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ABSTRACT
Background: Epilepsy is a severe disorder of the central nervous system that pre-
disposes the person to recurrent seizures. Fifty million people worldwide suffer from 
epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.
Objective: In this paper, an algorithm to detect the onset of epileptic seizures 
based on the analysis of brain electrical signals (EEG) has been proposed. 844 hours 
of EEG were recorded form 23 pediatric patients consecutively with 163 occurrences 
of seizures. Signals had been collected from Children’s Hospital Boston with a sam-
pling frequency of 256 Hz through 18 channels in order to assess epilepsy surgery. By 
selecting effective features from seizure and non-seizure signals of each individual and 
putting them into two categories, the proposed algorithm detects the onset of seizures 
quickly and with high sensitivity.
Method: In this algorithm, L-sec epochs of signals are displayed in form of a third-
order tensor in spatial, spectral and temporal spaces by applying wavelet transform. 
Then, after applying general tensor discriminant analysis (GTDA) on tensors and cal-
culating mapping matrix, feature vectors are extracted. GTDA increases the sensitivity 
of the algorithm by storing data without deleting them. Finally, K-Nearest neighbors 
(KNN) is used to classify the selected features.
Results: The results of simulating algorithm on algorithm standard dataset shows 
that the algorithm is capable of detecting 98 percent of seizures with an average delay 
of 4.7 seconds and the average error rate detection of three errors in 24 hours.
Conclusion: Today, the lack of an automated system to detect or predict the sei-
zure onset is strongly felt.
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Introduction

Epileptic seizures are temporary periods entangling hyperactivity 
and hyper-synchronization of a great number of neurons within 
one or more neural networks producing disruptive symptoms [1]. 

Epilepsy may be the result of a mutation in molecular mechanism that 
regulates neural behavior, transfer and organization. It may be caused by 
brain injuries such as a severe head trauma, stroke, brain infection or a 
malignant brain tumor [2]. Fifty million people worldwide suffer from 
epilepsy; after Alzheimer’s and stroke, it is the third widespread ner-
vous disorder [3]. From a surgical perspective, severe seizures restrict 
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independent and social activities of the person 
with consequences like seclusion and econom-
ic problems. The most critical consequences 
of seizures concern the possibility of experi-
encing burn, rupture and breakage of skull as 
well as increased chance of unexpected events 
such as death. Surgery of hard seizures re-
quires identifying the seizure focus, i.e. where 
seizure begins. To determine the location of 
seizure, electrical brain signals (EEG), brain 
imaging by MRI and functional brain imaging 
during seizure and non-seizure fits by SPECT 
can be used [4]. The onset of seizure is usually 
detected by EEG analysis. Electroencephalog-
raphy (EEG) is a multi-channel recording of 
electrical activity produced by a set of neurons 
within the brain. The channels reflect internal 
activity of different brain areas. In this meth-
od, measurement is taken by installing non-
invasive electrodes on scalp. EEG features of 
scalp and intracranial areas among people with 
epilepsy are changeable in both epileptic and 
non-epileptic states [5]. To detect the onset 
of a seizure, a set of EEG channels generate 
a rhythmic activity that is the result of over-
harmonizing activity of the brain. The position 
of the channels involved and the content of the 
rhythmic activity vary from person to person. 

In addition, EEG effects of a patient’s sei-
zure may be similar to the effect of a non-sei-
zure disorder of the same patient or another 
[6]. EEG signals are classified with respect to 
their frequency components. In other words, 
they are classified into delta (f < 4Hz), theta (4 
< f < 8Hz), alpha (8 < f < 12Hz), beta (12 < f 
< 30Hz) and gamma (f > 30Hz) [7]. 

A seizure detector can be grouped as a sei-
zure onset detector or as a seizure accident 
detector [8]. The goal of a seizure onset detec-
tor is to distinguish when a seizure has started 
with the least possible delay, but not necessar-
ily with the greatest possible accuracy. In con-
trast, the goal of a seizure accident detector is 
to recognize seizures with the highest possible 
accuracy, but not necessarily with the least 
delay [9,10]. Seizure onset detectors are em-

ployed for applications requiring a response to 
a seizure, while seizure accident detectors are 
used for applications requiring an accurate ac-
count of seizure activity over a period of time. 
In seizure onset detectors, quick initiation is 
serious, because the accuracy of such imaging 
studies diminishes the delay between seizure 
onset and infusion of the imaging radiotracer 
greatly [11]. Within the realm of therapy, sei-
zure onset detection could be used to trigger 
neuro-stimulators designed to affect the pro-
gression of a seizure. In this application, rapid 
initiation is serious, because the likelihood 
of affecting a seizure seems to decrease lon-
ger delay between the onset of a seizure and 
the start of stimulation [12]. Finally, within 
the realm of warning, seizure onset detection 
could help a patient or care-provider to ensure 
safety or administer a fast-acting anticon-
vulsant. The spectral energy redistribution is 
caused by hyper-synchrony of neurons within 
an epileptic neural network and consists of 
an appearance or disappearance of frequency 
components within 0-25 HZ band [13,14]. 
However, what spectral components vanish 
or rise to prominence varies among patients. 
Furthermore, EEG channels demonstrating 
spectral energy change also varies among pa-
tients since it is a function of the cerebral site 
of origin of a seizure.

Related Works
One of the simplest detectors of seizure on-

set was developed by Gotman [15]. Gotman’s 
algorithm, tracked harmonic rhythmic activi-
ties in EEG signals as a symptom of seizure. 
The algorithm searched a number of EEG 
channels for the presence of a rhythmic activ-
ity with a beat frequency of 3-30HZ and the 
amplitude less than three times of the largest 
window. Whenever the rhythm exceeded a 
threshold and lasted for about 4 seconds, the 
seizure detection was alarmed. Gotman’s al-
gorithm could detect seizures with rhythmic 
activity below 20Hz; the Gotman algorithm is 
not successful in recognizing seizures consist-
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ing of EEG containing a mixture of frequen-
cies or those with low amplitude high frequen-
cy activity. However, it was not able to detect 
seizures with a combination of frequencies or 
seizures with low amplitude and high frequen-
cy. Reveal Seizure Detection was developed 
by Wilson [16]. Reveal Algorithm analyzed 
2-sec epoch of each channel into time-frequen-
cy components, using neural network rules to 
determine whether features extracted from the 
components of a channel were in accordance 
with a seizure occurrence. As reported by Wil-
son in [16], Reveal algorithms detected 76% 
of the 672-recorded cases of epileptic seizure 
in 425 patients, showing an error detection rate 
of 0.11 for patients without epilepsy. When 
Reveal algorithm was designed specifically 
for each patient [16-18], detection accuracy 
improved from 0.62 to 0.34 error per hour, and 
a sensitivity of 78% was achieved. Meier pro-
posed a general seizure onset detector, though 
he failed to offer one specifically for patients 
[19]. Shoeb proposed a seizure onset detector 
system specific to each patient [20-22]. His 
algorithms used feature extraction in the fre-
quency band of 0-25 HZ by a filter bank of 
3HZ and SVM classification to categorize the 
features extracted into seizure and non-seizure 
classes. His algorithm was tested on 844 hours 
of EEG signals taken from scalp of over 23 pe-
diatric patients. The algorithm detected 96% 
of 163 seizures with an average delay rate of 
4.5 seconds and the average error of 0.07 per 
hour. Shoeb’s algorithm has higher sensitivity 
than Gotman algorithm, but non-rhythmic ac-
tivity seizure had been recognized with large 
latency.

In this algorithm, GTDA was used to select 
effective features from seizure and non-seizure 
EEG signals. In next step, we evaluated our 
detector based on three metrics: latency, speci-
ficity and sensitivity. We compared our detec-
tor with other works that had been presented in 
the literature. In comparison with other works, 
our proposed algorithm is able to reduce la-
tency and can be used to initiate just-in-time 

therapy methods such as VNS and TNS. This 
proposed algorithm was tested on 91 seizures 
and 1360 hours of non-seizure taken from 57 
patients. The algorithm was able to detect 96% 
of seizures with an average delay rate of 1.6 
sec and error detection of 0.45% per hour. His 
approach depended on whether the tested sei-
zure was in one of the six defined categories. 
This article presents a seizure onset detection 
algorithms specific to the patients aiming at 
reducing the response period of detector by 
selecting effective features of the EEG signals. 

Material And Methods
In this paper, we propose an online EEG-

based epileptic seizure onset detection algo-
rithm based on effective features selected by 
applying general tensor discriminant analysis 
and K-NN classifier. Next section describes 
general structure of the proposed algorithm. 

Figure 1 and figure 2 show seizures of pa-
tients A and B, respectively. In figure 1, sei-
zure began in the second 1723, which included 
the flattening of the EEG signals across chan-
nels as detected by the emergence of a beta 
rhythm band on channels (F3-C3, C3-P3). 
Then, it lasted for a few seconds and the am-
plitude increased with its frequency falling in 
theta band.

In figure 2, seizures began in the second 
6313, continuing with a prominent rhythm in 
theta band on channels (F7-T7, T7-P7). Oth-
er EEG channels registered changes too. For 
example, channel (C3-P3) developed a theta 

Figure 1: An Example of Seizure in EEG Sig-
nals of Patient A 
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band rhythm. The overall structure of pro-
posed EEG-based seizure onset detection al-
gorithm is shown in figure 3.

The dataset used to evaluate the perfor-
mance of patient-specific detector operator in-
cluded consecutive EEG recordings from 23 
pediatric patients (younger than 18). Signals 
which were measured to assess epilepsy sur-
gery, were collected from Children’s Hospital 
Boston. The sample frequency vector of 256 
Hz was obtained by 18 channels. In general, 

844 hours of consecutive EEG was recorded 
from 23 patients, containing 163 occurrences 
of seizures. EEG datasets were separated into 
hourly intervals. The data without seizure oc-
currence were labeled as non-seizure class 
and data containing seizure occurrences were 
labeled as seizure class. EEG datasets were 
separated into hourly intervals. The data with-
out seizure occurrence were labeled as non-
seizure class and data containing seizure oc-
currences were labeled as seizure class. The 
details of these datasets have been shown in 
Table 1 [23].

Spectral and Spatial Feature 
Extraction

Given the non-static nature of EEG signals, 
wavelet transform can be a powerful tool to 
divide signals into several sub-bands or to 
extract appropriate characteristic features 
[13,24]. Spectral features can be used to es-
tablish the difference between the two classes. 
In the proposed algorithm, discrete wavelet 
transform has been used as a powerful means 
to divide EEG signals and to present them in 
spectral, spatial and temporal amplitudes. For 
a sample epoch X(c,t) in channel c and time t, the 
wavelet coefficients (sub-bands) and x(c,f,t) can 
be achieved by its convolution and a mother 
wavelet H(t,f) according to the equation (1):

( , , ) ( , ) ( , )*c f t t f c fx H X=                          (1)

The mother wavelet Morlet (Equation 2) was 
used as a mother wavelet to calculate coeffi-
cients in M sub-bands as this wavelet showed 
an acceptable performance in a variety of 
EEG signals applications [25]. Ω is the center 
frequency and   is the bandwidth parameters. 
Here, we assumed Ω = 1 and σ = 2.

21( ) exp(2 )exp( )tt i tψ π
σπσ

= Ω −          (2)

In addition, EEG channels involved in rhyth-
mic seizure activities can be used as an indica-
tor for detecting seizures. Figure 4 shows how 
spectral and spatial feature are extracted.

 

Figure 2: An Example of Seizure in EEG Sig-
nals of Patient B 

 

Figure 3: Implementation of Proposed Algo-
rithm
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The extraction of spectral features can be 
used for all channels. To consider spectral and 
spatial data for an L-sec period in time t (t=T), 
the extracted features are linked to develop a 
composite feature vector XT with N×M ele-
ments (N is the number of channels), and the 
relationship between spatial structures of dif-
ferent channels will be established automati-
cally.

Feature Reduction Based on 
General Tensor Discriminant 
Analysis (GTDA) Technique

Many features extracted from EEG signals 
representing seizure or non-seizure do not 
have any marked characteristic, thus increas-

ing the calculations costs in classifications. 
General tensor discriminant analysis (GTDA) 
[26] can be used as a useful method to reduce 
the dimension of feature vectors, which is able 
to save the information extracted from EEG 
signals without deleting minor data. Tensors 
are multi-dimensional arrays of values which 
transform linearly under coordinate transfor-
mations [27,28]. If 1 2 ... MN N NX R × × ×∈ , then M 
is the order of a tensor, that is denoted by 

1 2, ,..., Mn n nX . High order tensors are traditional-
ly scanned into vectors (vectorization) by 
techniques such as PCA and MSA. But during 
vectorization, a great deal of useful structure 
information is lost. On the other hand, when 

patient sex age seizure type origin No. seizures non-seizures 
(hours)

seizure 
(min)

1 F 11 SP.CP.GTC Temporal 6 46 7.36
2 M 11 SP.CP Frontal 3 29 2.86
3 F 14 SP.CP.GTC Temporal 7 32 7.46
4 M 22 SP.CP.GTC Temporal, Occipital 4 93 6.3
5 F 7 SP.CP Frontal 4 35 9.3
6 F 1.5 SP.CP.GTC Temporal 7 54 2.53
7 F 14.5 SP.CP.GTC Temporal 3 61 5.41
8 M 3.5 SP.CP.GTC Temporal 5 20 15.33
9 F 10 SP.CP Frontal 4 65 4.6
10 M 3 SP.CP.GTC Temporal 7 45 7.45
11 F 12 SP.CP Frontal 3 31 13.43
12 F 2 SP.CP Frontal 24 22 39.26
13 F 3 CP.GTC Temporal, Occipital 12 34 9.58
14 F 9 SP.CP.GTC Temporal 8 26 2.81
15 M 16 CP.GTC Frontal, Temporal 20 37 33.91
16 F 7 SP.CP.GTC Temporal 10 19 1.41
17 F 12 SP.CP.GTC Temporal 3 24 4.88
18 F 18 CP.GTC Temporal, Occipital 5 31 5.28
19 F 19 SP.CP Frontal 3 26 3.93
20 F 6 SP.CP.GTC Temporal 8 27 4.9
21 F 13 SP.CP.GTC Temporal 4 23 3.31
22 F 9 CP.GTC Temporal, Occipital 5 28 3.4
23 F 6 SP.CP Frontal 8 36 7.06

Total 163 844 201.76

Table 1: EEG Data Specifications
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the resulting vector is much larger than the 
number of examples in the training set, USP is 
accrued. GTDA can be used to preserve dis-
criminant information in the original data and 
reduce USP. GTDA algorithm [29] gives a 
number of training samples xi,j ϵ RN  in c class-
es, where i is the class number, 1 ≤ i ≤ c  and j 
is the sample index in the jth class, 1 ≤ j ≤ n, the 
goal of GTDA is to find a projection of the xi,j 
, which is optimal for separating different 
classes in a high dimensional space. In this 
strategy, the projection matrixU*, which is de-
fined by a set of vectors U = [u1, u2, …, uc-1] is 
chosen to maximize the ratio between the trace 
of Sb and the trace of SW.

* arg max( ( ) ( ))
T

T T
b W

U U I
U tr U S U tr U S Uξ

=
= − (3)

Where Sb , SW , are between-class scatter ma-
trix and within-class scatter matrix, respec-

tively defined as (4),(5):

1

1 ( )( )
c

T
b i i i

i
S n m m m m

n =

= − −∑             (4)

, ,
1 1

1 ( )( )
inc

T
W i j i i j i

i j
S x m x m

n = =

= − −∑∑      (5)

Where

1

c

i
i

n n
=

=∑   ,  ,
1

1( )
in

i i j
ji

m x
n =

= ∑                 (6)

,
1 1

1( )
inc

i j
i j

m x
n = =

= ∑∑                                    (7)

In Eq. (3), 
*N NU R ×∈  (N* << N) constrained 

by UT = I , is the projection matrix and ξ  is a 
tuning parameter. To extract N*features simul-

taneously, ξ  is estimated as 
*

1

N

i
i
λ

=
∑ , where 

 

Figure 4: How Spectral and Spatial Features are Extracted in Proposed Algorithm
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1
l

I iλ = are the largest N* eigenvalues of 1
W BS S− .

In real applications, suitable ξ  cannot be 
manually determinate. In this paper, we auto-
matically select ξ  during training procedure. 
An accurate solution of Eq. (3) can be obtained 
by the alternating that has been described in 
[30,31]. Table 2 shows key steps to find the lth 
projection optimization matrix ( )t

lU  in tth itera-
tion.

In table 2, 1 21 ...
, 1

i Mj n N N N
i j i cX R≤ ≤ × × ×

≤ ≤ ∈  are 
training tensors. The projected tensor 

1 2 ...
,

MN N N
i jY R × × ×∈  to replace the original gen-

eral tensor X for recognition is calculated as 
(8):

1

M

l
l

Y X U
=

= ∏                                             (8)

To determine the tuning parameter ξ  auto-
matically, we adjust ξ  in the tth training itera-
tion and the lth order by setting 

(1)ξ  equal to 

the maximum eigenvalue of ( 1) 1 ( 1)( )t t
l lW B− − − .

Classification of Selected 
Features Based on Adaptive KNN 
Algorithm

One of the supervised algorithms that are 
commonly used for monitoring different states 
of input data is K-nearest neighbor algorithm 
(K-NN), which classifies input data based on 
the number of clusters N. 

This algorithm is based on the minimum dis-
tance between data and default centers using 
different norms to calculate the minimum val-
ue. After identifying K near neighbors, groups 
that can establish the nearest neighbors are 
investigated. In the proposed method, KNN 
algorithm specifies the tested sample class in 
three steps: 

• The distance between the tested sample 
and the training samples in all classes is cal-
culated based on one of the Euclidean metrics, 
i.e. Manhattan or City Block. 

• The nearest training sample relative to the 
test sample will be determined based on the 

 

Table 2: Alternating Procedure to Find Optimal Projection Matrix

Optimized Seizure Detection Algorithm
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Kth neighboring distance. 
• For each class, the number of training sam-

ples in Kth neighboring distance is determined 
and the class with the most training samples in 
that neighboring distance is introduced as the 
test class. 

In Table 3, Structural and Procedure Condi-
tions of K-NN are Shown.

sures: latency, sensitivity and specificity.
Response Period or Delayed Detec-

tion (D)
It is the delay between the start of epilepsy 

marked by EEG technician and the detection 
of seizure activity by the detector.
Latency
The electrographic onset of a seizure refers 

to the onset of scalp EEG changes associated 
with a seizure. The delay between the expert-
marked seizure onsets within the EEG detec-
tor declaration of seizure activity is known as 
latency.
Sensitivity
The percentage of seizure correctly identi-

fied which is obtained by (9):
Correctly detected positives TPSensitivity

Total actual positives TP FN
= =

+
 (9)

Specificity
The specificity refers to the number of times, 

over the course of an hour, a detector declares 
the onset of seizure activity in the absence of 
an actual seizure which is calculated by (10):

Correctly detected negatives TNSpecificity
Total actual negatives TN FP

= =
+

(10)

Results of Simulation
The proposed algorithm is implemented by 

MATLAB software to evaluate the perfor-
mance. To calculate latency, sensitivity and 
specificity of the proposed algorithm, the de-
tector is trained on each patient’s EEG data, 
separately. Adaptive K-NN classifier used the 
city block distance and K=10. To calculate 
the response period, sensitivity and accuracy 
of the proposed algorithm, the detector was 
trained on EEG data of each patient separately. 
To classify KNN, the distance measure of City 
Block with the target value of 13 was selected. 
The parameters influencing the performance 
of the detector were set according to Table 4.

Figure 5 shows the percentage of test seizures 
detected within a specified latency. Moreover, 
51% of 163 test seizures were detected with 
a 3-second delay, 72% with a 5-second delay 
and 91% with a 10-second delay. Figure 6 

Begin

     Initialize j ← 0, D ← data set, and n ← #prototypes 
       Construct the full Voronoi diagram of D 
           Do j ← j + 1;  for each prototype x’j
            Find the Voronoi neighbors of x’j
                If any neighbor is not from the same class as, 
                Then Mark x’j 
                Until j = n 
            Discard all points 
      Construct the Voronoi
     Prototypes

End

Table 3: Proposed Adaptive K-NN with Train-
ing Border 

Experimental Results 
By applying GTDA technique, prominent 

features are selected from extracted feature, 
and finally the selected feature will be catego-
rized by KNN classification. After extracting 
selected features by GTDA, the max differ-
ence between seizure and non-seizure signals 
is generated, producing a dramatic increase in 
detection sensitivity. Overall, proposed algo-
rithm has the following properties:

• Increased accuracy of performance
• Negligible average error 
• Reduced user intervention
• Suitable for starting vagus nerve stimulator

Performance Evaluation
The accuracy of a classification system is 

frequently evaluated by means of three mea-

Rezaee Kh., Azizi E., Haddadnia J.
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displays the average detector response period 
for each of the 23 patients. For the majority 
of patients, most seizures were detected with a 
response period of 4.7 seconds.

One of the seizures was detected with 
50-second delay for patient No. 15. This long 
response period is because epileptic EEG sei-

zure was different from spatial features of 
training seizures.  Figure 7 shows a training 
seizure for the same patient that began in sec-
ond 272 and continued with a rhythmic theta-
band on channels T7-P7. Figure 8 shows the 
tested seizure that occurred for patient No. 15 
with detection error. It began from the second 

PARAMETERS DESCRIPTION INITIALIZING
2 seconds EEG epoch length 2 seconds

18 channels Number of EEG channels 18 channels
5 sub-band Number of the obtained sub-band by applying wavelet transform 5 sub-band
20-24 hours Number of the used hours to extract training non-seizure vectors 20-24 hours
20 seconds Number of seconds into seizure used to extract training seizure vectors 20 seconds
3-10 seizure Number of seizures used to extract training seizure vector 3-10 seizure

Table 4: Values Presumed for Trained Classifier Parameters 

 

Figure 5: Percentage of Detected Seizures within a Specified Latency

Figure 6: Percentage of Detected Seizures within a Specified Latency

 

Optimized Seizure Detection Algorithm
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876 and included a train of pulses on channel 
P7-O1. The detector had problem detecting 
the onset of this seizures because the specter 
and its amplitude differed from training sei-
zures. The training seizures are similar to the 
ones shown in figure 7.

Sensitivity Estimation
Figure 9 shows the sensitivity of patient-spe-

cific algorithm for 7 patients from 23 patients. 
More than 98% of 163 seizures were detected 
correctly.

Accuracy Estimation
Figure 10 shows the number of detection 

errors made by the detector for 23 patients in 
24 hours. For most patients (18 patients), the 

detector made between 0 and 5 errors in 24 
hours. For example, for patient No. 13, the al-
gorithm had 18 detection errors in 24 hours. 
This great detection error can be explained 
in terms of the short-term breaks of rhythmic 
brain activity, which are similar to the onset 
of epileptic activity in terms of spatial and 
spectral features. Ti improves the accuracy 
of detection algorithm for patient No. 13, the 
detection can be declared only when seizures 
continue for a long time leading to a rise in the 
response period.

Discussion
Overall, 98% of 163 test seizures were de-

tected. For most patients (18 of 23), the detec-
tor declares between 0 and 5 false detentions 

 

Figure 7: Example of an EEG Seizure in Patient No. 15. Seizure Began in the Second 272 with a 
Theta-Band Rhythm, which is most Prominently Observable on Channels T7-P7

 
Figure 8: Another Example of EEG Seizures of Patient No. 15. These Seizures Began in the Sec-
ond 876 with a Training of Pulses on Channel P7-O1.

Rezaee Kh., Azizi E., Haddadnia J.
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Figure 10: Sensitivity of Patient-Specific Seizure Detector. Overall, 98% of 163 Seizures were 
Revealed.

Figure 9: Sensitivity of Patient-Specific Seizure Detector. Overall, 98% of 163 Seizures were Re-
vealed.

 

per 24 hours. For patient 13, the algorithm 
declares 20 false detections per a 24-hour pe-
riod. The reason for the high false alarm rate 
is the presence of short bursts of rhythmic ac-
tivity that match seizure onset signature both 
in spectral and spatial character. In these ex-
periments, a number of sub-bands (M) were 
used to generate feature vector. Increasing the 
number of sub-bands does not greatly impact 
the detection latency or the sensitivity of the 
detector. The average, across 23 subjects, la-
tency of detectors with 3, 5 and 7 sub-band 
was 4.5, 4.8 and 5 seconds, respectively. All 
detectors had a sensitivity of 98%. Increasing 
the number of sub-bands appears to improve 
the specificity of a detector. The average spec-

ificity of a detector that uses three sub-bands 
is greater than 8 false detections per 24 hours, 
and that of a detector with seven-sub bands is 
less than 4 false detections per 24 hours. 

Our detector uses effective features that are 
extracted by wavelet transform from spectral, 
spatial and temporal domain of EEG signals 
and selected by GTDA. Utilizing this strategy, 
the discriminative information in training ten-
sors is preserved as a benefit in comparison 
with PCA and MSA. Shoeb’s detector extract-
ed features from 0 to 25HZ frequency band by 
means of a 3HZ band width filter and a sup-
port vector machine (SVM) was used as clas-
sifier [20]. Our algorithm exhibits a shorter 
latency, a higher sensitivity, and a comparable 

Optimized Seizure Detection Algorithm

91



J Biomed Phys Eng 2016; 6(2)

www.jbpe.org

specificity relative to Shoeb’s algorithm. High 
sensitivity increases the capability of detector 
to recognize seizures in order to initiate just-
in-time therapy methods. Our detector can 
recognize more seizure with less delay in com-
parison with other algorithms. The increased 
number of sub-bands does not affect the re-
sponse period and sensitivity of the detector. 
On average, for 23 patients, the response pe-
riod of the detector using 3, 5 and 7 sub-bands 
was respectively 5.4, 4.8, and 5 seconds, and 
all detections had a sensitivity of 98%. Fur-
thermore, it can be concluded that a rise in the 
number of sub-bands would have a significant 
impact on the accuracy of the detector. The 
average accuracy of detection requires three 
sub-bands with more than 8 errors, but even 
with seven sub-bands, achieving less than 4 
errors in 24 hours is possible. The proposed 
algorithm uses wavelet analysis to extract fea-
tures and GTDA to reduce the dimension of 
feature vector. It is while the Shoeb algorithm 
[21,22] uses a 3HZ filter for feature extraction 
and SVM for classification of feature vectors.  

Both algorithms were tested on the same da-
taset. The results suggest that the proposed al-
gorithm has shorter response period, higher ac-
curacy and sensitivity compared to algorithms 
such as Shoeb algorithm in detecting the onset 
of epileptic seizure. In Table 5, the comparison 
between the results of the proposed algorithm 
with Shoeb algorithm, which is one of the best 
algorithms in detecting the onset of epileptic 
seizure, has been shown.

Conclusion
This paper proposed an algorithm with ac-

ceptable sensitivity and accuracy for patient-
specific seizure onset detection. First, L-sec 
periods from seizure and non-seizure signals 
were broken into several sub-bands using 
wavelet transform. Then, selected features 
were extracted by applying GTDA. At the 
end, the nearest neighbor classification was 
trained to classify feature vectors extracted 
from seizure and non-seizure signals, so that 
they could be used to determine the class of 
the training examples. Features selected by 
GTDA were able to establish the greatest dis-
tinction between seizure and non-seizure sig-
nal, and thereby increasing the sensitivity of 
the detector. The proposed detector was tested 
on 844 hours of EEG signals taken from the 
scalp of 23 pediatric patients. The algorithm 
detected 98% of 163 seizures with an aver-
age delay of 4.7 seconds and the average error 
of 0.12 errors per hour. The authors intend to 
find the value of K based on optimization tests 
such as a fuzzy system or evolutionary algo-
rithms. Furthermore, enhancing feature vector 
and the detector of seizure stop are among fu-
ture works of the author in order to improve 
the performance of the proposed algorithm. 

In several tests, we studied influence of im-
portant parameters of the proposed detector. 
Also, we compared our detector with other 
works that had been presented in the literature. 
In comparison with other works, our proposed 
algorithm is able to reduce the latency and can 
be used to initiate just-in-time therapy meth-
ods such as VNS and TNS

Conflict of Interest
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Proposed Algorithm Accuracy Sensitivity Delayed Detection
Our work 0.12 error in one hour 0.98 4.7 Sec

Shoeb 0.17 error in one hour 0.96 5.2 Sec

Table 5: Comparison of Results Obtained from Proposed Algorithm and Shoeb Algorithm
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