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Introduction

The aim of brain source imaging is to find areas of the brain and 
their corresponding activities responsible for the observed EEG. 
This process is composed of two steps: the forward problem and 

inverse problem. Forward problem solution aims to define a volume con-
ductor model for the head by which the scalp EEG potentials are generat-
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ABSTRACT
Background: Brain source imaging based on electroencephalogram (EEG) data 
aims to recover the neuron populations’ activity producing the scalp potentials. This 
procedure is known as the EEG inverse problem. Recently, beamformers have gained 
a lot of consideration in the EEG inverse problem. 
Objective: Beamformers lack acceptable performance in the case of correlated 
brain sources. These sources happen when some regions of the brain have simulta-
neous or correlated activities such as auditory stimulation or moving left and right 
extremities of the body at the same time. In this paper, we have developed a multi-
channel beamformer robust to correlated sources.  
Material and Methods: In this simulation study, we have looked at the 
problem of brain source imaging and beamforming from a blind source separation 
point of view. We focused on the spatially constraint independent component analysis 
(scICA) algorithm, which generally benefits from the pre-known partial information 
of mixing matrix, and modified the steps of the algorithm in a way that makes it more 
robust to correlated sources. We called the modified scICA algorithm Multichannel 
ICA based EEG Beamformer (MIEB). 
Results: We evaluated the proposed algorithm on simulated EEG data and 
compared its performance quantitatively with three algorithms: scICA, linearly-con-
strained minimum-variance (LCMV) and Dual-Core beamformers; it is considered 
that the latter is specially designed to reconstruct correlated sources. 
Conclusion: The MIEB algorithm has much better performance in terms of 
normalized mean squared error in recovering the correlated/uncorrelated sources both 
in noise free and noisy synthetic EEG signals. Therefore, it could be used as a robust 
beamformer in recovering correlated brain sources.
Citation: Samadzadehaghdam N, MakkiAbadi B, Eqlimi E, Mohagheghian F, Khajehpoor H, Harirchian MH. Developing a Multi-channel 
Beamformer by Enhancing Spatially Constrained ICA for Recovery of Correlated EEG Sources. J Biomed Phys Eng. 2021;11(2):205-214.                                         
doi: 10.31661/jbpe.v0i0.801.
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ed for the given neural sources namely current 
dipoles. The first and less computational mod-
el was a three shell concentric spherical head 
model in which the inner sphere represents 
the brain, the intermediate layer represents the 
skull and the outer layer represents the scalp. 
More realistic head models are obtained using 
MRI/CT 3D images to extract different con-
ducting compartments associated with certain 
tissues [1]. Boundary element method (BEM), 
the finite element method (FEM) and the finite 
difference method (FDM) are three numerical 
methods which have been used to solve Pois-
son’s equation in a realistically shaped head 
model [2] which results to the Lead Field Ma-
trix (LFM). This matrix shows the sensitivity 
of the surface electrodes to particular unit-
magnitude current sources located inside the 
brain.

The second step i.e. inverse solution deals 
with identifying the source signals from noisy 
EEG measurements. Although solving the for-
ward problem has become straightforward, 
finding a solution to the inverse problem, due 
to its underdetermined mixing scenario, is still 
a challenging task. Different classifications 
are provided for inverse algorithms litera-
ture. Grech, et al. [3] discussed the methods in 
parametric vs. non-parametric categories. The 
main difference between the two is to whether 
a fixed number of dipoles is assumed a priori 
or not [3]. The source imaging methods, which 
are based on minimum-norm minimization, 
and their generalizations such as LORETA and 
sLORETA [4] fall into non-parametric catego-
ry, while beamforming techniques and MU-
SIC [5] algorithm are classified as parametric. 
Sekihara and Nagarajan [6] categorized the al-
gorithms in adaptive and non-adaptive spatial 
filters (beamformers) depending on whether 
the beamformer parameters depend only on 
the geometry of the measurements or on the 
temporal EEG information too. Jonmohamadi 
et al. [7] compared 8 beamformers with re-
spect to several parameters including varia-
tions in depth, orientation, magnitude, and 

the frequency of the simulated sources to de-
termine their effectiveness at the time course 
of reconstructed sources and stability of their 
performances with respect to the input param-
eter variations. They concluded that, although 
minimum-variance beamformers were more 
sensitive to changes into magnitude, depth, 
and frequency of the simulated source, they 
had higher gains and superior spatial resolu-
tion to those of the minimum-norm beam-
formers. Conventional beamformers such as 
LCMV act well in reconstructing uncorrelated 
sources [8], but they are poor at reconstructing 
correlated sources [9].

To handle the problem of source correlation, 
Georgieva et al. [10] proposed a method com-
bining a particle filter (statistical approach) for 
estimation of the spatial location and a mul-
ticore beamformer (deterministic approach) 
for estimation of temporally correlated dipole 
waveforms in a recursive framework. Sub-
sequently, Brookes et al. [11] proposed dual 
source beamformer, for imaging two tempo-
rally correlated sources, based on the beam-
former technique. Another method for recov-
ering dynamics of temporally correlated neural 
sources was combining LCMV beamformer 
with the surface Laplacian [8]. Surface La-
placian, is the second spatial derivative of the 
scalp EEG and in fact, reduces the effects of 
low skull conductivity. A “Dual-Core Beam-
former” (DCBF) technique [9] in conjunction 
with a modified Powell algorithm, calculates 
optimal amplitude-weighting and dipole ori-
entation for reconstruction and, therefore, has 
much less computational cost compared to the 
dual-beamformer technique. 

In this paper, we aim to develop a new 
beamformer based on BSS techniques namely 
spatially constraint ICA, for reconstructing 
correlated brain sources. In section 2 we will 
discuss briefly about the theory of LCMV, scI-
CA and will address our proposed modifica-
tions to increase the robustness to correlated 
sources. The simulation results are provided 
in section 3. Finally, we will go through the 
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discussion in section 4.

Material and Methods
In this simulation study, a linear model is as-

sumed for EEG signals, then, the basis of the 
developed beamformer is explained and eval-
uated by the synthetic EEG. 

It seems reasonable to assume that the mea-
sured scalp EEGs at time t is a M×1 vector, 
x(t), where M is the total number of surface 
electrodes. If s is defined as the source dipole 
at location r, then the relation between mea-
sured data and s(r,t) is given by; 

( ) ( ) ( ) ,t t=x L r s r                                      (1)

Where, s(r,t) is a 3×1 column vector at time 
t and its elements represent the x, y and z com-
ponents of the dipole momentum. r=(x,y,z)’ is 
the 3×1 location vector and L is the M×3 the 
lead field matrix obtained from the forward 
problem solution and indicates the sensitivity 
of the sensor array to a particular unit-magni-
tude source located at r [6]. 

Now, it can be supposed that the number of 
active dipole sources is K. Then, the superpo-
sition of K potential fields generated by these 
K sources could be applied due to the linear-
ity assumption of head model medium [12] as 
follows; 

( ) ( )
1

( )  , ( )
K

i i
i

t t t
=

= +∑x L r s r n                      (2)

In which n(t) is a M×1 vector at time t de-
noting sensor level additive Gaussian white 
noise.

The ultimate goal in EEG inverse problem is 
to estimate s(r,t) using measurement x(t) and 
the lead field matrix L(r).

LCMV beamformer
A spatial filter, which is often called a beam-

former in signal processing contexts [6], can 
estimate the neural power originating within 
its spatial pass-band while suppressing the 
activity of other locations. Moving the filter 
pointing location throughout brain voxels a 

spatial pattern of neural activity or power as a 
function of brain location is acquired. The pat-
tern of neural power can be used for solving 
the source localization problem, such that the 
regions with the highest neural power would 
be interpreted as the source location.

The strategy of spatial filter is to design a 
M×3 weight matrix or filter W(r) which can 
reconstruct the brain source signal using the 
sensor array x(t), such that,

( ) ( )Tˆ , ( )t t=s r W r x                                      (3)

where, ( )ˆ ,ts r is the reconstructed source lo-
cated at r, in the center of filter pass-band and 
is an estimation of the original source.

The activity level or power of a specific 
source can be determined by its variance. The 
LCMV weights are determined imposing the 
minimum variance constraint on its output. 
The most common way to obtain the variance 
of filter output is to sum the variance of its 
components as below;

( )( ) ( )( )Var ,  ,ˆ ˆt tr t=s r C s r                        (4)

Where ( )( ),ˆ tC s r  denotes the covariance ma-

trix of the estimated source and tr(.) is the 
trace operator of matrix. 

Then the fundamental goal is to find weight 
matrix W such that [13].

( ) ( )( ) ( ) ( ) ,           ˆ  mintr t subject to =T
W r C s r W r L r I  (5)

The above optimization problem can ensure 
that the signals generated pass at location r 
through the filter while suppressing all other 
signals.  

Substituting equation (4) into equation (5):

( ) ( ) ( ) ( )( ) ( ) ( )T T ( )      Mintr t subject to =W r W r C x W r W r L r I  (6)

Where C(x(t)) is the covariance matrix of 
measured data vector x(t).

By solving the above constraint minimiza-
tion problem using Lagrangian method, the 
weight vector satisfying (6) is given by: 
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( ) ( ) ( ) ( ) ( ) ( ) 11 T 1( ) ( )t t
−− − =  W r C x L r L r C x L r  (7)

It has been shown that conventional beam-
former techniques have a weak performance 
in reconstructing correlated sources [8, 9, 14]. 

As mentioned in the introduction, some im-
provements have been made in order to en-
hance the beamformer performance in recon-
structing correlated sources. One of the recent 
algorithms is Dual-Core beamformer (DCBF) 
which is a spatial filter with two cores rather 
than one. Since one of the major contributions 
of the enhanced algorithm is in reconstructing 
correlated sources we have compared our re-
sults with this algorithm, too. For more details 
about DCBF, it can be referred to [9].

scICA
Independent component analysis (ICA) is a 

blind source separation (BSS) algorithm for 
separating a set of independent mixed signals 
into additive subcomponents, without having 
any information about mixing process. How-
ever, it is possible to incorporate any possible 
prior information such as source temporal in-
formation [15] or spatial constraints related to 
the mixing process [16, 17] leading to semi-
blind or constrained separating algorithms. In 
the case of ICA, it is assumed that at most one 
of the components may have Gaussian distri-
bution and all of them are statistically inde-
pendent of each other. 

Standard formulations of the ICA can be 
shown as follows. 

X=AS+N             (8)

Rows of matrix X is the time series of the 
M measured signals which are a linear com-
bination of K source signals which cannot be 
observed directly and lay in the rows of matrix 
S. Matrix N represents additive noise.   

Here, we are going to address EEG inverse 
problem as a BSS problem. This is possible 
by replacing the mixing matrix with the lead 
field matrix in equation (8). In fact, if we are 
interested in some dominant neural sources for 

which we have a prior knowledge about their 
location, we can replace their corresponding 
columns from the lead field matrix into the 
mixing matrix.

Recovering source signals requires a de-
mixing matrix such that: 

ˆ ˆ=S PX                      (9)

In which Ŝ  denotes the estimated source 
waveform. While mixing matrix, A, has been 
estimated, P̂  could be obtained from pseudo 
inverse, minimum mean square estimate 
(MMSE) [18] and maximum a posteriori 
(MAP) or ML approaches [19] depending on 
M, K and conditions of noise. Estimating the 
mixing matrix generally involves an optimiza-
tion problem with the aim of minimizing the 
mutual dependence of the source estimates 
with reference to higher order statistics or in-
formation theoretic measures [16].

Popular ICA algorithms include JADE [20], 
SOBI [21] FastICA [22] as well as Bayesian 
based approaches [23]. 

In the spatially constrained ICA algorithm 
(scICA), as a semi-blind source separation al-
gorithm, proposed in [17], it is supposed that 
the mixing matrix information is known for 
one or several sources. Here we provide this 
prior information from the lead field matrix 
obtained from the solution of EEG forward 
problem. The algorithm is composed of the 
following steps. 

The first step is the dimensionality reduction 
of the observed data. Computing the orthogo-
nal basis of the J known mixing vectors, 1:JU , 
the observed data is projected on the orthogo-
nal complement of this basis as follows: 

( )2 1: 1: .H
J J= −X I U U X               (10)

Then the data is projected on matrix U

whose J+1:K columns are K-J dominant left 
singular vectors of X2:

s .H=X U X                         (11)

The next step is whitening the observed data 
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and the known mixing vectors: 
† H

w =X P Q .Xs               (12)

† H H. , 1l l J= = …v P Q U         (13)

In which Q and P are obtained from eigen-
value decomposition (EVD) of the covariance 
matrix of Xs.

vl  columns are normalized to unit length and 
should be column-wise orthonormal while 
staying as close as possible to the known vec-
tors [17]. This is accomplished through an it-
erative step which minimizes 2

1: .J −v D Z 
.

D is a diagonal matrix and vl is replaced with 
Z. Computing its orthogonal complement, the 
whitened observed data is projected on them: 

H
1:( ) .w J w
⊥=X V X              (14)

Solving a classical ((K-J)×(K-J)) ICA problem 
for whitened observed data, i.e. .w =X W X  , 
the mixing matrix is estimated as: 

1: 1:

0
. . .

0
ˆ J J

J J
×⊥   =     

I
A U QS V V

W
             (15)

Finally, the sources could be estimated using 
pseudo-inverse: 

( )†ˆ .ˆ=S A X                   (16)

Equations 10 through 16 represent the main 
scICA algorithm.

MIEB as an Enhanced scICA  
Here, we plan to develop a new multichan-

nel ICA based beamformer exploiting Lead 
Field Matrix information. This beamformer, 
unlike LCMV, estimates few sources simulta-
neously and it is more robust in reconstructing 
correlated sources. 

The existence of such sources and additive 
white Gaussian noise violates the main as-
sumption of ICA, i.e. statistical independen-
cy. Meanwhile, the iterative procedure which 

makes columns of the whitened known vec-
tors, i.e. vl , pairwise orthogonal introduces 
some errors. These cases weaken the perfor-
mance of the algorithm, thus we propose not 
to orthogonalize the column vectors of vl 
corresponding to correlated sources in order 
to avoid the error introduced in that step and 
compensate somehow the assumptions of the 
problem. At the beginning of the algorithm, 
the known mixing vectors are arranged in two 
groups according to their correspondence to 
correlated or uncorrelated sources. Conse-
quently, Columns of vl in equation (13) the 
corresponding to the known mixing vectors, 
and also after normalizing, have already been 
in an arranged order: 

[ ] l uc c=v v v                 (17)

vuc is a column wise orthogonalized using 
based on Procrustes problem [24] using an 
iterative procedure by minimizing the below 
function : 

2. ,  1, ,i uci N− = …v D Z                            (18)

and vc remains intact:

 ,            1, ,c i ci N= = …v v                         (19)

Nc and Nuc are the number of correlated 
and uncorrelated sources, respectively and 
Nuc+Nc=J. 

Moreover, it is recommended to use “JADE” 
rather than “SOBI” in solving classical J-K 
ICA problem because the latter is not that ef-
fective when sources are mutually correlated. 

Our modified algorithm (MIEB) can be sum-
marized as follows which has been modified 
mainly in steps 1, 8 and 10 compared to scICA 
[17].
MIEB Algorithm
1. Sort mixing vectors into two groups and 

put them in a matrix; then compute its orthog-
onal basis, 

1: JU .

2. Project the data on the orthogonal comple-
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ment of 1: JU . Call this data X2.

3. Compute the K-J dominant left singular 
vectors of X2 and stack in ( )1 :J K+U .

4. Project the data on U  in order to obtain 

the dimension reduced data, Xs.

5. Whiten the data: † H
w =X P Q .Xs. which P 

and Q are obtained from eigenvalue decompo-
sition (EVD) of the covariance matrix of Xs.

6. Whiten the known vectors as: 
† H H. , 1l l J= = …v P Q U     .

7. Normalize lv , 1l J= … .

8. Orthogonalize lv  for, 1 ucl N= …  itera-

tively as follows:

a) H H
1: .

ucN = → =v D ACB Z AB .

b) ( )H 1
1:( )

ucNdiag −=D Z v .

9. Project Xw on the orthogonal complement 
of vl; call the new data wX .

10. Solve ICA problem based on “JADE” al-

gorithm  .w =X W X  .

11. Determine the overall mixing matrix as 

1: 1:

0
. . .

0
ˆ J J

J J
×⊥   =     

I
A U QS V V

W
 .

12. Estimate the sources of interest: 

( )†ˆ .ˆ=S A X .

Results
The concept of EEG forward and in-

verse problems are shown schematically in  
Figure 1. In order to check the performance 
of the enhanced MIEB algorithm, we build a 
simulation environment and acquired synthet-
ic EEG data. First, we build a 3-layer boundary 
element method (BEM) model representing 
scalp, skull and brain as the forward solution 
implemented in the Field-Trip toolbox [25]. 
The conductivity value of scalp, skull and 
brain were 0.3300, 0.0042 and 0.3300 S/m, 
respectively. Totally 200 nodes out of about 
2500 node of the canonical cortical mesh were 
selected randomly as source locations, 15 of 
which were supposed to be dominant brain di-
pole sources with considerably high amplitude 
and the rest was considered to be as non-dom-
inant neural noise with negligible power. The 

Figure 1: Schematic representation of electroencephalogram (EEG) forward and inverse prob-
lems.
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orientation of the whole dipoles was supposed 
to be perpendicular to the cortical layer. Also, 
it was supposed that prior location information 
for 7 sources, out of the 15 dominant sources, 
is known through the lead field matrix. We 
call these 7 sources as desired known ones. 
Three of the known sources were simulating 
the delta, alpha, and beta rhythms which were 
produced by filtering the white noise in the 
relevant frequency band. 

In order to build temporally overlapped cor-
related version of a brain rhythm, we applied 
a short FIR filter, with specific coefficients, on 
the original rhythm source signal. Moreover, 
in order to generate random correlated sourc-
es, we used copulas. Using a copula function 
makes us be able to construct a bivariate dis-
tribution by specifying marginal distributions 
and an arbitrary level of correlation structure 
between them [26]. These sources may not 
have a linear correlation but are more repre-
sentative of dependent sources. Therefore, the 
last 2 known sources were randomly distrib-
uted no matter how correlated they are. 

Solving the forward problem in a standard 
32-channel EEG recording arrangement, scalp 
EEG leads to which a white Gaussian noise 
added to represent the sensor level noise. Fig-
ure 2 sketches the 3-layer head forward model, 
geometry of sources and sensors in simulated 
space. 

The simulated experiments were done in 
noise-free and noisy conditions. For noisy 
cases, two types of noise were considered:

1. Additive white Gaussian noise with Sig-
nal to Noise Ratio (SNR) equal to 30 dB . SNR 
is defined as the ratio of signal power to noise 
power in dB:

2 2( / )
1010 X NSNR log=                                       (20)

2. Embedded neural noise, which simulates 
the weak effect of adjacent neural activities 
with variance equal to 0.01.

To evaluate the quality of the reconstructed 
time course of the source, we used normalized 
mean squared error defined as follows:

2

2 2

( ) ˆ
ˆ

( ) 
( ) ( )

NMSE = −
s r s r

s r s r 

 

 

   

 (21)

where s(r) and ˆ( )s r  are the original and re-
constructed time course of the source, respec-
tively. 

Figures 3 and 4 show mean and variance of 
the error after running the simulation for 100 
times, in noise-free and noisy conditions, re-
spectively.

As Figure 3 shows, LCMV lacks acceptable 
performance in the case of correlated sourc-
es. The variance of error is trivial for all the 
method. In reconstruction of correlated sourc-
es, scICA outperforms LCMV and DCBF 
which are originally developed for recovery 
of correlated sources. DCBF acts well when 
sources have time-overlap correlation, but in 
the case of random dependent sources it fails. 
MIEB has the minimum mean recovery error 
in the case of both uncorrelated and correlated 
sources. Clearly, its performance is not depen-
dent on the source correlation. 

To make the conditions more realistic, we 
add two kinds of noise to the data as discussed 
above. Apparently, the mean error of the whole 
methods has increased and MIEB seems to 
have more NMSE variance. In the case of tem-
porally overlapped correlated sources, MIEB 

Figure 2: A 3-layer boundary element model 
of head and dipoles’ position and orienta-
tion overlaid on it. Red: Noise neural dipoles. 
Blue: Dominant neural dipoles. Black: the 
position of the electrodes.
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Figure 4: Mean and variance of normalized mean squared error (NMSE) of recovered source 
signals over 100 noisy case experiments.

Figure 3: Mean and variance of normalized mean squared error (NMSE) of recovered source 
signals over 100 noise-free case experiments.
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acts better than scICA but almost has the same 
performance as DCBF, but MIEB has much 
less error than DCBF in recovering random 
correlated sources even considering its rela-
tively high variance. 

We came to this conclusion that if high SNR 
EEG signals are available and a prior spatial 
information about the location of the neural 
sources in the brain is known, then the pro-
posed MIEB algorithm can be used to recon-
struct the activity of the sources. It has better 
performance in comparison with the conven-
tional LCMV and even DCBF which is dedi-
catedly developed to solve the correlation 
problem.

Discussion
In this paper, we tried to look at the prob-

lem of EEG source imaging from a BSS-based 
point of view which is possible by replacing 
the mixing matrix with the lead field matrix. 
This leads to a Multichannel ICA based EEG 
Beamformer (MIEB) that reconstructs the ar-
bitrary number of sources simultaneously and 
its performance was enhanced by modifying 
the proposed algorithm in [17] as mentioned 
section 2.3. The mentioned algorithm has the 
application in EEG neural source recovery es-
pecially in the case of correlated sources. As 
results demonstrate the proposed algorithm 
has much better performance in comparison 
with conventional LCMV beamformer as well 
as to its original version introduced in [17] 
especially in reconstructing correlated EEG 
sources.

It is suggested for the future to work much 
more on different statistical conditions such 
as correlation, independency as well as an 
optimum method for estimating the number 
of sources and including these parameters as 
prior information in the main algorithm. Also, 
we propose testing the algorithms on real EEG 
data and evaluating the source real statistical 
distribution by realistic head models and ex-
perimental data.

Conclusion
The proposed Multichannel ICA based EEG 

Beamformer (MIEB) reconstructs the arbitrary 
number of EEG sources simultaneously.  In a 
simulation environment, we generated syn-
thetic EEG data and demonstrated that it has 
less reconstruction error than scICA, LCMV, 
and DCBF in terms of NMSE especially for 
correlated sources.
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