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ABSTRACT
Background: There are many studies to investigate the effects of each interacting 
component of tumor-immune system interactions. In all these studies, the distinct ef-
fect of each component was investigated. As the interaction of tumor-immune system 
has feedback and is complex, the alternation of each component may affect other com-
ponents indirectly.
Objective: Because of the complexities of tumor-immune system interactions, it 
is important to determine the mutual behavior of such components. We need a careful 
observation to extract these mutual interactions. Achieving these observations using 
experiments is costly and time-consuming.
Material and Methods: In this experimental and based on mathematical mod-
eling study, to achieve these observations, we presented a fuzzy structured agent-based 
model of tumor-immune system interactions. In this study, we consider the confronting 
of the effector cells of the adaptive immune system in the presence of the cytokines of 
interleukin-2 (IL-2) and transforming growth factor-beta (TGF-β) as a fuzzy structured 
model. Using the experimental data of murine models of B16F10 cell line of mela-
noma cancer cells, we optimized the parameters of the model. 
Results: Using the output of this model, we determined the rules which could oc-
cur. As we optimized the parameters of the model using escape state of the tumor and 
then the rules which we obtained, are the rules of tumor escape. 
Conclusion: The results showed that using fuzzy structured agent-based model, 
we are able to show different output of the tumor-immune system interactions, which 
are caused by the stochastic behavior of each cell. But different output of the model 
just follow the predetermined behavior, and using this behavior, we can achieve the 
rules of interactions.
Citation: Allahverdy A, Rahbar S, Mirzaei HR, Ajami M, Namdar A, Habibi S, Hadjati J, Jafari AH. Extracting Mutual Interaction Rules Using 
Fuzzy Structured Agent-based Model of Tumor-Immune System Interactions. J Biomed Phys Eng. 2021;11(1):61-72. doi: 10.31661/jbpe.v0i0.489.

Keywords
Tumor Escape; Fuzzy; T-Lymphocytes; Interleukin-2; Transforming Growth 
Factor Beta

Introduction

The contribution of biologists and mathematicians made the bio-
logical modelling as a new field of research, and tumor growth 
modelling is one of the branches of this field. The aim of this mod-

elling is to facilitate the advances in cancer immunology [1]. There are 
many approaches to model tumor growth, among them are spatial [2-7] 
and non-spatial models [5]. Spatial models investigate the morphology 
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and dispersion of cells, both in the normal host 
cells and tumor micro-environment and non-
spatial models investigate the overall popula-
tion of cells, which may include tumor cells, 
immune cells and cytokines. Anther classifi-
cation of tumor growth model is based on the 
mathematical approach used for modelling; 
these approaches include partial differential 
equations (PDE) [6], cellular automata (CA) 
[7], ordinary differential equation (ODE) [8] 
and agent-based modelling (ABM) [9]. Each 
of these models have advantages and defects, 
which force the researchers to improve them. 
In this study, we will develop a non-spatial 
model of tumor-immune system interaction. 
Early studies to model tumor growth as non-
spatial behavior, described the growth pattern 
of tumor cells [10]. Gradualy, these models 
developed and extended by considering im-
mune cells [11, 12], host normal cells [13], in-
nate and adaptive immune system [14] and cy-
tokines [15]. Most of these models were based 
on ODE, which do not consist spatial features, 
but they made an easy and user friendly frame-
work to model the dynamics of tumor immune 
system interactions, which can be used to 
probe the interactions between components 
of tumor immunology. But ODE models just 
follow the average behavior of the system and 
cannot predict random noises or uncertainties 
of real systems. To overcome this deficiency 
of ODE models, fuzzy models [16], stochastic 
models [17] and ABM [1] can be used. 

Agent-based models are used for model-
ling the tumor-immune system with spatial 
[18] and/or non-spatial [1] features. As a non-
spatial approach, ABM is an alternative to 
ODE models to consider the memory and the 
emerging properties of tumor-immune system 
interactions, which were not considered in 
ODE models. On the other hand, in compari-
son with stochastic approaches for modelling 
tumor-immune interactions, the ABM’s emer-
gent behaviors can show more patterns of sys-
tem, which were not discovered by stochastic 
models [17].

The main goal of this study is to extract 
the rules, which the components of the tu-
mor immune system show as mutual interac-
tions. For this aim first, we should present a 
non-spatial model to simulate the interactions 
between tumor cells and the immune system. 
This model must comprise the uncertainty of 
the immunological rules to show the variation 
of the output of the model. Fuzzy systems are 
famous models to comport the uncertainties. 
By the fuzzy rule-base and overlapping mem-
bership functions to contain the uncertainties, 
the fuzzy system may be a suitable choice for 
an inference unit of our model. On the other 
hand, the experimental data are noisy affect-
ing the values of data as stochastic behavior. 
To overcome the noises of experimental data, 
we will use an ABM which uses the outcome 
of fuzzy system to generate the population 
of cells as a stochastic manner. The present 
model has two separated levels, containing 
fuzzy system and stochastic ABM. At each ex-
ecution of the model, we can obtain different 
output, which follow the overall behavior of 
the system. Therefore, we are able to obtain an 
infinite number of the observations, which fol-
low the overall trend of the model. Using such 
output, we will be able to determine which 
rule has occurred.

In the following, we will introduce the ex-
perimental data gathering, then we will pres-
ent the model and describe the components of 
the model. Next the results of the model will 
be explained and using these results, the rules 
of mutual interaction will be extracted. Finally, 
the outcome of these rules will be discussed.

Material and Methods

Experimental Data
In this experimental and based on math-

ematical modeling study, for evaluating the 
outcome of the presented model, we used 
experimental data from 35 tumor bearing 
C57BL6 mice. For tumor inoculation, 5×105 
cells of B16-F10 melanoma cancer cell line 
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in 200μL of incomplete culture medium were 
subcutaneously injected to the right flank of 
mice. The experiment duration was 24 days. 
On the first day, tumor cells were injected into 
the mice. Since 8th day, with 4-day intervals, 7 
mice were sacrificed to investigate the features 
of the tumor micro-environment including; tu-
mor size (tumor area), number of cytotoxic T-
cell lymphocytes (CTLs), gene expression of 
interleukin-2 (IL-2) cytokine and gene expres-
sion of transforming growth factor-β (TGF-β). 
For numbering CTLs, we used the immuno-
histochemistry image of tumor sections and 
for calculating the gene expression level of 
cytokines, real time PCR technique was used. 
Figure 1 shows the procedure and timing of 

experiments and data gathering.

Fuzzy-Structured ABM
The presented ABM is contained into agents 

and two components as environments. The 
agents are tumor cells and immune effector 
cells, which show the oppositional behaviors. 
The environment contains cytokine of trans-
forming growth factor-β (TGF-β) and interleu-
kin-2 (IL-2). In general, TGF-β is beneficial 
for tumor cells and detrimental to the immune 
system. On the other hand, IL-2 is beneficial 
for the immune system. The model has two 
separat levels including the population level 
and cellular level. The structure of the model 
is shown in Figure 2.

Figure 1: Data Gathering Procedure and Timing

Figure 2: The Structure of the Model
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Our model will be structured by biological 
considerations and tumor immunology. For 
this purpose, first we explain the tumor immu-
nology of the interactions between agents and 
environment of our model. The actions of each 
part of our model are highlighted as follows.

Tumor cells as agents do four following ac-
tions:

i) Proliferation: Tumor cells proliferate 
as an autonomous behavior. If the total 
number of tumor cells are low, the rate of 
proliferation will be high and vice versa. 
Therefore, the total number of tumor cells 
has a negative effect on tumor prolifera-
tion ratio.
ii) Recruitment of CTLs: Tumor present-
ed antigens force CTLs to migrate to the 
tumor microenvironment; therefore, the 
total number of tumor cells has a positive 
effect on CTLs recruitment. 
iii) Producing TGF-β: Tumor cells can 
produce and elevate the level of TGF-β 
concentrations in tumor microenvironment 
[19], in other words, the total number of 
tumor cells has a positive effect on TGF-β 
producing.
iv) Killing CTLs: CTLs may be killed in 
a challenge with tumor cells; therefore, the 
total number of tumor cells plays a positive 
role in killing the CTLs.

CTLs are the second agent of our model, 
which show three following actions:

i) Tumor killing: CTLs have a cytotoxic 
effect on tumor cells and can kill tumor 
cells, in other words, CTLs have a positive 
effect on tumor killing.
ii) Apoptosis: CTLs have a program to 
die and will die as an autonomous behav-
ior.
iii) Producing IL-2: CTLs can produce 
IL-2 and a large number of CTLs cause 
more IL-2 productions, in other words, the 
number of CTLs has a positive effect on 
IL-2 production.

IL-2, as an environment component, can el-
evate the CTLs recruitment and cytotoxicity; 

therefore, this cytokine plays a positive role in 
recruitment and cytotoxicity of CTL. TGF-β is 
another component of the model environment 
which has a positive effect on the proliferation 
rate of tumor cells.

As described above, our model structur-
ally contains a fuzzy block and the stochastic 
ABM block. The fuzzy block will determine 
the overall behavior of the model, and the sto-
chastic ABM block will use the overall behav-
ior which is determined by the fuzzy block to 
behave. More generally, the model contains 
two levels: 1) Population level and 2) Cellular 
level. The population level is fuzzy block and 
the cellular level is stochastic level. The sche-
matic of the model is illustrated in Figure 2.

As the model works based on stochastic ap-
proach, the fuzzy level should generate the 
probabilities for the behavior of each agent. 
Tumor cells use two probabilities including: 
1) Probability of tumor proliferation and 2) 
Probability of tumor death which is induced 
by CTLs. CTLs also use two probabilities in-
cluding: 1) Probability of CTLs death, which 
is induced to CTLs in challenge with tumor 
cell and 2) Probability of CTLs apoptosis, 
also the CTLs use the rate of recruitments. 
These probabilities and rates depend on the 
parameters of model, which have positive and 
negative effects on them. The fuzzy system 
considers these parameters to estimate each 
probability and rate. The fuzzy system uses 
three triangular membership functions includ-
ing “Low”, “Middle” and “High” which are il-
lustrated in Figure 3.

For the rule based on fuzzy systems, the 
model uses two types of rules which depend 
on the effect of input parameters of the model 
on the output of fuzzy systems. Assuming x 
as the parameter of the model (input of fuzzy 
system) and y as the output of fuzzy system. If 
x has a positive effect on y, we will have the 
following rules:

i) If x is Low, then y is Low
ii) If x is Middle, then y is Middle
iii) If x is High, then y is High

Allahverdy A. et al
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In contrast, if x has a negative effect on y, we 
will have the following rules:

i) If x is Low, then y is High
ii) If x is Middle, then y is Middle
iii) If x is High, then y is Low

According to the above descriptions, the 
fuzzy block of the model produces three prob-
abilities which include the probabilities of tu-
mor proliferation, tumor killing by CTLs and 
CTLs killing in challenge with tumor. Also, 
the fuzzy block produces the rate of CTLs re-
cruitment. It should be noted that in this mod-
el, we use a constant value as the probability 
of CTLs apoptosis. These probabilities and 
rates will be calculated by equations 1-4.

Tp (n)=aTp1 (T(n))Tp2 (TGF-β(n)) (1)
Tc (n)=γTc1 (C(n))Tc2 (IL-2(n)) (2)
Cr (n)=τCr1 (T(n))Cr2 (IL-2(n)) (3)
Cd (n)=μCd1 (T(n))   (4)
Where Tp is the probability of tumor pro-

liferation, Tp1 is the probability of tumor pro-
liferation as a function of the total number of 
tumor cells, Tp2 is the probability of tumor 
proliferation as a function of TGF-β. Tc is the 
probability of tumor killing by CTLs, Tc1 is the 
probability of tumor killing as a function of 
the total number of CTLs, Tc2 is the probabil-
ity of tumor killing by CTLs which is related 
to the concentrations of IL-2. Cr is the prob-

ability of CTLs recruitment, Cr1 is the prob-
ability of CTLs recruitment as a function of 
the total number of tumor cells and Cr2 is the 
probability of CTLs recruitment as a function 
of IL-2 concentration. Cd is the probability of 
CTLs death and Cd1 is the probability of CTLs 
death as a function of the total number of tu-
mor cells. The coefficients of these equations 
are described below:

a: The maximum rate of tumor proliferation
γ: The initial cytotoxicity of CTLs.
τ: The maximum speed of CTLs recruitment.
μ: The maximum rate of CTLs death.
Therefore, there are seven fuzzy inference 

systems for Tp1, Tp2, Tc1, Tc2, Cr1, Cr2 and Cd1 in 
the fuzzy block of the model. Moreover, there 
is a probability of CTLs apoptosis, which is 
defined by d.

At the cellular level of the model for tumor 
cells and CTLs, we have considered numerical 
arrays with length of total number of each cell 
type. These arrays contain uniform random 
numbers from zero to one. Each number is in-
terpreted as the probability of its behavior. For 
example, if the random number assigned to a 
tumor cell is less than the proliferation proba-
bility of the tumor cells, this cell will be dupli-
cated and if the random number is in the range 
of death, this cell will be eliminated. In other 
words, cellular level of the model receives the 
probabilities and rates from population level 
and uses them to generate a new population 
of tumor cells and CTLs. The output of this 
level is first fed into the environment to de-
termine the new concentrations of IL-2 and 
TGF-β. The concentrations of these cytokines 
are modelled through equations 5 and 6.

IL(n+1)=IL(n)+εI C(n)-uI IL(n)  (5)
S(n+1)=S(n)+εS T(n)-uS S(n) (6)
where IL is the concentration of IL-2, C is 

the number of CTLs, εI is the IL-2 production 
coefficient, uI is the IL-2 utilization coeffi-
cient, S is the concentration of TGF-β, T is the 
number of tumor cells, εS is the TGF-β produc-
tion coefficient and uS is the TGF-β utilization 
coefficient.

Figure 3: Membership Function of Fuzzy Sys-
tem

Mutual Fuzzy Rules of Tumor-Immune
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Extracting Mutual Rules
Using the presented model at each execution, 

the model will present different output which 
follow the overall behavior of the tumor-im-
mune system interaction. Therefore, we can 
obtain an infinite observation of the model. 
Moreover, using this model, we have access to 
the probabilities of tumor proliferation, tumor 
killing, effector cells death and the ratio of ef-
fector recruitment. To extract mutual rules, we 
will investigate the effect of each impressive 
component on the probabilities and ratios. In 
Table 1, the impressive component on each 
probability and ratio are illustrated. The rules 
must be expressed as fuzzy rules. Therefore, 
we defined three membership functions for 
each feature and component of the model as 
Figure 3. To determine which rule occurs at 
each time step, we will investigate the level 
of membership of each component and feature 
to each membership function. The strongest 
membership will show the occurred rule.

population level of model to follow the experi-
mental data. For this purpose, we used genetic 
algorithm (GA) and optimized these param-
eters. The values of these parameters are as 
follows: a = 1.0932, γ = 0.1082, τ = 0.3386, μ 
= 0.3031, d = 0.2023, εI = 1.0294, μI = 0.2758, 
εs = 0.1122 and μs = 0.0413. The results of this 
part of the model are illustrated in Figure 4.

After optimizing the coefficients of the pop-
ulation level, we executed the whole model. 
At the first time point, the population level 
used the tumor size, CTLs number, concentra-
tion of IL-2 and TGF-β as input to determine 
the probabilities for cellular level. At the cel-
lular level, random values of each cell were 
compared with these probabilities and death, 
proliferation or no action was chosen for that 
cell, the overall choices of all cells generated 
the new population and effects on the environ-
ments and population level were seen. This 
cycle continues to the final time point. As the 
arrays of cells consisting the random number 
in [0,1], each execution of model may cause 
different results. In Figure 5, we showed the 
result of 100 times execution of the whole 
model.

As it is illustrated in Figure 5, the execution 
of this model can consist of all data in a de-
termined range, and using this model we can 
comport the alternations of experimental data 
and uncertainty in the knowledge for model-
ling the behavior or any other uncertainties. In 
other words, using this model we will be able 
to make numerous virtual experiments, which 
can offer more information than experiments 
containing the features of the model which is 
listed in Table 1.

The next step of this study is extracting the 
fuzzy rule-base which maps the components 
of the model with the features of the model. 
For mapping the number of tumor cells and 
concentration of TGF-β to the probability of 
the tumor proliferation, considering three 
membership functions, there are 27 possible 
rules. In the same way, there are 27 possible 
rules to map the number of effector cells and 

Results
To execute the model, according to [20] 

we have assumed melanoma cells as circular 
shape with radius in 10μm size. Therefore, 
each mm2 of tumor contains 3200 tumor cells. 
Other agents of the model are dimensionless. 
The first step is to optimize the coefficients of 

Feature Impressive               
Components

Probability of Tumor 
Prolifeartion

Number of Tumor Cells 
Concentration of TGF-β

Probability of Tumor 
Killing

Number of Effector Cells 
Concentration of IL-2

Ratio of Effector 
Cells Recruitment

Number of Tumor Cells 
Concentration of IL-2

TGF-β: Transforming growth factor-beta

Table 1: Impressive Component on the Fea-
tures of the Model
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concentration of IL-2 to the probability of the 
tumor killing and 27 possible rules to map the 
number of tumor cells and concentration of the 
IL-2 to the ratio of effector cell recruitment. 
To determine that, which rules are fired, we 
calculated the frequency of each rule firing. 
In Figures 6-8, we illustrated the frequency of 
fired rules.

In Tables 2-4, we illustrated the firing prob-
abilities of each rule.

Discussion
In this study, we developed a new fuzzy-

structured agent-based model of tumor-im-
mune system interactions. This model con-
tained two separate levels; the population 
level and cellular level. The population level is 
structured based on biological evidence and a 
fuzzy inference system. In fuzzy inference sys-
tems, we considered three triangular member-
ship functions for input and output of the fuzzy 

Figure 4: Average Result of the Model

Figure 5: Output of 100 Times Execution of the Model

Mutual Fuzzy Rules of Tumor-Immune
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Figure 6: Number of Firings of Each Rule for 
Tumor Proliferation

Figure 7: Number of Firings of Each Rule for 
Tumor Killing

Figure 8: Number of Firings of Each Rule for 
Effector Cell Recruitment

inference systems including;“Low”, “Middle” 
and “High”. If the input had a positive effect 
on the output, the rules were increasing and if 
the input had a negative effect on the output, 
the rules were decreasing. Using the fuzzy in-
ference system in this model, we could bear 
the uncertainty of the immunological actions, 
which were pre-defined in immunology litera-
ture. Comporting these uncertainties can make 
us able to gain more insight on actions of each 
component in the tumor microenvironment 
and have a better immunological decision to 
treat the tumor. The second level of the model 
was cellular level, which is constructed as a 
stochastic agent-based model. This level of 
the model used the probabilities, which were 
defined by population level of the model to 

Number of Tumor Cells
Low (%) Middle (%) High (%)

Concentration of trans-
forming growth factor-beta 

(TGF-β)

High

Low (29.3)

Middle (67.2)

High (3.5)

Low (96)

Middle (4)

Low (98)

Middle (2)

Middle
Low (12.3)

Middle (87.7)

Low (72.3)

Middle (27.7)
Not Ocurred

Low Not Ocurred Low (100) Not Ocurred

Table 2: Firing Probability of Each Rule of Tumor Proliferation Probability.
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behave, the outcome of this level was the new 
population of tumor cells and CTLs and new 
concentrations of the IL-2 and TGF-β. 

For optimizing the parameters of population 
level of the model, we used the experimental 
data which were gathered from murine model. 
The murine model consisted of 35 tumor bear-
ing mice, which were inoculated by B16-F10 
cell line of melanoma cancer. For data gather-
ing, the tumor size was measured and the num-
ber of CTLs was calculated by immunohisto-
chemistry technique and the concentrations of 
IL-2 and TGF-β were measured by Real time 
PCR technique. Using these data which were 
extracted from murine model, we optimized 
the parameters of the population level of the 

model using genetic algorithm. 
Using the optimized population level of the 

model, we executed the whole model. In this 
execution, the population level determined 
the probabilities then, the cellular level used 
these probabilities as a stochastic behavior 
to generate the new populations. These new 
populations affected the environments and 
determined the new concentrations of cyto-
kines. Finally, these new populations and new 
concentrations affected the population level of 
the model. This cycle continued to reach the 
final time step. We executed the model 100 
times and the result showed that the model 
could create the uncertainty region to enclasp 
the experimental data. Using this model, we 

Number of Effector Cells
Low (%) Middle (%) High (%)

Concentration of IL-2

High Low (100)
Low (51.1)

Middle (48.9)

Low (77.5)

Middle (18)

High (4.5)

Middle Low (100) Low (100)
Low (92)

Middle (8)

Low Not Ocurred
Low (95)

Middle (5)
Not Ocurred

Table 3: Firing Probability of Each Rule of Tumor Killing Probability 

Number of Tumor Cells
Low (%) Middle (%) High (%)

Concentration of IL-2

High

Low (55)

M (43.2)

H (1.8)

Middle (100)
Middle (87.5)

High (12.5)

Middle

Low (60)

Middle (10)

H (30)

Middle (100)
Middle (78.8)

High (21.2)

Low
Low (83.4)

M (16.6)
Middle (100) High (100)

Table 4: Firing Probability of Each Rule of Effector Death Probability

Mutual Fuzzy Rules of Tumor-Immune
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could show the uncertainty of data gathering 
and any uncertainty of biological evidence. 
Moreover, as the model could show different 
results at each execution in the uncertainty 
region; therefore, this model made an ability 
to generate the virtual experiments, which re-
lied on real experiments. Using these virtual 
experiments, we could get some information 
which were unreachable in real experiments. 
Finally, using these information of virtual ex-
periments, we extracted the mutual interaction 
rules of each component of the model. In Fig-

ures 6-8, we showed the firing frequency of 
each rule and in Tables 3 and 4, we showed 
the probability of firing of the rules. In Figures 
9-11, we showed the surface of these rules.

As we expected, in Figure 9, some number 
of tumor cells have a negative effect on tumor 
proliferation and TGF-β has a positive effect 
on tumor proliferation. On the other hand, we 
expected that the number of effector cells and 
concentration of IL-2 have a positive effect on 
tumor killing; also, Figure 10 shows this fact, 
but in this figure the concentration of IL-2 

Allahverdy A. et al

Figure 9: Rules Surface of Tumor Proliferation

Figure 10: Rules Surface of Tumor Killing
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shows more significant effect on the probabil-
ity of tumor killing. Moreover, we expected 
that tumor number and concentration of IL-2 
have a positive effect on the ratio of effector 
cell recruitment. Figure 11 shows this fact but 
in this figure, the number of tumor cells has a 
more significant effect on this ratio.

In this model, we considered tumor cell, cy-
totoxic T-lymphocytes (CTL) as agents and 
IL-2 and TGF-β as cytokines, which made the 
environment. Using more cells (like regula-
tory T-cells, Myeloid-derived suppressor cells, 
etc.) and molecules (like IL-10, IFN-γ, etc.) as 
components of the model, this model would be 
more precise.

Conclusion
A fuzzy structured agent-based model of 

tumor-immune system interaction was con-
structed. In this model, tumor cells confronted 
by effector cells in presence of interleukin-2 
and transforming growth factor-beta. This 
model modified by experimental data of mu-
rine models of B16F10 cell line of melanoma 
cancer cells. 

Using this model, linguistic rules of tumor-
immune system interaction were extracted for 
escape state of tumor. Results illustrated that, 
fuzzy agent-based model are able to introduce 
linguistic rules of different states of tumor-im-

mune system interaction.
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