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Introduction

The major challenge in biology is to understand how interactions 
among genes, proteins or molecules in signal transduction path-
ways and gene regulatory networks regulate different functions of 

a cell and how a cell specifies its various fates, such as apoptosis (death), 
proliferation, differentiation and quiescence [1]. The answer is that in-
teractions are inherently stochastic. Actually two kinds of stochasticity 
in a biological system exist: 1) inherent stochasticity in the biochemi-
cal procedures of gene expressions (intrinsic noise) and 2) variations 
in other cellular components (extrinsic noise). Genetic factors, regula-
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ABSTRACT
Background: Interactions of many key proteins or genes in signalling pathway 
have been studied qualitatively in the literature, but only little quantitative informa-
tion is available. 
Objective: Although much has been done to clarify the biochemistry of tran-
scriptional dynamics in signalling pathway, it remains difficult to find out and predict 
quantitative responses. The aim of this study is to construct a computational model of 
epidermal growth factor receptor (EGFR) signalling pathway as one of hallmarks of 
cancer so as to predict quantitative responses. 
Material and Methods: In this analytical study, we presented a computa-
tional model to investigate EGFR signalling pathway. Interaction of Arsenic trioxide 
(ATO) with EGFR signalling pathway factors has been elicited by systematic search 
in data bases, as ATO is one of the mysterious chemotherapy agents that control 
EGFR expression in cancer. ATO has dichotomous manner in vivo, dependent on its 
concentration. According to fuzzy rules based upon qualitative knowledge and Petri 
Net, we can construct a quantitative model to describe ATO mechanism in EGFR 
signalling pathway. 
Results: By Fuzzy Logic models that have the potential to trade with the loss 
of quantitative information on how different species interact, along with Petri net 
quantitatively describe the dynamics of EGFR signalling pathway. By this model the 
dynamic of different factors in EGFR signalling pathway is achieved. 
Conclusion: The use of Fuzzy Logic and PNs in biological network modelling 
causes a deeper understanding and comprehensive analysis of the biological net-
works.  
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tory dynamics and transcription rates control 
the amplitude of noises. Stochastic effects in 
gene expression play a crucial roles in biolog-
ical procedures and determine different cell 
fates. There is much experimental evidence 
that proves stochasticity in gene expression 
s in biochemical procedures [2, 3]. Although 
previous studies demonstrate the biochemis-
try of transcriptional dynamics in signaling 
pathways, it remains difficult to find out and 
predict quantitative responses. Integration of 
biological experiments with computational 
models can identify predictive models of sig-
nal transduction pathways and gene regulatory 
networks [4, 5].

There are many tools and methods used for 
modeling and analysis of biological networks 
such as ordinary differential equation (ODE) 
[6], stochastic differential equation (SDE) 
[7, 8], partial differential equation (PDE) [9], 
Markov chain [10-12], queuing networks [12], 
Boolean network (BN) [13-15], Probabilistic 
Boolean network [16-18], agent-based model-
ing (ABM) [19-23], Cellular automata (CA) 
[24, 25], Fuzzy logic based models [26] and 
Petri net (PN) [27-29].

The complex interactions in gene regula-
tory networks or in signaling pathways exhibit 
characteristics which are hard to describe and 
implement mathematically using traditional 
tools like differential equations, while by 
computational methods such as CA, ABM, 
BN, fuzzy logic based models and PN, more 
details of interactions among agents can be 
modelled, without needing many kinetic pa-
rameters [30, 31]. PN has been extended to 
handle more complexity in modeling of bio-
logical networks. PN is weighted, directed, 
bipartite multi graphs which includes places, 
transitions and arcs. In PN, enabled transitions 
(a reaction to be possible) fire (a reaction oc-
cur) immediately, while timed petri net (TPN) 
[32, 33] regards a deterministic delay for fir-
ing of enabled transitions, and stochastic petri 
net (SPN) [29, 34] applies a stochastic delay 
with the exponential distribution for firing en-

abled transitions. One of the ways for mod-
eling stochasticity in biological networks is 
regarding stochastic delay for the occurrence 
of reactions [35]. Fuzzy petri net (FPN) [36] 
considers a linguistic value for a token such 
as low, medium and high one and defines the 
membership degree of token to each of the 
predefined fuzzy subsets, with a certain mem-
bership function. In Fuzzy stochastic petri net 
(FSPN) [29], the kinetic parameter related 
to exponential distribution (stochastic delay) 
is described by a fuzzy number and through 
regarding the different conditions of modeled 
system, the membership degree of kinetic pa-
rameters to each of the fuzzy subsets is being 
determined.

In this study, we briefly reviewed Fuzzy 
logic and Petri net respectively for biological 
networks modeling. 

Fuzzy logic is capable to effectively capture 
systems, incomplete quantitative or qualita-
tive information by characterizing the dy-
namic behavior of a system by a set of fuzzy 
rules. It has been used to simulate and build 
a model of a number of biological networks 
[4, 26]. Fuzzy logic can model gene interac-
tions at different levels of detail in the gene 
regulatory network across various conditions. 
Fuzzy model is constructed according to ex-
pert knowledge to quantify uncertainty, which 
is an inherent feature of biological networks. 

Analysis and design of biological networks 
such as signaling pathways often include two 
kinds of uncertainty: fuzziness and random-
ness. Fuzziness models the measurement of 
imprecision due to incomplete information or 
linguistic structure. On the other hand, ran-
domness models stochastic variability in inter-
actions (or in rate of interaction) among agents 
(protein or gene). Fuzzy logic can encode 
probabilistic and dynamic transitions among 
network states so as to construct simple and 
realistic depiction of cell signaling pathways. 
Large body of evidences, turned the attention 
on fuzzy logic and fuzzy set theory which 
have been applied successfully in designing 
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and modeling of many biological, and gene 
regulatory networks with regarding uncertain-
ty and imprecision [4, 37].  

Petri net was introduced by Adam petri 
(1962), as a mathematical tool for modeling 
and analyzing of complex systems that can be 
characterized as simultaneous, parallel, syn-
chronous, distributed, nondeterministic or sto-
chastic.  

Petri net is weighted, directed, bipartite 
multi graphs, which includes places, transi-
tions and arcs. In models of gene regulatory 
networks or in signaling pathways, places 
represent chemical species, e.g., protein or 
protein complexes, gene, while transitions de-
scribe chemical reactions, e.g., transcription 
and translocation. The precursors and prod-
ucts of a chemical reaction correspond to the 
prior transition and the following one that they 
are input and output of transitions respective-
ly. The interaction between two nodes (places) 
is mediated by one transition, that arcs connect 
transitions to places and places to transitions. 
Actually straight connection of two places or 
two transition is not allowed. The weight of an 
arc depicts its multiplicity, reflecting e.g., stoi-
chiometric coefficient of a chemical reaction. 
Tokens describe the value of each place and 
are natural numbers or real positive numbers, 
reflecting e.g., the concentration of proteins or 
number of specific cells. A distribution of to-
kens over all places is called marking of PN, 
which describes a state of PN. In most PN, 
these states are finite [27]. Petri net provides 
state equations describing system behavior 
and model static and dynamic system charac-
teristics. The static part of PN is its structure 
which is constructed from places, transitions 
and arcs, while the dynamic part models flow 
of tokens among places [38].

Material and Methods
In this analytical study, we presented a com-

putational model to investigate EGFR signal-
ling pathway. In this section, we introduce a 
pathway of key proteins in EGFR signalling 

and effect of ATO as medication on it.

1. ATO mechanisms and EGFR sig-
naling

ATO is one of the mysterious chemotherapy 
agents with dichotomous manner in vivo de-
pending on its concentration. Low concentra-
tion levels of ATO lead to cell proliferation 
and angiogenesis whereas high concentration 
induce cellular apoptosis [39-41].
1. 1. High concentrations of ATO
One of the crucial roles of ATO which is cur-

rently unraveled, is ATO-induced C-Src acti-
vation triggered EGFR-Y845/ERK phosphor-
ylation and p21 expression. The major effect 
of ATO in cells is being modulated by NADPH 
oxidase and its products such as hydrogen per-
oxide, superoxide, and peroxynitrite. Activa-
tion of C-Src in response to ATO exerts this 
function in the cells. C-Src activity might re-
sults in phosphorylation and up regulation of 
NADPH oxidase component such as p67phox 
and p47phox that it elevating NADPH oxidase 
activity and generates ROS (reactive oxygen 
species). Furthermore C-Src can effectively 
transact by EGFR and effectively phosphory-
lates tyrosine residues such as Y845 which ac-
tivating ERK1/2 [42, 43] (Figure 1).

Interestingly, various species of ROS can 
stimulate phosphorylation of EGFR. Alto-
gether, these mechanisms lead to p21 expres-
sion. It’s astonishing that an oncogene acts 
as a tumor suppressor gene. This phenomena 
is known as soncogene-induced senescence, 
which controls activation of transformed on-
cogenes [44]. 

It has been demonstrated that ATO-induced 
sustained ERK1/2 phosphorylation can in-
crease C-Fos protein stability to dimerize with 
c-Jun and form the AP-1 complex. This com-
plex cooperates with p300/CBP. These actions 
result in chromatin remodeling, and conse-
quently enhance p21 expression which lead-
ing to cellular apoptosis [39-41].  

Moreover, it has been shown that EGFR can 
enhance DNA-damage repair such as non-
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homologous end-joining and homologous 
end-joining. As a matter of fact, inhibiting 
EGFR by erlotinib leads to down regulation 
of BRCA1, Rad50 and Rad 51 activity which 
results in enhancement of DNA damage based 
on ATO-induced ROS in ATO/erlotinib com-
bination [45].
1. 2. Low concentration of ATO
In contrast, there is large body of evidence 

demonstrating, in low concentration of ATO, 
tumor growth and angiogenesis attributed to 
suppression of p21 expression [43]. Activa-
tion of JNK pathway by ATO phosphorylates 
c-Jun, and then through recruitment of TGIF/
HDAC1 to sp1 binding sites of p21WAF1/
CIP1 (p21) gene JNK pathway attenuates p21 
expression [43, 44]. In addition, in low con-
centration of ATO, FOXM1 (acting as a cell 
proliferation specific transcription factor) 
regulates the expression of CDC6, CDC25A, 
and Cyclin D1 through binging to its promot-
ers and E2F/RB pathway. These genes by de-
phosphorylating and activation of CDK, phos-
phorylate FOXM1 that increased its activity. 
FOXM1 has an imperative role in the signal 

transduction network in low concentration of 
ATO [40]. 

In section 2 we suggest a method for model-
ing and analysis of dynamic networks which 
are based on Fuzzy Logic and PNs to exhibit 
both dimensions of uncertainty which are im-
precision (fuzziness) and probabilistic (sto-
chastic) variability.

2. EGFR model
EGFR signaling pathway model of the cur-

rent paper is composed of two parts. First part, 
the relationship between key components of 
EGFR signaling pathway is modeled statically 
by fuzzy logic, considering ATO, P300/CBP 
and TGIF/HDAC (green circles of Figure 2) 
as normalized input of fuzzy logic model. The 
normalized concentration or activation levels 
of other components (blue circles of Figure 2) 
of Fuzzy logic model with fuzzy rules are re-
sulted. More details about Fuzzy Logic model 
are illustrated in section 2.1. 

The second part of this model involves the 
interactions between FOXM1, CDC25A, 
CyclinD1, CDC6 and CDK during time into 

Figure 1: Signaling pathway of different concentrations of Arsenic trioxide (ATO). A) High con-
centration of ATO lead to P21 expression and induce cellular apoptosis. B) Low concentration of 
ATO lead to cell proliferation and angiogenesis.
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account. These interactions are inherently 
stochastic; therefore, continuous petri net is 
suitable for modeling this section. For each 
value of FOXM1 (as initial value of FOXM1 
that is determined by Fuzzy logic model), con-
tinuous petri net is executed to model inherent 
stochasticity in interactions between FOXM1, 
CDC25A, CDC6, CyclinD1 and CDK and de-
termine variations of concentration or activa-
tion levels of these proteins during time. More 
details about continuous petri net are illustrat-
ed in section 2. 2.
2. 1. Fuzzy Logic Model
According to expert knowledge about gene 

interactions in epidermal growth factor recep-
tor (EGFR) signaling pathway and effects of 
ATO as medication in EGFR signaling, we 
constructed a fuzzy logic based model.

Fuzzy logic can model the interactions be-
tween major genes or molecules or compo-
nents of EGFR signaling regarding the effect 
of different concentration of ATO. Therefore, 
without having kinetic data which are often 
incomplete or even unavailable, we can simu-
late the behavior of this pathway to achieve 
quantitative description of concentration with 
regarding uncertainty. Fuzzy theory deals with 
uncertainty associated with imprecision rather 

Figure 2: Fuzzy logic with expert knowledge and fuzzy rule sets construct a quantitative model of 
epidermal growth factor receptor (EGFR) signaling pathway and Arsenic trioxide (ATO) as medica-
tion. This fuzzy logic model regard normalized values for each of the circles. This Fuzzy Logic model 
consists of three inputs: ATO, P300/CREB-binding protein (CBP) and TG-interacting factor (TGIF)/
Histone deacetylase (HDAC) (green circles). The normalized value of blue circles is determined ac-
cording to the value of green circles by fuzzy rule set. For each value of Forkhead box protein M1 
(FOXM1) continuous petri net is executed to model inherent stochasticity in interactions between 
FOXM1, Cell division cycle 25A (DC25A), Cell division control protein 6 (CDC6), CyclinD1 and Cyclin-
dependent kinase (CDK).
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values.
Stage 3: Apply implication method
The input for the implication procedure is a 

single number determined by the antecedent, 
and its output is a fuzzy set. Implication is ex-
ecuted for each rule.

( )1 2
( ) ( )

1 2

if FP then FP rule R

p x q yFP FPµ µ

< > < >

= =
             (2)

With regarding Mamdani implication meth-
od and Min for and method, the following for-
mula is resulted:

( ) { }, min ,p q x y p qµ → =                             (3)

Stage 4: Apply aggregation method
Aggregation is the procedure by which the 

fuzzy sets describing the outputs of each rule 
are merged into a single fuzzy set. The input of 
the aggregation procedure in our model is the 
list of truncated outcome functions returned 
by the implication procedure for each rule. 
The output of the aggregation procedure is one 
fuzzy set for each outcome variable. Aggrega-
tion only occurs once for each output variable 
and aggregation method is Max.

Stage 5: Defuzzification
Defuzzification is a mapping from fuzzy 

set to the crisp point. There are five built-in 
methods supported: bisector, centroid, middle 
of maximum (the average value of the maxi-
mum of the output set), smallest of maximum 
and largest of maximum. The defuzzification 
method implemented is centroid or center of 
gravity (Figures 3). 
2. 2. Continuous Petri net
The key protein FOXM1 in low concentra-

tion of ATO regulates the expression of CDC6, 
CDC25A, and CyclinD1 through binding to its 
promoters and E2F/RB pathway. These genes 
phosphorylate FOXM1 by dephosphorylating 
and activating of CDK. FOXM1 has an imper-
ative role in the signal transduction network 
in low concentration of ATO. In this section 
for modeling interactions between: FOXM1, 
CDC6, CDC25A, CyclinD1 and CDK, we 

than with randomness. Actually many quanti-
ties such as protein concentration or its level 
of activation are not crisp deterministic quan-
tities, and uncertainty due to imprecision and 
vagueness causes these variables to be fuzzy 
and could be represented by membership 
functions.    

We use Mamdani-type fuzzy inference pro-
cess that includes five stages as follow respec-
tively:

Fuzzify input variables, apply fuzzy opera-
tor, apply implication method, apply aggrega-
tion method, defuzzification.

Stage 1: Fuzzify input variables.
The first stage is to take the input and spec-

ify the degree to which the input belongs to 
each of the suitable fuzzy sets via member-
ship functions. In the following section, there 
is a definition of a fuzzy set θ on a univers-

set : : [0,1]X Xµθ → which assigns to each crisp 
point x X∈  a real value ( ) [0,1]xµθ ∈ .  

( )xθµ  is a membership function on fuzzy set 
θ. The membership function is a one-input/
one-output function that determines the mem-
bership degree of each value of the variable χ 
to the predefined subsets of fuzzy set. There 
are different fuzzy membership functions such 
as: sigmoid, Gaussian curve, Bell curve, Pi-
shaped curve, S-shaped curve, Trapezoidal, 
Triangular and Z-shaped curve. 

Membership functions which are differ-
ent in degree of freedom in the definition and 
implementation and cause different levels of 
performance and sensitivity in the system. We 
used triangular fuzzy membership function, 
denoted by ( , , ),a b c a b cθ = ≤ ≤  (1). 

Stage 2: Apply fuzzy operator
Once the inputs have been fuzzified, the de-

gree to which each section of the antecedent of 
every rule satisfied is determined. If the ante-
cedent of each rule has more than one section, 
the fuzzy operator is applied to obtain one 
number which indicates the outcome of the 
antecedent for that rule. The fuzzified input 
variables include of two or more membership 
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have constructed a continuous petri net (CPN). 
CPN with regarding nondeterministic firing 
rate for enabled transitions can model inherent 
stochasticity in the biochemical procedures of 
expression of CDC6, CDC25A, and Cyclin D1 
by FOXM1 and regulation of CDK by CDC6, 
CDC25A and CyclinD1. Finally, dephosphor-
ylation and activation of CDK phosphorylate 
FOXM1 as depicted in Figure 4. Therefore, 
CPN model variability in rate of interactions 
that this variability is made by intrinsic noise. 
Actually genetic factors, regulatory dynamics 
and transcription rates control the amplitude 
of noise. CPN captures randomness which is 
an inherent trait of biological networks. 

A CPN is a four-tuple , , , 0V P T F M=< >  where: 

P is a finite set of places.
T is a finite set of transitions at which 

P T φ=

.

Pr ; PrF e Post e P T Post T P⊆ = × = ×  
are finite set of directed arcs, which formerly 
describe arcs from places to transitions and 
later describe arcs from transitions to places.

:0 0M P R→ ≥ , represents the initial marking, 
which assigns a positive real number to each 
place, p P∈ .

The enabling degree of transition t at mark-
ing m, ( , ) 0enab t m R∈ ∞≥   is defined by: 

[ ]
( , ) min{ | }

Pr [ , ]

( , )

m p
enab t m p t

e p t

enab t m if t φ

•= ∈

•= ∞ =







                (4)

At which t•  represents input places of tran-
sition t.

t is enabled in m if ( , ) 0enab t m > .
An enabled transition t can be fired immedi-

ately by any values 0 ( , )R enab t mα α∈ ≤ ≤
, and after firing of enabled transitions, mark-
ing defined by following rules all of p P∈ :

'[ ] [ ] [ , ]
Pr

m p m p C p t
C Post e

α= +

= −
                        (5)

When a transition is fired, tokens immediate-

Figure 4: Petri net (PN) model all interactions and dynamic of Forkhead box protein M1 (FOXM1), 
Cell division control protein 6 (CDC6), Cell division cycle 25A (DC25A), CyclinD1 and Cyclin-de-
pendent kinase (CDK) with regarding initial value of FOXM1 by Fuzzy Logic model.

Figure 3: Adapted from Bree et al [46]. Fuzzy 
logic uses rule-based gates to quantify mech-
anisms that regulate network species. Fuzzy 
logic based models by expertized knowledge 
and fuzzy rule sets construct quantitative 
models of network species interactions.
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ly move from their pre-places to post-places 
according to α value and enabling degree, and 
updating the marking to a new reachable one. 
Our aim in this section is to construct a CPN 
for describing all interactions and dynamic 
of FOXM1, CDC6, CDC25A, CyclinD1 and 
CDK as depicted in Figure 4. This CPN con-
sists of five places and five transitions, and Pre 
and Post matrices that describe the structure of 
interactions of all proteins as follow: 

0.3 0.3 0.3 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0

1
0

Pre Post= =

   
   
   
   
   
   
   

  (6)

Actually Fuzzy Logic model according 
to different concentration of ATO regulate 
FOXM1. When Fuzzy logic model determines 
the concentration of FOXM1 (as initial value), 
then CPN models dynamic of FOXM1, CDC6, 
CDC25A, CyclinD1 and CDK during time. 

Actually EGFR signaling pathway is com-
posed of two part, static and dynamic part. At 
static part, relationships between key compo-
nents of EGFR signaling pathway statically 
by fuzzy logic are modeled, and by regarding 
ATO, P300/CBP and TGIF/HDAC as inputs of 
fuzzy model, the concentration or activation 
level of all components of Figure 2 with fuzzy 
rules is resulted. The dynamic part of model is 
composed of CPN that describes the interac-
tions between FOXM1, CDC25A, CDC6, Cy-
clinD1 and CDK during time.

Results
In this work, we have applied Fuzzy Logic 

model and PN model to elucidate the interac-
tions between some key components of EGFR 
signalling pathway. According to last studies 
low concentration of ATO through recruit-
ment of TGIF/HDAC to sp1 binding sites of 
p21WAF1/CIP1 (p21) gene, JNK pathway 
attenuates p21 expression, and causes tumor 
growth and angiogenesis. Also ATO-induced 
sustained ERK1/2 phosphorylation can in-

creases C-Fos protein stability to dimerize 
with c-Jun to form the AP-1 complex. This 
complex cooperates with p300/CBP. These 
actions result in chromatin remodeling, and 
consequent enhance p21 expression, which 
lead to cellular apoptosis. Therefore, with in-
crement of P300/CBP and TGIF/HDAC, the 
value of P21 increased and decreased respec-
tively as depicted in Figure 5. Also the dynam-
ics of P21 with respect to dynamics of P300/
CBP and ATO is computed with this model 
and depicted in Figure 6.

As mentioned previously, different concen-
tration of ATO regulates different signalling 
pathways. The key protein FOXM1 in low 
concentration of ATO regulates the expres-
sion of CDC6, CDC25A, and Cyclin D1 and 
these genes by dephosphorylating and activat-
ing of CDK, phosphorylate FOXM1. Incre-
ment of ATO concentration inhibits upregu-
lation of FOXM1. Figure 7 depicts dynamic 
of FOXM1, CDC25A, CDC6, CyclinD1 and 
CDK related to different concentration of ATO 
during time. As depicted in Figure 7 elevation 
of ATO decreases the value of FOXM1, con-
sequently FOXM1 regulates the expression of 
other predefined proteins.

Discussion
In this study, we suggested a method for 

modeling and the analysis of dynamic net-
works which are based on Fuzzy Logic and 
PN to exhibit both dimensions of uncertainty 
which are imprecision (fuzziness) and proba-
bilistic (stochastic) variability. This uncertain-
ty is due to vague or missing kinetic data, in-
complete data or naturally vary, e.g., between 
different experimental conditions, etc. Fuzzy 
Logic model is flexible, capable to incorporate 
qualitative and noisy data to describe the dy-
namics of signaling pathway of EGFR, and to 
produce quantitative predictions and novel bi-
ological insights about the function of signal-
ing pathway. Along with Fuzzy Logic model, 
we have used PNs to model inherent stochas-
ticity (noise) in the biochemical procedures 
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Figure 7: Fuzzy Logic model according different concentrations of Arsenic trioxide (ATO) determine 
the initial concentration or activation levels of Forkhead box protein M1 (FOXM1). Average of dy-
namic of FOXM1, Cell division control protein 6 (CDC6), Cell division cycle 25A (DC25A), CyclinD1 
and Cyclin-dependent kinase (CDK) during time is computed by Continuous petri net (CPN).

Figure 5: Normalized concentration or activa-
tion level of P21 related to normalized value 
of P300/CREB-binding protein (CBP) and TG-
interacting factor (TGIF)/Histone deacetylase 
(HDAC). With increment of P300/CBP and in-
crement of TGIF/HDAC, the value of P21 is in-
creased and is decreased respectively.

Figure 6: Normalized concentration or activa-
tion levels of P21 related to normalized value 
of P300/CREB-binding protein (CBP) and Arse-
nic trioxide (ATO). As depicted, low concentra-
tions of ATO suppressed p21 expression and 
high concentration of ATO lead to P21 expres-
sion and induced cellular apoptosis.
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of gene expressions. PNs model variability in 
rate of interactions that this variability is made 
by intrinsic noise. Actually genetic factors, 
regulatory dynamics and transcription rates 
control the amplitude of noise. Although the 
proposed method was applied to EGFR sig-
naling pathway, it is not confined to modeling 
and analysis of this pathway. It can be utilized 
for modeling and the analysis of any signaling 
pathway or the biological network.

Model fitness can be conducted by calculat-
ing the sum of the squared difference between 
a model and the data. Fuzzy logic model pa-
rameters can be estimated if data on concen-
tration of proteins during time is available. 
Therefore calibrated models with experimen-
tal data produce quantitative predictions and 
novel biological insights about the function of 
signaling pathways. Degree of fuzziness and 
membership function thresholds are param-
eters that could be estimated.

Conclusion
We believe that the major contribution of our 

survey, in addition to the offer of the use of 
Fuzzy Logic and PNs in biological network 
modeling, are a deeper understanding and the 
comprehensive analysis of the biological net-
works that can be achieved.
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