at 
Mth level.

The possibility of reducing the dimensional-
ity of the MUP feature vector is explored in 
this work. The MUPs represented using wave-
let-domain features are transformed to a new 
coordinate system using PCA [42]. PCA is an 
unsupervised method that tries to seek a set of 

new orthogonal features each of which is a lin-
ear combination of the original features. The 
criterion of orthogonality ensures that PCA 
provides new features with the least amount 
of redundant information [43]. In this system, 
each coordinate is responsible for a section of 
the given data variance according to its order, 
which means, the first coordinate forms the 
most significant part, the second one owns the 
second most considerable section and so forth. 
The first K principal components, which are 
responsible for a particular part, e.g, β%, of 
the variance in the data are the most impres-
sive specifications in certain data. The value of 
K is the dimension of the feature space used to 
represent the MUPs of a given MUPT. The op-
timized value for the parameter β was figured 
out empirically.

Evaluation Criteria
In EMG signal decomposition, features used 

to represent each MUP should be capable of 
discriminating between MUPs of distinct 
MUs.  In this research, to quantify the discrim-
inative power of the wavelet-domain features, 
two evaluating criteria were used: Decompos-
ability Index and Predictive Accuracy.

Decomposability Index (DI) is an index pro-
posed by Parsaei and Stashuk [20] to measure 
the decomposability of a given EMG. In fact, 
this index measures how distinguishable the 
MUPs of an MU are from those of other MUs 

Wavelet 
Families

Function in MATLAB

Daubechies
db1, db2, db3, db4, db5, db6, db7, 
db8, db9, db10, db11, db12, db13, 
db14, db15

Symlets
sym2, sym3, sym4, sym5, sym6, 
sym7, sym8

Coiflets coif1, coif2, coif3, coif4, coif5

Biorthogonal

bior1.1, bior1.3, bior1.5, bior2.2, 
bior2.4, bior2.6, bior2.8, bior3.1,
bior3.3, bior3.5, bior3.7, bior3.9,
bior4.4, bior5.5, bior6.8

Reverse
Biorthogonal

rbio1.1, rbio1.3, rbio1.5, rbio2.2, 
rbio2.4, rbio2.6, rbio2.8, rbio3.1,
rbio3.3, rbio3.5, rbio3.7, rbio3.9,
rbio4.4, rbio5.5, rbio6.8

Discrete 
Meyer

dmey

  

 

h

g

h
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x[n] d2

s2

d1

s1 d3
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 Figure 4: A 3-level discrete wavelet decomposition of a signal x[n]. SM represents approxima-
tion coefficients and dM symbolizes detailed coefficients obtained at level M

Table 1: Wavelet functions used in this work
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in an EMG signal. See reference [9] or [20] 
for the details of the calculation of DI for an 
EMG signal. 

Predictive accuracy of a classifier is a regular 
basis to assess the quality of features used to 
represent patterns. In this method, the accura-
cy of a predetermined learning algorithm over 
a different set of features is estimated, and the 
set that provides the highest accuracy is select-
ed as the best feature set. The main idea here is 
that the more powerful the features, the higher 
the accuracy of the classifiers will be. In this 
work, a kNN classifier with k=5 is chosen for 
all features. In addition, cross validation was 
used to find an optimum value for k.

Results and Discussion
Table 2 (presented in pages 374 and 375) 

gives the DI values for all mother wavelets 
studied in this research. The results are sum-
marized in Figures 5-7. Figure 5 presents DI 
values and Figure 6 depicts predictive accura-
cy rates of the best mother wavelets versus the 
number of MUs contributing in the generation 
of each EMG signal. Figure 7 shows the box 

plots. The presented results were produced us-
ing M = 4 (a 4–level decomposition in DWT) 
and β=95%. These user-defined parameters 
were determined empirically using some sim-
ulated EMG signals used in this work.

The results suggest that mother wavelets db2, 
coif1, sym5, bior2.2, bior4.4 and rbior2.2 have 
a better capability in differentiating between 
MUPs created by different MUs. In addition, 
applying PCA to the wavelet–domain feature 
values slightly improved the discrimination 
of MUPs. However, when using PCA, one 
should consider its computational complexity. 
Moreover, combining coefficients from differ-
ent sub-bands or applying PCA on a batch of 
sub-bands did not improve the values of DI. 
Among all the wavelet functions studied in 
this work (listed in Table 1), the reverse bi-
orthogonal 2.2 (rbior2.2) outperformed other 
wavelet functions. 

It can be revealed from Figures 5 and 7 that 
in general as the number of MUs contributed 
in EMG signal increases, the decomposition 
complexity of the signal increases mainly 
because when the number of active MUs in-

Ghofrani Jahromi M., Parsaei H., Zamani A., Dehbozorgi M.

 

Figure 5: Decomposability Index achieved using different wavelet functions
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Figure 6: kNN classification accuracy rate, (k=5) achieved using different wavelet functions

 

Figure 7: Decomposability index (left) and classification accuracy (right) achieved using selected 
wavelet function and time samples
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creases, the number of superimposed MUPs 
and ultimately the variability of samples in 
each class (i.e., MUPT) increases. Likewise, 
the effectiveness of feature extraction methods 
studied in discriminating MUPs reduces, for 
such hard-to decompose signals syms5 wave-
let function performed better than the other 
functions nevertheless rbior2.2 outperformed 
all wavelet functions on average. It should be 
noted that there are several other factors such 
MU firing pattern, MUP shape variability, 
SNR of a signal that affect the decomposabil-
ity of a given EMG signal; here we did not 
investigate the performance of the feature ex-
traction methods for each of these parameters 
individually. Nevertheless, the DI used in this 
work considers MUP shape variably and SNR 
implicitly [20].

Conclusion
EMG signal decomposition is a common ap-

proach to exploit inherent information in an 
EMG signal. Feature vector used to represent 
MUPs have a significant role in the precision 
of decomposition system. In this research, dif-
ferent wavelet families including Daubechies, 
Symlets, Coiflets, bi-orthogonal, reverse bi-
orthogonal and discrete Meyer have been 
studied to find the most suitable wavelet for 
repressing MUPs in EMG decomposition. Re-
sults revealed that MUs were most separable 
after imposing a 4-level DWT and consider-
ing the detail-4 coefficients while using the 
wavelets db2, coif1, sym5, bior2.2, bior4.4 or 
rbior2.2. Applying PCA slightly improved the 
results.
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