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Introduction

BMI (Brain-Machine Interface) system allows people who are 
unable to communicate with control devices using their EEG 
(Electroencephalogram) signals. A vital part of this procedure 

is detecting P300 signal from evoked human brain potentials, which is 

Original

ABSTRACT
Background: Deep neural networks have been widely used in detection of P300 
signal in Brain Machine Interface (BMI) systems which are rely on Event-Related 
Potentials (ERPs) (i.e. P300 signals). Such networks have high curvature variation in 
their error surface hampering their favorable performance. Therefore, the variations 
in curvature of the error surface must be minimized to improve the performance of 
these networks in detecting P300 signals. 
Objective: The aim of this paper is to introduce a method for minimizing the 
curvature of the error surface during training Convolutional Neural Network (CNN). 
The curvature variation of the error surface is highly dependent on model parameters 
of deep neural network; therefore, we try to minimize this curvature by optimizing 
the model parameters.
Material and Methods: In this experimental study an attempt is made to tune 
the CNN parameters affecting the curvature of its error surface in order to obtain the 
best possible learning. For achieving this goal, Genetic Algorithm is utilized to opti-
mize the above parameters in order to minimize the curvature variations. 
Results: The performance of the proposed algorithm was evaluated on EPFL da-
taset. The obtained results demonstrated that the proposed method detected the P300 
signals with maximally 98.91% classification accuracy and 98.54% True Positive 
Ratio (TPR).  
Conclusion: The obtained results showed that using genetic algorithm for mini-
mizing curvature of the error surface in CNN increased its accuracy in parallel with 
decreasing the variance of the results. Consequently, it may be concluded that the 
proposed method has considerable potential to be used as P300 detection module in 
BMI applications.
Citation: Shojaedini SV, Morabbi S, Keyvanpour MR. A New Method to Improve the Performance of Deep Neural Networks in Detecting P300 
Signals: Optimizing Curvature of Error Surface Using Genetic Algorithm. J Biomed Phys Eng. 2021;11(3):357-366. doi: 10.31661/jbpe.v0i0.975.
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a significant factor for establishing the BMIs. 
P300 is a type of ERP (Event-Related Poten-
tial) signals, which has a positive deflection 
occurring in the recorded EEG and typically 
elicited approximately 300 ms after the pre-
sentation of an infrequent stimulus [1]. Fur-
thermore, P300 signals are widely used in 
other applications such as lie detection and 
diagnosis of neurological disease [2-4].

Farwell and Donchin were the first research-
ers who employed P300 as a control signal in 
BMI. They introduced an “oddball” paradigm 
to evoke P300 signals. The oddball is a square 
matrix containing letters of the alphabet and 
other symbols; they are displayed on a com-
puter screen. Rows and columns of the matrix 
are flashed in random order and the person un-
der test (i.e. subject) is asked to concentrate 
mentally on some target characters through 
counting them. When a character is flashed 
in a certain row and column, a P300 signal is 
evoked automatically and appeared on EEG 
signal. Then it may be detected by an appro-
priate method for further operations [5].

The main challenges in P300 detection are 
variability and low Signal to Noise Ratio 
(SNR); therefore, several methods have been 
introduced to improve distinguishing P300 
from other parts of EEG signal [3, 6]. Aver-
aging is a simple method, which obtains the 
higher detection rate by increasing the SNR, 
but it reduces the bit rate and deforms the ERP 
waveform [7]. 

Moreover, linear and nonlinear methods for 
BMI usage have been developed. For instance, 
Linear Discriminant Analysis (LDA), Support 
Vector Machine (SVM), K-Nearest Neighbors 
(KNN) and Bayesian have already been used 
for P300 signal detection [2-4, 8-13].

The weakness of linear methods obstacles 
solving complicated problems and nonlinear 
methods deals with over fitting in real world 
problems. Recently several machine-learning 
methods have been applied to raise SNR with-
out loss of any significant information of P300 

signal [14]. Most of the machine learning tech-
niques applied for P300 detection have been 
based on Artificial Neural Networks (ANN) 
[15, 16]. Classic ANNs are not strong enough 
to escape from local minimums impressing 
their performances in distinguishing P300 
from other parts of EEG signal. Recently, in 
the case of P300 detection Deep Neural Net-
works (DNNs) have been presented in which 
the deep structure and multiple level data rep-
resentation are utilized as their basic potentials 
[4, 8].

Nevertheless, such networks have large-
scale dimensions and high curvature varia-
tions, which lead to higher process volume 
in parallel with undesirable convergence [17, 
18]. Minimizing curvature variation results in 
faster and more accurate convergence; thus, 
it may be considered as an important issue in 
P300 detection by DNNs. 

Several techniques have been presented to 
address the high curvature variation prob-
lem, including first and second order optimi-
zation algorithms. First, order algorithms are 
to improve detecting P300 signal by the use 
of gradient information of objective function 
that are simple to be used and converged fast. 
Second, order algorithms compute Hessian 
matrix, which is highly dependent on dimen-
sions of objective function. As the dimensions 
grow, the required memory also increases. In 
the field of learning DNNs, local minimums 
have values in same order of the global opti-
mum. Thus, finding a local minimum is good 
enough to address high curvature variation 
problem [19].

Convolutional Neural Networks (CNNs) are 
the member of DNN family, widely applied in 
P300 detection [8, 20]. The CNN is the seman-
tic of the weights once the network is trained 
and robust to variability of P300. The receptive 
convolution kernel may be easily interpreted, 
therefore can provide a diagnosis about the 
type of high-level features to be detected [8]. 

In this paper, a new method is introduced to 
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improve training of DNNs, which has been 
based on minimizing curvature variation in 
their error function. In proposed method, the 
evolutionary paradigm is used to decrease the 
level of curvature variation in high dimension-
al space. The proposed method is applied on 
CNN to obtain an improved network to distin-
guish P300 and non-P300 components.

Material and Methods
In this experimental study, at first, the datas-

et and pre-processing steps are briefly demon-
strated. These items are effectively utilized in 
our experimental section. Then, the proposed 
scheme is described completely to minimize 
curvature variation in training CNN.

Dataset and Pre-processing
In this paper, EPFL BCI dataset is used. It 

has been captured using visual stimulation by 
the Biosemi system with 32 electrodes locat-
ed according to standard 10-20 international 
system position at 2048 HZ. The EPFL BCI 
dataset consist of eight subjects. The first four 
subjects are disabled and out of them are able-
bodies. The data of each subject is composed 
of four sessions. Each of the sessions consists 
of six stimulating patterns (i.e. runs), which is 
displayed in format of a six-cell matrix. The 
stimulating patterns were flashed at random 
order, which each of them lasts for 100 ms 
and then during 300 ms none of the patterns is 
flashed. The inter stimulus interval is 400 ms 
and more details about the EPFL dataset may 
be found in [5].

After recording EEG signals, firstly refer-
encing was performed to remove the reflection 
of the reference electrode in captured signals. 
Afterward, to clean the signals from additional 
noises, a 6th order forward-backward Butter-
worth band pass filter at 1.0 and 12 HZ cut 
off frequency was utilized. The resultant fil-
tered signals were down-sampled from 2048 
to 32 HZ and single trials of duration 1000 ms 
were extracted. Finally, the EEG signals were 

mapped to the range of (0, 1) as normalizing 
process to reduce the computational complex-
ity [5].

Proposed Scheme
The first important part of CNN, which is 

called convolutional layer is responsible for 
extracting fundamental features of input EEG 
signals. This part is a set of filter banks, ap-
plied to raw EEG signal to extracts features. 
Furthermore, the nonlinear activation function 
is applied on neurons, then the pooling, which 
is also known as a down-sampling layer ap-
plied. Another fundamental part of CNN (i.e. 
fully connected layer) is accountable to clas-
sify the data based on the extracted features. In 
this article Adadelta algorithm is used in this 
layer to perform classification.

Suppose Adadelta weights introduced as 
θ and H(θ) demonstrates the error (i.e. cost 
function), which may be minimized to obtain 
the best classification performance. Gradient 
descent procedure, the use of the gradient in-
formation of the error function, may be used to 
update weights as bellow: 

2 2 2
1  [ ] . [ ] (1 )t t tE Eθ τ θ τ θ−∇ = ∇ + − ∇               (1)

In which 2[ ]tE θ∇  shows running average 
over the gradient of the squared weight, which 
only depends on previous average and the cur-
rent gradient [21] and the parameter τ refers to 
momentum. The derivative of ( ) :H θ → 
, may be written as:

( ) ( )( )*  H Vθ θ θ θ= −′                                    (2)

In which ( )V θ ∈  is generalized curvature 

[22, 23] and θ* is a global minimum of H(θ). 
Let denote 1-ϑ.V(θt) as contraction of a gradi-
ent descent step, Nt as model parameter opera-
tor at time t and ϑ as learning rate; thus, the 
update rule may be defined as bellow:
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(3)

If the model parameters ϑ and τ and the gen-
eralized curvature V are in the robust region, 
we have:

( ) ( ) ( )2 2
1  . 1  tVτ ϑ θ τ− ≤ ≤ +                   (4)

Therefore, the spectral radius of the τ only 
depends on ( )tf N τ= . Optimization is done 

using a quadratic model which may be consid-
ered as:

(5)

The average of m component functions Hi is 
a common gradient based objective function 

( )tH θ∇  at time t. In equation 5, the gradient 

variance is defined as 21
2 i

i

R r
m

= ∑ . 

As H(θ) is introduced at equation 5, and 
θ1=θ0 and θt follow the model parameter up-
date rule with stochastic gradients 1( )t tH θ −∇  
for t≥2. The squared distance to the optimum 
θ* is:

( ) ( )22* * * 2 1
1 1 1 0 1 1, ( )( )

TT t T t
t s N Rs I P I P sθ θ θ θ θ θ ϑ −
+  − = − − + − −  (6)

In which the first and second terms refer to 
squared bias and variance, and their corre-
sponding model parameter dynamics are de-
fined as bellow:

2 2(1 ) 2 (1 )
1

, 1 0 0
1 0

1 0

V V
V

N P
V

ϑ τ τ τ ϑ τ
ϑ τ τ

ϑ τ τ

 − + − − +
− + −   = =   

   − + − 

(7)

A scalar and asymptotic surrogate based on 
the spectral radius of operators is used to sim-
plify the problem [24]. 

( ) ( ) ( ) ( )
22 22* *

0 (1 )
1 ( )

t t
t

Rf N f P
f P

ϑθ θ θ θ− ≈ − + −
−

  (8)

The spectral radius of the variance operator, 
P is τ. As described in equation 4, under the 

exact same condition, the variance operator, P 
has spectral radius τ, if 

( ) ( )2 2
1  . 1  Vτ ϑ τ− ≤ ≤ + . The new form of 

equation 8, in robust region then may be writ-
ten as [24]:

( ) ( )
22 2* *

0 (1 )
1

t t
t

Rϑθ θ τ θ θ τ
τ

− ≈ − + −
−

      (9)

Equation 9 is used to design rule of the pro-
posed adaptive optimization scheme, which 
leads to equation 10, in which B, refers to 
the estimated distance between the current 
model and a local quadratic approximation’s 
minimum, W denotes the estimate for gradient 
variance. Furthermore, Vmax and Vmin refer to 
the maximum and minimum generalized cur-
vature. They are used to estimate the variation 
of curvature as a fitness function in the pro-
posed method as bellow:

2 2

2

2

( ) arg  

1
,  

1

(1 )

max

min

max

min

min

H min B W

V
V

V
V

V

ττ τ ϑ

τ

τϑ


 = +
   −   ≥

  +   


− =

                       (10)

Now, the genetic algorithm is used to mini-
mize the surrogate for the expected squared 
distance from the optimum of above local 
quadratic approximation [25]. In this minimi-
zation problem, we have a non-linear objec-
tive function H subject to equality constraint 
and inequality constraint. The pseudo code of 
genetic algorithm is presented in Figure 1.

Results
A system with an Intel Core i7 and 16 GB 

RAM was used to test the proposed method. 
The proposed method has been implemented 
using MATLAB 2017 package and applied on 
EPFL dataset as described in section 2. For 
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preparing this data set, the international 10-
20 protocol has been used to position 32 elec-
trodes on scalp.

The EEG signals were recorded using 32 
electrodes from 8 subjects, which each of them 
consists of four sessions and each session con-
tains six runs (i.e. exciting symbols). Thus, in 
each subject, the EEG data from two sessions 
was used to train and one another applied for 
validation. Eventually, the last session was ap-
plied for test. This process was repeated four 
times. Finally, the average of four steps was 
evaluated and reported, separately for each of 
subjects.

The EEG data belonging to each subject was 
first pre-processed to make it ready to feed 
up to the CNN. Thereafter, P300 signal was 
distinguished using CNNs, which had been 
trained by two versions of Adadelta; the first 
was Adadelta with naive model parameter 
called as NMP in the rest of paper and another 
was Adadelta with optimum genetic model 
parameter called OGMP for brevity. Finally, 
their performances were estimated to deter-
mine how good the examined methods detect 
P300 signal. The important parameters used in 
implementation of the genetic module of the 
proposed method may be depicted in Table 1.

The effectiveness of the examined methods 
was compared using some standard param-

eters, including: True Positive Ratio (TPR), 
False Positive Ratio (FPR) and classification 
accuracy, used commonly in P300 detection 
paradigm [8]. Table 2 shows how the men-
tioned parameters were used as evaluation 
criterions to compare proposed method and its 

Figure 1: Pseudocode of genetic minimizer

Method Subject TPR FPR Accuracy

NMP

1 70.74 8.86 80.93

2 67.45 5.35 81.05

3 77.18 2.14 87.51

4 68.39 3.24 82.57

5 76 5.14 83.41

6 72.61 3.22 84.69

7 78.85 2.23 88.31

8 61.79 2.75 79.52

OGMP

1 95.48 0.68 97.40

2 94.27 0.92 96.67

3 98.44 0.62 98.91

4 98.10 2.43 97.83

5 93.35 0.41 96.46

6 97.53 0.54 98.49

7 97.72 0.25 98.73

8 98.54 0.86 98.83

TPR: True Positive Ratio, FPR: False Positive Ratio, 
NMP: Naive Model Parameter, OGMP: Optimum Ge-
netic Model Parameter

Table 2: The average of parameters over 
subjects.

Parameter Value/Description
Maximum Generation 20

Population Size 10

Crossover Function Scattered

Mutation Function Gaussian 

Selection Function Stochastic Uniform 

Table 1: The value of parameters in Optimum 
Genetic Model Parameter (OGMP) algorithm.
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alternative. The comparisons are performed in 
two distinct scenarios as described below.

Intra-Subject Scenario
In this type of analysis, the best results ob-

tained from the examined methods were com-
pared out of the subject under test. According 
to TPRs, the proposed method (i.e. OGMP) 
was outperformed in all of the subjects in such 
way that the best TPR gained by this method 
has been 98.54%, over subject 8. This value 
has been 19.69% better than the best value for 
alternative’s TPR, occurred in subject 7. 

In similar manner, the FPR value also dem-
onstrated the superiority of the proposed algo-
rithm against NMP method. By investigating 
the obtained FPRs, it is observed that the pro-
posed scheme has achieved FPR equal to 0.25 
percent over subject 7, which has been the best 
among all obtained FPRs and also 1.89 per-
cent lower than the best of alternative obtained 
over subject 3. 

Finally, the classification accuracy confirmed 
better performance of our proposed method in 
such way that the best accuracy of this method 
has been obtained over subject 3 to extent of 
98.91%. This accuracy has been 10.6% better 
compared to the best accuracy, obtained using 
NMP method (i.e. 88.31% over subject 7).

Inter-Subject Scenario
In another type of analysis, the performanc-

es of the proposed and NMP methods were 
compared in the same subjects. By investi-
gating TPRs, it was observed that, the high-
est superiority of the proposed method against 
NMP method has occurred in subject 8 by ex-
tent of 36.75 percent. The lowest superiority 
of the proposed method against NMP method 
was observed in subject 5 by extent of 17.35 
percent. Exploiting such superiority in the rest 
of subjects led to the moderate value of 24.83 
percent for inter-subject superiority of our 
method (i.e. OGMP) against alternative based 
on true detections.

In the same way, based on FPRs, the superi-
orities of the proposed method against alterna-
tive were obtained in the range of (0.81- 8.18) 
percent which arose from subjects 4 and 1, 
respectively. By investigation of such superi-
ority for other subjects, the value of 2.33 per-
cent was obtained as moderate superiority of 
proposed against NMP methods in detecting 
false signals.

By considering the obtained accuracies, the 
minimum and maximum of the mentioned 
superiorities were obtained as 10.42% and 
19.31%, obtained in subjects 7 and 8, respec-
tively. Therefore, the moderate superiority 
of our method against NMP was obtained as 
14.53 percent.

Discussion
The EEG signals were recorded from sub-

jects who watched certain and predefined pic-
tures as exciting symbols on a laptop screen 
during four sessions. Each session included 
six runs, which each of runs was representa-
tive of a predefined picture. The averaged 
EEG signal of each run was evaluated based 
on TPR and FPR as depicted in Figure 2. Ex-
ploiting the trend of TPRs obtained from our 
proposed method in graphs shows that in sub-
ject 1, some significant growths have occurred 
in runs 2, 3 and 5 (i.e. TPR= 100%). 

Furthermore, the lowest value of FPRs was 
0%, obtained in runs 2, 3 and 5. In similar man-
ner, the highest and lowest growths in TPR and 
FPR belonging to subject 2, have been 97.82% 
(run 2) and 0% (run 1), respectively. A similar 
trend may be observed in subjects 3, 4, 6 and 
8, in all of them, the best upward of TPRs has 
been 100 percent. In subjects 5 and 7, the TPRs 
were 97 and 98.95 percent, respectively. Simi-
larly, the best downwards of FPRs in subjects 
3, 5, 6, 7 and 8 have also been 0 percent and 
for subject 4 was 0.83 percent. The obtained 
results also depict that the proposed method 
is more stable than its alternative by exploit-
ing changes of TPRs against different exciting 
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symbols (i.e. runs). It may be observed that in 
subjects 2, 3, 5, 6, 7 and 8 over different runs, 
the NMP method gained some TPRs, which 
has varied in the range of (62.02%- 72.91%), 
(73.3%- 79.83%), (67.29%- 83.3%), (63.44%- 

81.29%), (74.36%- 83.04%) and (58.34%- 
64.58%), respectively. 

By contrast, according to the proposed meth-
od, the trends of TPRs in the same subjects 
have been in the smaller ranges as (90.68%- 

Figure 2: The comparison of the sensitivity of true positive ratio (TPR) and false positive ratio 
(FPR) of examined methods to exciting symbols.
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97.82%), (95.83%- 100%), (89.61%- 97%), 
(91%- 100%), (95.95%- 98.95%) and (96.42%- 
100%). The above results may be summarized 
in such manner that the maximum variances 
of TPRs in the proposed and NMP methods 
have been evaluated as 13.05% and 17.85% 
over subjects 1 and 6, respectively. 

Moreover, the minimum variances of TPRs, 
obtained from proposed method and its al-
ternative were 3% in subject 7 and 6.24% in 
subject 8, respectively. These results show the 
more robust behavior of detection rate against 
changes of exciting symbols (i.e. runs) in the 
proposed method compared to NMP method. 
Furthermore, the investigation of variances in 
FPRs obtained by examined methods showed 
that the considerable superiority in TPR ro-
bustness in the proposed method not only has 
not increased false detections, but also has a 
little decreased in false positive rates.

Conclusion
This article presented a new method to im-

prove detection of P300 signals using deep 
neural networks. The proposed scheme tries to 
address the curvature variation in large-scale 
deep networks by evolutionary optimization 
of their model parameters. The genetic algo-
rithm was used to find the best model param-
eters of convolutional neural networks, which 
led to minimize the curvature variations of the 
error function. Such a minimization may im-
prove the performance of detecting P300 com-
ponent from other parts of EEG signals. 

To evaluate the performance of the proposed 
algorithm (i.e. OGMP), it was examined on 
EEG data in parallel with existing NMP meth-
od and the obtained results were compared us-
ing their effective parameters including TPR, 
FPR and accuracy. The comparisons showed 
superiority of the proposed method against its 
alternative in such way it has distinguished 
P300 component from other parts of EEG 
signal, 19.69% and 24.83% better than NMP 
method using intra-subject and inter-subject 

analysis, respectively. These superiorities 
were obtained as 1.89% and 2.33% by investi-
gating the obtained FPR parameters. Further-
more, the accuracy of the proposed method 
has been better than its alternative by extents 
of 10.6% and 14.53% by using intra-subject 
and inter-subject analysis, respectively.

In another type of analysis, it was investigat-
ed that the performance of the proposed meth-
od is more robust against different stimulating 
patterns (i.e. runs) than NMP method. The 
detection rates obtained from the proposed 
method, due to several runs, showed the vari-
ances approximately half of those values ob-
tained for NMP. Based on the above analyzes, 
it may be concluded that the proposed method 
has considerable potential to be used as P300 
detection module in BMI applications.
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