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Introduction

There are numerous (>100) neuromuscular and neurological disor-
ders that affect the spinal cord, nerves, or muscles. These disor-
ders change the morphology and activation patterns of the motor 

units (MUs) of the involved muscle. Therefore, the characteristics of 
electromyographic (EMG) signals detected from a muscle reflect the 
degree and type of muscle disorder [1–3]. Early detection and diagno-
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ABSTRACT
Background: Electromyographic (EMG) signals obtained from a contracted 
muscle contain valuable information on its activity and health status. Much of this 
information lies in motor unit potentials (MUPs) of its motor units (MUs), collected 
during the muscle contraction. Hence, accurate estimation of a MUP template for 
each MU is crucial. 
Objective: To investigate the possibility of improving MUP template estimation 
using the wavelet denoising technique.
Material and Methods: In this analytical study, several MUP template esti-
mators were developed by combining conventional estimation methods and wavelet 
denoising techniques. A MUP template was initially estimated using conventional 
methods such as mean, median, median-trimmed mean, or mode. Thereafter, it was 
post-processed using the wavelet denoising technique. 
Results: Evaluation results of the studied estimators using 40 simulated EMG 
signals with a true template for each constituent MUP train showed that augmented 
wavelet- based template estimation methods are more reliable than conventional 
methods. However, on average, wavelet denoising was not much effective. Around 
40 MUPs of a MU is sufficient to estimate its MUP template.  
Conclusion: Although wavelet techniques are effective in EMG signal analysis, 
here wavelet denoising did not practically improve MUP template estimation. Con-
sidering computational simplicity and estimation error, the two methods median and 
median-trimmed mean are practical estimators that can provide a good estimation of 
a MUP template for a MU when approximately 40 MUPs are available. Nevertheless, 
the baseline noise level in the MUP templates estimated using the median-trimmed 
mean method is slightly lower than that in the templates estimated using the median 
method.
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sis of these diseases are essential for treatment 
and management. One way to detect these 
diseases is by electromyography, which is the 
technique of detecting, processing and analyz-
ing EMG signals. 

During conventional EMG examination, 
a clinician visually or auditory assesses the 
characteristics of EMG signals detected using 
needle electrodes positioned at various loca-
tions within a muscle to form an overall im-
pression of its condition. Such a subjective as-
sessment is highly dependent on the skills and 
experience level of the clinician and is prone 
to high error rate and operator bias. Quanti-
tative electromyography (QEMG) methods 
have been developed to overcome these issues 
[4–8]. QEMG methods characterize motor 
unit potential (MUP) waveforms automatical-
ly using pattern recognition techniques, allow-
ing for greater objectivity and reproducibility 
in supporting the diagnostic process [4, 9–11]. 
However, the efficacy of QEMG methods is 
directly connected to the accuracy with which 
MUP waveforms can be estimated.

The QEMG process entails decomposing an 
acquired EMG signal into constituting mo-
tor unit potential trains(MUPTs), estimating 
MUP templates and firing pattern statistics 
of the MUs that contributed to EMG signal, 
extracting features of MUP templates, and fi-
nally analyzing the extracted features [4, 6]. A 
MUP template for a MU is a MUP waveform 
that represents the shape of the potentials gen-
erated by the MU. This template is estimated 
by combining all the MUPs within the MUPT, 
produced by the MU. Due to background noise, 
interference from other MUs, and biological 
MUP shape variability of the MU (mainly be-
cause of jitter), estimating the MUP template 
is subject to some errors. Several methods, 
such as mean, median, median trimmed mean, 
statistical and interference canceling averag-
ing techniques have been proposed to reduce 
the effect of interference to provide reliable 
MUP template estimates for individual MU 
[12–16]. These methods have produced prom-

ising results and performance, but their accu-
racy decreases significantly when the number 
of MUP samples extracted for a specific MU 
is small. This can lead to uncertainty in the 
information provided by QEMG. Therefore, 
developing an efficient algorithm to estimate 
a MUP template is of interest.

Wavelet transforms have been widely used 
for biomedical signal processing as signal 
analysis, signal denoising, and signal com-
pression [17–19]. In EMG signal analysis, 
these techniques have shown great promises 
in extracting MUP features in EMG signal 
decomposition and muscle characterization 
[20–23]. In this work, we investigated the ef-
fectiveness of the wavelet denoising technique 
as a post-processing practice to improve the 
estimation of the MUP template.

Material and Methods
This analytical study includes two main 

steps: data collection, and MUP template esti-
mation. In data collection step, several MUPTs 
with known MUP template were collected. In 
MUP template estimation step, various MUP 
template estimation methods were applied to 
estimate the MUP template of a MU using its 
MUPs in the corresponding train. Details of 
each step are provided in the following two 
sub-sections.

Data Collection
Simulated EMG signals were used to ex-

amine the performance of the algorithms de-
veloped/studied in this work. Specifically, 40 
EMG signals were simulated using a physio-
logically-based EMG simulator that can gener-
ate physiologically realistic EMG signals [24]. 
We used simulated EMG signals because the 
employed simulator provides gold standard 
(true) MUP templates for MUPTs of a gener-
ated EMG signal. This assisted in the com-
parison of the estimated MUP template with 
the exact template, which increased certainty 
in the evaluation of the utilized algorithms. In 
addition, the simulator provides the capability 
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of including several artifacts affecting the ac-
curacy in MUP template estimation.

The simulation was done with various pa-
rameters: neuromuscular transmission vari-
ability (jitter) was set as 0 (zero), 25, or 50 
μs; the number of MU varied from 3 to 12, 
and maximum voluntary contraction (MVC) 

was considered at two levels 5% or 10%. Each 
signal was decomposed, using DQEMG soft-
ware to extract constituent MUTPs. An ex-
ample MUPT of the dataset used in this study 
is shown in Figure 1. The simulated signal 
length was 30-second and the sampling rate 
was 31.25 kHz.

Figure 1: An example of a motor unit potential train used in this study.

To study the effect of sample size (here the 
number of MUPs) in the estimation of the 
MUP template, around 700 MUPTs with 20 
to 300 MUPs were generated by randomly 
selecting MUPs of the MUTPs obtained from 
decomposing the signals.

MUP Template Estimation
Assuming Xd×n represents a MUPT contain-

ing d MUPs, each of which represented by n 
time samples of a MUP, the problem of MUP 
template estimation is to use the information 
provided in this matrix for estimating an n-di-
mensional vector that can accurately represent 
MUP waveform shape of the MU that generat-
ed this MUPT. In this work, for a given MUPT, 
a MUP template was initially estimated, using 
conventional methods including mean, medi-
an, median-trimmed mean, or mode [14–16]. 
Thereafter, the primary estimated template 
was post-processed using the wavelet denois-

ing technique. 
In using wavelet-based signal denoising 

techniques, several parameters including the 
type of mother wavelet, the thresholding tech-
niques, and the desired number of resolution 
level have to be addressed. Here, we chose 
the mother wavelet using the cross-validation 
strategy. Specifically, we investigated forty 
mother wavelet functions from orthogonal and 
biorthogonal families including Daubechies 
(db1-db10), Symlets (sym1–sym20), Coiflets 
(coif1–coif5), Biorthogonal (1.1-6.8), dMey-
er, and Haar. The mother wavelet provided the 
overall highest similarity value with the initial 
MUP templates and the lowest recovery error 
measured by the mean squared error was cho-
sen as the best mother wavelet. The similarity 
and compatibility of the mother wavelet with 
the MUPs show that the wavelet can charac-
terize the signal well. In terms of the thresh-
olding technique, we used the soft threshold-
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ing method to preserve the details of the MUP 
template. Ultimately, “Coiflet5” from Coiflets 
family revealed to have the best performance.

Results
The performance of the studied MUP tem-

plate estimators was quantitatively evaluated 
by comparing the estimated MUP templates 
with the true ones provided by the simulator. 
Three indices mean squared error (MSE), sig-
nal-to-noise ratio (SNR), and RMS ratio were 
used as performance measures. The MSE was 
estimated by calculating the error between the 
original template and its estimated version. 
This common estimation performance mea-
sure is mostly used due to its computational 
simplicity, which causes this measure to be 

easy to understand and analyze. The RMS ra-
tio index is defined as the ratio of the RMS of 
the estimated template divided by that of the 
true template. Evidently, the closer the value 
of RMS ratio to one, the better the model is in 
reconstructing the information in the template.

Figures 2, 3 and 4 depict the performance of 
the examined MUP template estimators for the 
three indices MSE, SNR, and RMS ratio ver-
sus the number of MUPs available for a MU in 
the corresponding MUPT. As shown, template 
estimation improves as the number of MUPs 
increases. This is in line with the concept of 
sample mean estimation, where the standard 
error reduces as the square root of the number 
of averaged samples. Based on the obtained 
results, the two methods median and median- 

Figure 2: Mean square error in estimating a MUP template versus the number of MUPs avail-
able for the motor unit.
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Figure 4: The ratio of the RMS of an estimated MUP template over that of the true template 
(RMS ratio) versus the number of MUPs available for a motor unit in the corresponding motor 
unit potential train.

Figure 3: Signal to noise ratio of a MUP template estimated for a motor unit versus the number 
of MUPs available for the motor unit.
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trimmed mean are the two top estimators.

Discussion
Accurate estimation of a MUP template for a 

MU that precisely represents the shape of the 
potentials generated by the MU is a key factor 
in QEMG. In this work, we examined several 
methods for this task. Based on the obtained 
results (Figures, 2,3, and 4), the two median-
based methods median and median- trimmed 
mean are the two top estimators. This finding 
is consistent with previous studies that showed 
these two methods outperformed other MUP 
template estimation methods [14,15]. 

The results in Figures 2, 3 and 4 show that 
there is an elbow in the curves of the per-
formance measures when the number of 
MUPs>40. This shows that 40 MUPs of a 
motor unit are sufficient to estimate a MUP 
template, representing MUP waveform shape 
generated by the MU. However, statistical 
comparison of the variances of the perfor-
mance indices over various level of the num-
ber of MUPs showed that when the number of 
MUPs increases the reliability of the estimator 
increases as well, except for the two methods 
median, and median-trimmed mean that show 
almost constant variability in performance 
measure over various number of MUPs in 
MUPTs. 

In terms of the effectiveness of wavelet de-
noising, this technique assisted with improv-
ing SNR of the MUP templates initially esti-
mated using the Mode estimator. However, for 
the other estimators, wavelet denoising was 
not practically effective in noise reduction. 
The value of SNR could be improved fur-
ther by increasing the value of the threshold 
in wavelet denoising; however, this leads to 
a reduction in the amplitude of the template. 
Wavelet techniques have been shown to be 
effective in EMG signal analysis, such as ex-
tracting MUP features in EMG signal decom-
position and muscle characterization [20–23], 
but this technique was not that effective in 
MUP template estimation. Nevertheless, pair-

wise statistical comparison of the variances of 
the performance indices (conventional meth-
od versus corresponding augmented wavelet) 
showed that augmented wavelet denoising 
template estimation methods are more reliable 
(less variable) than the conventional methods. 

In this experiment, we used MUPTs that 
include several unresolved superimposed 
MUPs, since DQEMG software does not re-
solve superimposed MUPs. Therefore, the 
studied MUP template estimators might lead 
to better results, if applied to MUPTs extracted 
by an EMG decomposition software that can 
resolve superimposed MUPs. 

As with any experimental work, there were 
several limitations with this research. The 
methods were evaluated using only simulated 
EMG signals. We used simulated EMG sig-
nals because the software used for generating 
EMG signals provides a true MUP template 
for each MUPT of a generated EMG signal. 
This assisted in the comparison of the esti-
mated MUP template with the exact template, 
which increased certainty in the evaluation of 
the utilized algorithms. However, there are 
several limitations with the EMG simulator 
used; for example, the issue of needle sliding 
during signal recording cannot be included in 
the simulator. Therefore, the data used in this 
paper might not exactly fit with real clinical 
data. Nevertheless, several key artifacts that 
affect the estimation of MUP template (e.g., 
MUP shape variability) were included in cre-
ating the data set. Consequently, the same re-
sults are expected for the real signals.

Conclusion
Motor unit potential templates of motor 

units that were active during an EMG signal 
recording can provide valuable diagnostic in-
formation. Several artifacts, such as jitter, in-
terference from MUPs generated from other 
MUs, and equipment noise affect the estima-
tion of a MUP template. Therefore, reducing 
the effects of these artifacts to improve MUP 
template estimation is of interest. In this pa-
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per, we investigated the effectiveness of the 
wavelet denoising method to reach this objec-
tive. The obtained results showed that aug-
mented wavelet denoising template estimation 
methods are more reliable (less variable) than 
conventional methods. However, on average 
wavelet denoising was not practically effec-
tive. The obtained results revealed that the me-
dian-trimmed mean estimator is the best MUP 
template estimator. Finally, the results showed 
that 40 MUPs of a motor unit is sufficient to 
estimate its MUP template.
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