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Introduction

An electrocardiogram (ECG) is a display of the electrical activi-
ties of a heart. An electrocardiogram records the signals using 
electrodes placed over the patient’s body and the results es-

sentially indicate the origin and diffusion of electrical potential in the 
heart muscle [1]. This can be regarded as a non-invasive, safe, and quick 
method to illustrate the cardiac arrhythmias in the time domain, as well 
as diseases affecting the cardiovascular system [2]. Any irregularities 
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ABSTRACT
Background: Cardiac arrhythmias are considered as one of the most serious 
health conditions; therefore, accurate and quick diagnosis of these conditions is 
highly paramount for the electrocardiogram (ECG) signals. Moreover, are rather dif-
ficult for the cardiologists to diagnose with unaided eyes due to a close similarity of 
these signals in the time domain. 
Objective: In this paper, an image-based and machine learning method were pre-
sented in order to investigate the differences between the three cardiac arrhythmias of 
VF, VT, SVT and the normal signal.
Material and Methods: In this simulation study, the ECG data used are 
collected from 3 databases, including Boston Beth University Arrhythmias Center, 
Creighton University, and MIT-BIH. The proposed algorithm was implemented using 
MATLAB R2015a software and its simulation. At first, the signal is transmitted to the 
state space using an optimal time delay. Then, the optimal delay values are obtained 
using the particle swarm optimization algorithm and normalized mutual information 
criterion. Furthermore, the result is considered as a binary image. Then, 19 features 
are extracted from the image and the results are presented in the multilayer percep-
tron neural network for the purpose of training and testing. 
Results: In order to classify N-VF, VT-SVT, N-SVT, VF-VT, VT-N-VF, N-SVT-
VF, VT-VF-SVT and VT-VF-SVT-N in the conducted experiments, the accuracy 
rates were determined at 99.5%, 100%, 94.98%, 100%,100%, 100%, 99.5%, 96.5% 
and 95%, respectively.  
Conclusion: In this paper, a new approach was developed to classify the abnor-
mal signals obtained from an ECG such as VT, VF, and SVT compared to a normal 
signal. Compared to Other related studies, our proposed system significantly per-
formed better.
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in the heart rate, pace, and transmission of 
electrical pulses, in the heart, can be consid-
ered as a type of cardiac arrhythmia, where 
cardiologists can detect the type of disease 
based on the results obtained from an electro-
cardiogram. Moreover, various symptoms can 
cause heart disease; however, atherosclerosis 
and hypertension are two of the most common 
causes [3]. Additionally, the physiology and 
morphology of the body change with aging, 
which leads to alterations in the cardiovas-
cular system performance, and consequently, 
the risk of developing cardiovascular disease 
increases [4]. Different arrhythmias exist, in-
cluding Atrial Fibrillation (AF), Ventricular 
Tachycardia (VT), Ventricular Fibrillation 
(VF), Left Bundle Branch Block (LBBB), 
Right Bundle Branch Block (RBBB), Left 
Anterior Hemiblock (LAHB), Atrial Prema-
ture Complex (APC), Premature Ventricular 
Complex (PVC), and Supraventricular Tachy-
cardia (SVT) [5]. Furthermore, none of every 
arrhythmia detected by ECG is dangerous. As 
a rule, due to the crucial effect of ventricles on 
pumping blood, the arrhythmias involving the 
ventricle are more dangerous [6]. According 
to several statistical studies, about 80% of the 
Sudden Cardiac Deaths (SCD) are the result of 
automatic Supraventricular Tachyarrhythmia 
(SVTA), VT, and VF. Therefore, it is rather 
imperative to diagnose these types of arrhyth-
mias, particularly for patients who have an im-
planted defibrillator in their bodies. In order 
to prevent loss of life, appropriate treatment 
measures should be taken within a few min-
utes, once these types of arrhythmias are diag-
nosed [7-9]. Thus, in this paper, a method was 
proposed for separate classifying of SVT, VF, 
VT arrhythmias and the normal signal. The 
classification of different heart rates can be re-
garded as one of the most important steps in 
determining the type of arrhythmia. However, 
since the classification of different heart rates 
is extremely difficult and rather time-consum-
ing in a number of cases, any automated pro-
cessing sample, which can be used to facilitate 

the classification of heart rates, has been con-
sidered in various studies.

Cardiac signals have relatively similar ap-
pearances in terms of time domain; however, 
their nature widely varies. Over the past few 
decades, a few algorithms have been pro-
posed to distinguish different types of ar-
rhythmias [10-23]. These studies are divided 
according to the extracted features, the clas-
sification method, data, and the training and 
testing strategy. In addition, these algorithms 
include methods based on ECG signals pro-
cessing in the time domain such as using the 
passing through threshold criterion [10], the 
autocorrelation function [11], the conversion 
of a signal into a binary signal and evaluating 
complexity [12]. Algorithms in the frequency 
domain have been proposed in other articles 
such as the band-stop filter in order to esti-
mate the leakage rate and the spectral analysis 
method [13]. In a number of conducted stud-
ies, new approaches were employed for the 
detection of VF arrhythmia, including wave-
let transform [14], Support Vector Machine 
(SVM) [15], and an algorithm for classify-
ing VF arrhythmia using a learning machine 
method [8]. Finally, other articles have been 
published for the classification of arrhythmias. 
Where several features of the ECG signal were 
extracted, including spectral features, entropy 
approximation, direct detection of the feature 
[8] and time-frequency analysis [16] in neu-
ral networks. Moreover, a number of systems, 
proposed to classify ECG signals, have been 
evaluated in the literature [17-21].

Amann et al. [22] transmitted the VT sig-
nals to the state space in order to classify them 
and their normal signals, where the result was 
obtained as an image of several pixels and 
VT classification was performed by counting 
the number of pixels. Furthermore, this was 
achieved by considering the signal’s sample 
as the state variable X(t), which is shown with 
respect to X (t + τ) where the classification 
was obtained by pixel counting. Sarvestani et 
al. [23] added effective masks to the obtained 
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image in the state space in order to increase 
the accuracy of VT and VF signal classifica-
tion, where classification was performed in 
this new condition. However, these studies 
were only able to classify a limited portion of 
signal classes, in several specific articles [22, 
23], only two data classes were classified.

Despite the fact that various automatic heart 
rate classification methods have been inves-
tigated in previously conducted studies, it is 
hardly feasible to compare the effectiveness of 
these methods since different data and features 
were used in each of these methods.

Moreover, the techniques used for the clas-
sification of signals, via the signal power spec-
trum, may not have identical resolution capac-
ity; however, the reconstruction of heart rate 
signals in the state space results in a highly 
desirable resolution. Additionally, the estab-
lished theories of the state space ensure that 
each system dynamics can be described by the 
reconstruction of the state space of each state 
variable, if the state space of the reconstructed 
state is larger than twice the cell count in terms 
of dimension.

In this paper, the state-space reconstruction 
method was used in order to achieve a more 
comprehensive and appropriate space, which 
is less dependent on the individual patient. 
Moreover, this method was employed in order 
to obtain a higher degree of classification, and 
consequently, to create a desirable training set. 
This method is able to generate an automatic 
heart rate classification, which is not only in-
dependent of the individual patient but also 
highly efficient in that regard. In this study, 
the normalized mutual information criterion 
between two images and an optimization al-
gorithm was employed in order to determine 
τ and to obtain best values, respectively. Fur-
thermore, the concept of masks, used in pre-
vious studies [23], was employed in order to 
develop highly effective masks to extract six 
features. Image processing methods were uti-
lized to extract six more features that the final 
seven extracted features were parts of a tex-

ture features, extracting information associ-
ated with the relative positions of the image 
pixels in relation to each other. 19 features 
were considered for the optimal classification 
and as training validation and testing data for 
the neural network.

Material and Methods

Cardiac Arrhythmias
In this simulation study, arrhythmia is re-

ferred to a group of heart signals when an 
abnormal condition exists in the heart’s elec-
trical activity and rhythm [5]. While several 
arrhythmias, such as VT, VF, and SVT are ex-
tremely dangerous and considered to be life-
threatening, other arrhythmias may not pose a 
significant threat. Ventricular fibrillation is a 
type of cardiac arrhythmias, where electrical 
stimulation deviates from following a specific 
pathway in the heart’s electrical conduction 
system. If VF occurs, various points in the 
ventricles begin to send rapid impulses, result-
ing in a highly irregular depolarization and 
desynchronization of the ventricles, in other 
words, the heart muscle quivers instead of ef-
fective contraction and pumping. Therefore, 
pumping essentially stops, then the levels of 
cardiac outlet and effective blood flow rapidly 
and significantly reduce and eventually, death 
occurs during a few minutes due to cardiac 
arrest [24]. Ventricular tachycardia is another 
type of arrhythmias, in which the heart rate in-
creases to more than 100 bpm. This rise in the 
heart rate may sometimes have a physiologi-
cal origin and occur at the time when the body 
needs higher levels of oxygen (such as exer-
cise). However, this can considerably elevate 
(250 bpm) in an individual suffering from VT, 
causing interference in pumping and dizziness 
and cardiac arrest. VT may also develop into 
VF without any significant sign, which is a 
deadly disease [5]. Supraventricular tachycar-
dia is a different type of arrhythmias, which is 
not as dangerous as the previously described 
arrhythmias; however, it should be carefully 
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identified and recognized by the cardiologist 
in order to provide the appropriate treatment 
and therapies [7]. In order to show the existing 
similarities, SVT, VF, VT, and normal signals 
are shown in Figure 1.

Database
The data used in this article were extracted 

from a review of more than 500 signal sam-
ples obtained from four databases [25]. They 
include Creighton University Ventricular 
Tachyarrhythmia Database (CUDB), Nor-
mal Sinus Rhythm Database (NSRDB) from 
Boston Beth University Arrhythmias Center, 
and finally, Ventricular Fibrillation Database 
(VFDB) and Supraventricular Arrhythmia 
Database (SVDB) from the MIT-BIH Uni-
versity. 121 signal samples with a length of 1 

minute were obtained, which 40, 40, 20, 21 of 
them were VF, normal, VT, and SVTA signal 
samples, respectively. The frequency of sig-
nals associated with the CUDB and VFDB 
was determined at 250 Hz and also 128 Hz 
for The NSRDB and SVDB. In this study, the 
proposed system provides an opportunity to 
compare all of the data; as a result, all of the 
extracted data from different databases should 
possess a matched frequency before any fur-
ther analysis. In this simulation study, the pro-
posed algorithm is simulated using MATLAB 
R2015a, and the laptop used in this study had 
the following configurations: 32-bit windows 
7, Intel Core i7 2.53 GHz, 4 GB RAM.

Method
The block diagram of the proposed algo-

Figure 1: Instances of A) normal, B) Ventricular Tachycardia (VT), C) Ventricular Fibrillation (VF), 
D) Supraventricular Tachycardia (SVT) signals to demonstrate external similarities in the time 
domain.

538



J Biomed Phys Eng 2021; 11(4)

Classification of ECG Signals

rithm is shown in Figure 2, consisting of five 
steps: 1) the preprocessing stage, where fre-
quency, matching of the input ECG data and 
the application of time windows in order to 
extract identical time intervals from the data, 
is performed at this stage. 2) Conversion to 
the state space, 3) feature extraction from the 
developed data in the new space, 4) feature 
selection from the acquired data in the new 
space, and finally, 5) feature classification us-
ing the appropriate MLP algorithm.
1) Preprocessing
Due to extraction from different databases, 

data sampling rates have different values and 
in order to achieve a higher level of reliabil-
ity, the data sampling rates were initially made 
identically in terms of value. Since the en-
tire length of data is not required for the state 
space modeling and only a short-length signal 
from the original data is quite sufficient, only 
8 seconds of the data signal length were con-
sidered for each patient’s respective signal. A 
number of samples were obtained by applying 
an 8-second window over different parts of the 
data. Furthermore, it is worth noting that no 
overlapping exists between the applied win-
dows to the data. The best performance can 
reach over an 8-second time interval [26].
2) Conversion to state space
Signal conversion to state space, as a useful 

and efficient method, was employed in order 
to expose more differences among the signals 
used in this study.

a) Theoretical Concept of State Space 
Reconstruction

It is rather necessary to find patterns not 
only in the time series itself but also in its con-
version into a higher-dimensional space for 

each analyzed time series, such as electrocar-
diogram signals. The state space considered in 
this study is a special case of such a conver-
sion. In fact, the space state is an n-dimension-
al space, in which a signal is plotted with re-
spect to its delay. Each point in the state space 
is expressed by the following relation:
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sion, and N is the number of time series points. 
All the acquired points in the state space can 
be created using the following relation:
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According with (1) and (2) equations, the 
dimension should be initially determined prior 
to the time delay rate in order to create a state 
space. Different results are obtained from each 
of these values; thus, it is vital to determine 
the respective optimal values.

b) Time-delay algorithm
The time-delay algorithm reconstructs the 

signal in the state space. Moreover, according 
to the Takens’s theorem [26], each signal can 
be considered as a state variable. In this study, 
the time-delay method was used to reconstruct 
the signal in the state space, where the signal 
is on the horizontal axis and the delay is on 
the vertical axis [27, 28]. In other words, the 

Figure 2: The block diagram representing the proposed algorithm.
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primary signal is considered as the state vari-
able X (t) and based on this method, the de-
layed form of the primary signal X (t + τ) is 
obtained, where τ is the signal delay. Plotting 
the two variables by points causes the initial 
signal to be mapped on the two-dimensional 
space. It should be noted that the signals were 
mapped on a two-dimensional space so that 
they can be used as an image [29]. The behav-
ior of VT SVT, VF, and the normal signals is 
largely similar in the time domain; however, 
as shown in Figure 3, the differences between 
these signals were rather elevated in the state 
space.

Two common methods are used in order 
to estimate the most appropriate time delay, 
including the normalized mutual informa-
tion (NMI) method and an experience-driven 
method. In the normalized mutual informa-

tion method, the mutual information between 
the integer values of successive delay choices 
is determined, where the obtained result is 
used as an appropriate estimation of the op-
timal delay. In the second method, the delay 
is obtained experimentally and by conducting 
several classification tests [30]. In this study, 
the best value of τ in the variable X (t + τ) 
was determined using the normalized mutual 
information method [31], exceeding in the ac-
curacy with respect to the mutual information 
method. This is achieved by first converting 
the signals used for classification to the state 
space and obtaining their image. Then, the 
NMI criterion estimates the level of similarity 
between the two images. Finally, this criterion 
is considered as a cost function in an optimiza-
tion algorithm i.e. particle swarm optimization 
[32], where the minimum NMI values can be 

Figure 3: The representation for the signal transmitted to the state space. A) Normal signal B) 
Ventricular Tachycardia (VT) signal C) the gridded state space image for the normalized signal 
D) the gridded state space image for the VT E) Supraventricular Tachycardia (SVT) signal F) Ven-
tricular Fibrillation (VF) signal G) the gridded state space image for the SVT H) the gridded phase 
space image for the VF.
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obtained for different values of τ. The obtained 
value is an indication of the delay generating 
the maximum difference between the two im-
ages. The optimization algorithm was em-
ployed in order to facilitate the search process 
of the delay parameter. In addition, a variety of 
optimization methods exists, including PSO, 
Gradient Descent, Powell’s algorithm, SA al-
gorithm, Levenberg Marquardt algorithm, and 
Genetic algorithm. PSO algorithm, used in this 
study, and possesses several advantages com-
pared to other algorithms, such as perform-
ing faster and an ability to adjust the accuracy 
[31]. Since the level of algorithm complexity 
is important in this section, the PSO algorithm 
was utilized, providing more accurate results 
than the other algorithms. Then, the respective 
appropriate delays for each test were individu-
ally estimated and extracted.
3) Feature extraction
SVT, VF, VT, and normal signals were 

mapped to a 100 by 100 image in the state 
space in order to further enhance the differ-
ences and create a comparison environment 
for them. Each empty box presents a pixel, 
where either value of 0 or 1 can be assigned to 
them. Moreover, image-processing techniques 
such as perimeter, area and the center of grav-
ity detection and morphological operators can 
be used to extract the features and determine 
the data for artificial neural network training. 
In addition, while using the available concepts 
in the literature [23], it is rather possible to 
eliminate a large amount of common informa-
tion from the images by applying a number 
of masks, which their efficacy can be proved 
empirically, and utilizing them for classifica-
tion. In this regard, it should be noted that the 
masks and images dimension must be identi-
cal, where the total number of black pixels is 
the desired value after applying the masks. 
Additionally, a combination of mask and im-
age processing techniques can be used in order 
to create a feature and, consequently, a high-
er quality classification. On the other hand, 
another group of features used in this study 

was the Gray-Level Co-Occurrence Matrix 
(GLCM) features [33]. Furthermore, unlike 
gray-level histograms, which are only capable 
of displaying spatial distribution and gray lev-
els of the images, this group of features can 
simultaneously display information regarding 
the relative position and angular relation of the 
two pixels of the corresponding image. These 
features can be considered as one of the most 
widely used texture features, containing sec-
ond-order statistical information of an image. 
In this study, seven main features associated 
with GLCM of images were used, including 
dissimilarity, contrast, correlation, variance, 
homogeneity, entropy, and energy, which are 
among the most optimal features of GLC.

Out of the mentioned criteria, the gravity cen-
ter of images, internal area, and GLCM were 
of two output parameters representing the two 
co-ordinate axes. Out of the 8 masks shown in 
Figure 4, six masks Figure 4(A, C, D, E, F and 
G) possessed higher levels of efficiency and 
were used in this research. Moreover, other 
criteria used for image differentiation were the 
application of two other masks, Figure 4 (B 
and H), and their center of gravity, where the 
vertical and horizontal axis was considered for 
the first and second criteria, respectively. In 
overall, 10 features were acquired from these 
criteria. The occupied area of the images was 
regarded as the 11th feature. After applying the 
opening morphological operator, the internal 
area was confirmed as the 12th feature; thus, 
12 features were extracted for the purpose of 
network training. In addition, 7 more GLCM 
features were extracted, evaluating the images 
in terms of texture. Finally, each of the intro-
duced features was assessed and used to clas-
sify ECG signals by applying them as an MLP 
neural network classifier.
4) Feature selection
The performance and efficiency of a su-

pervised learning algorithm can be strongly 
influenced by initial inputs. The purpose of 
feature selection techniques is to achieve the 
best subset compared to all of the extracted 
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feature in order to describe the inputs. In this 
paper, the Receiver Operating Characteristic 
(ROC) curve was used between classes in or-
der to evaluate the efficiency of each feature 
in different classifications. Furthermore, more 
desirable features were extracted and utilized 
in the classification algorithm.
5) Classification
In this study, the multilayer perceptron 

(MLP) neural network was employed for the 
classification of previously obtained data [34]. 
Moreover, the activation sigmoid function in 
each layer and the Levenberg Marquardt al-
gorithm, as an error backpropagation algo-
rithm, for neural network training were imple-
mented in MLP. In total, 70% of the data were 
utilized for training, 15% for validation, and 
15% for the neural network testing. The data 
were selected randomly and the network ef-
ficiency was calculated by the Mean Square 
Error (MSE) method. In this network, the pre-
scribed values for the performance and valida-
tion checks, as a mean to stop the algorithm, 
were considered at 100e-7 and 12 errors, re-
spectively. The maximum number of iteration 
was also determined at 100.

Results
In Tables 1 and 2, the experiment were car-

ried out for each specified group, and the mean 
square error, accuracy, precision, sensitivity, 
F-measure parameter, and the average num-

ber of errors were separately determined for 
each of the 12 extracted features. Essentially, 
the F-measure parameter is a criterion deter-
mining the resolution level in two of the data 
classes. Moreover, information regarding the 
F-measure parameter can be used in order to 
select a feature. This is carried out to exam-
ine the efficiency of the extracted features and 
to select the appropriate features for the final 
classification. The specified features in Table 
2 are as follows:

1. Applying mask (g) to the image and count-
ing the number of black pixels.

2. Applying mask (f) to the image and count-
ing the number of black pixels.

3. Applying mask (e) to the image and count-
ing the number of black pixels.

4. Applying mask (a) to the image and count-
ing the number of black pixels.

Figure 4: The masks utilized to remove common information, (A), (E), (F) and (G) with -45 de-
gree angles and thicknesses of 15, 3, 7, and 10 pixels, (C) and (D) with thicknesses of 40 and 20 
pixels, (H) and (B), which are vertical and horizontal, respectively, with thicknesses equivalent 
to 50 pixels.

Group Delay(s) NMI
Normal-VF 0.22 -3.563

Normal-SVT 0.19 -4.47
VT-SVT 0.22 -2.746
VT-VF 0.21 -2.152

NMI: Normalized mutual information, VF: Ventricular 
Fibrillation, SVT: Supraventricular Tachycardia, VT: 
Ventricular Tachycardia

Table 1: The required delay for converting each 
group to state space, as well as the associated 
normalized mutual information (NMI) ratio.
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Group Feature Perform 
(mse)

Precision 
(%)

Sensitivity 
(%)

Accuracy 
(%)

F-measure 
(%)

Mean-Fal- 
Number

N - VF

1 0.027 95.8 98.3 96.5 97 2.9
2 0.03 96.1 97.3 96.1 96.7 3.2

3 0.033 96 97.7 96.2 96.8 3.1

4 0.035 95.7 97.1 95.8 96.4 3.5

5 0.066 93.5 90.9 90.9 92 7.5

6 0.027 98.5 96.1 96.8 97.3 2.6

7 0.098 93.3 83.6 87.2 87.9 11.3

8 0.100 97.4 76.9 85.1 85.9 12.3

9 0.078 96.3 88.2 91 94.3 7.4

10 0.198 74 87 73.9 79 21.6

11 0.209 96.5 50.5 69.5 65.9 25.3

12 0.098 92.10 86.1 86.81 89 10.8

VT - SVT

1 5e-09 100 100 100 100 0

2 3.1e-09 100 100 100 100 0

3 1.3e-09 100 100 100 100 0

4 1.3e-09 100 100 100 100 0

5 0.047 97.6 90.2 94.1 93.7 4

6 0.208 60.3 93.5 67 73.3 22.3

7 0.002 100 99.4 99.7 99.6 0.2

8 0.014 97.3 98.5 97.9 97.9 1.4

9 0.041 97 92.7 95 94.7 3.4

10 6.2e-09 100 100 100 100 0

11 0.165 65.2 93.3 72.6 76.6 18.6

12 0.113 90.8 79.6 86.2 83.2 9.4

Table 2: Results obtained using the multilayer perceptron (MLP) neural network. The extracted fea-
tures are separately fed to the neural network as inputs, and each result is obtained after 10 trials.

ing the number of black pixels.
10. Applying mask (b) to the image and the 

horizontal axis associated with the center of 
gravity of the image, obtained by applying the 
mask.

11. Applying mask (I) to the image and the 
vertical axis associated with the center of 
gravity of the image, obtained by applying the 
mask.

5. Applying mask (c) to the image and count-
ing the number of black pixels.

6. Total internal area of the image and count-
ing the number of black pixels.

7. Horizontal axis associated with the center 
of gravity of the image.

8. Vertical axis associated with the center of 
gravity of the image.

9. Applying mask (d) to the image and count-
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12. Applying the opening operator, calcula-
tion of the obtained image area, and counting 
the number of black pixels.

13-19. GLCM feature.
The results in Table 2 were applied to the 

neural network, as input, after separately ap-
plying each feature in the respective group. It 
should be noted that the MLP neural network 
was trained with one neuron in the hidden lay-
er and one in the output layer. Furthermore, 
the average results were recorded after 10 it-

erations for a higher level of credibility. In the 
next step, the appropriate features providing 
us with a greater level of resolution were se-
lected in each of the groups and used in a new 
MLP neural network classifier as input data. In 
addition, the results were compared to a com-
bination of all the features. In this section, the 
MLP neural network possesses two neurons in 
the hidden layer. Table 3 demonstrates the re-
sults of this experiment.

In the final stage, the groups were divided 
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Group Feature Perform 
(mse)

Precision 
(%)

Sensitivity 
(%)

Accuracy 
(%)

F-measure 
(%)

Mean-Fal- 
Number

Normal 
- SVT

1 0.055 93.8 93.4 92.6 93.6 6.2
2 0.063 92.7 93.2 91.9 92.9 6.8
3 0.062 92.1 93 91.3 92.5 7.3
4 0.068 92.3 93 91.4 92.6 7.2
5 0.11 87.1 90 86.3 88.5 11.4
6 0.108 84.1 93.6 85.8 88.5 11.9
7 0.180 81.6 73.9 75 77.4 20.1
8 0.245 58.3 100 58.3 73.65 35
9 0.115 89.5 83.9 84.6 86.2 12.5
10 0.231 69.68 70.4 67.7 69.5 29.6
11 0.192 81.92 60.2 63.7 64.4 30.5
12 0.103 85 93 86.7 88.4 11.1

VF - VT

1 0.013 100 95.8 97.9 98 1.4
2 0.021 100 97 98.5 98.47 1
3 0.012 100 97 98.5 98.47 1
4 0.012 100 97 98.5 98.47 1
5 0.55 100 87.6 94.1 93.39 4
6 0.2 60.6 89.7 66.4 72.2 20.6
7 0.111 96 73.2 85.1 82.9 10.3
8 0.120 97.9 72.5 85 83.1 10.3
9 0.056 100 90.9 95.6 95.23 3
10 0.007 100 99.4 99.7 99.5 0.2
11 0.151 76.5 83 79 79.5 14.4
12 0.268 53.3 50.6 53.8 50 31.7

VF: Ventricular Fibrillation, VT: Ventricular Tachycardia, SVT: Supraventricular Tachycardia
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Group Feature
Perform 

(mse)
Precision 

(%)
Sensitivity 

(%)
Accuracy 

(%)
F-Measure 

(%)
Mean-Fal-Number

N - VF

1, 6, 9  0.004 99.2 100 99.5 99.5 0.4
1, 6 0.008 99.2 100 99.5 99.5 0.4

13 - 19 0.008 99.63 99.63 99.65 99.63 0.6

VT - SVT

7, 8 6.2e-09 100 100 100 100 0

1, 9 1.04e-08 100 100 100 100 0

10, 12 4.6e-06 100 100 100 100 0

10, 11 1.2e-08 100 100 100 100 0

13-19 5.5e-08 100 100 100 100 0

N - SVT
1, 2, 3 0.049 94.1 93.9 93 93.7 5.8

13-19 0.025 97.08 87.16 94.98 94.73 3.9

VF - VT

1, 2, 3 0.004 100 98.8 99.4 99.3 0.2

3, 10 0.001 100 99.4 99.7 99.7 0.2

13-19 8.2e-08 100 100 100 100 0

VT-N 13-19 4.26e-08 100 100 100 100 0

VF: Ventricular Fibrillation, VT: Ventricular Tachycardia, SVT: Supraventricular Tachycardia

Table 3: Results obtained using the multilayer perceptron (MLP) neural network. The features 
employed as the network inputs are globally optimal features and most distinctive ones, repre-
sented in Table 2.

Group VT – N – VF N – SVT - VF VT-VF-SVT VT-SVT-VF-N
Feature 1-6-10 1-6-10-12 1-6-12 1-6-9-12 13-19 1-6-9-12 13-19

Perform (mse) 0.0003 1.9e-09 0.030 0.023 0.012 0.025 0.036
Accuracy (%) 99.4 100 94.8 96.3 96.5 95 86.57

Mean-Fal-Number 0.7 0 5.3 4.1 2.3 7.5 8.8

VT: Ventricular Tachycardia, VF: Ventricular Fibrillation, SVT: Supraventricular Tachycardia

Table 4: Results obtained using the multilayer perceptron (MLP) neural network. The features 
employed as the network inputs are globally optimal features and most distinctive ones, repre-
sented in this table, groups with 3 and 4 classes are classified.

into four classes of normal-VF-VT, normal-
VF-SVT, VT-VF-SVT and four classes of nor-
mal-VT-VF-SVT. Moreover, appropriate fea-
tures were used for the MLP artificial neural 
network training with 5 neurons in the hidden 
layer. The obtained results from this stage are 
presented in Table 4.

Over the past few years, numerous stud-

ies have been carried out in order to classify 
the ECG signals, however, few of them have 
investigated a method that has the ability to 
simultaneously classify three signals of VF, 
VT, SVT, and the normal signal. The results of 
several related studies, along with their classi-
fication groups and the extracted features, are 
presented in Table 5. 
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Study Feature Precision Sensitivity Accuracy Group
Ruiz [35] Cross Validation - 96.7 - N-VT
Riasi [36] Complex network theory 88.8 85 - N-VT
Riasi [2] Morphology 100 88 - N-VT

Roopai [29]
Difference Method in state 

space
- - 91.51 N-VT

This study The proposed method 100 100 100 N-VT

Choi-williams [23]
Short time Fourier Trans-

form
- - 90 VT-VF

Sarvestani [23] Mask in state space - - 100 VT-VF

Roopai [29]
Difference Method in state 

space
- - 89.8 VT-VF

This study The proposed method 100 100 100 VT-VF
Ruiz [35] Cross Validation - 90.2 - VF-N

Amann [22]
Number of pixel in state 

space
97.8 79 96.2 VF-N

Roopai [29] Similary method - - 94.13 VF-N
This study The proposed method 99.2 100 99.5 VF-N

VT: Ventricular Tachycardia, VF: Ventricular Fibrillation

Table 5: Comparing the results obtained using the proposed system with other related resources.

Discussion
In this study, the data were divided into nine 

groups of normal-VF, VT-SVT, normal-SVT, 
VT-VF, normal-VT, normal-VF-VT, nor-
mal- SVT-VF, VT-VF-SVT and normal-VT-
VF-SVT in order to evaluate the efficiency 
of the proposed algorithm. This partitioning 
was performed based on the level of features 
correlation; finally, features were individu-
ally extracted and classified for the data of 
each group. Moreover, the efficiency of the 
proposed system was achieved by evaluating 
the results from each group. In this research, 
the obtained results are divided into three gen-
eral sections. In the first section, the optimal 
values of time delay τ, which are required for 
each of the mentioned groups, are separately 
obtained in accordance with the method de-
scribed in Section 4. As previously stated, the 

delay is obtained using the PSO algorithm and 
the cost function associated with the normal-
ized mutual information. In addition, in order 
to increase the validity of the obtained values, 
10 samples were selected in each group, where 
the experiment was repeated for each of these 
samples. Then, the specific value reported was 
repeated more than others in these 10 experi-
ments, recognized as the optimum and final 
value of time delay. The delay search field 
was from 0 to 4 seconds and after 20 itera-
tions, 20 final optimal data were extracted in 
each experiment. Then, the most optimal val-
ue obtained from the entire 10 experiment was 
considered as the value of delay. It is worth 
noting that the final values of time delay may 
not be the most optimal in a number of cases, 
however, it is certainly one of the best time 
delay values, including the maximum of the 
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data in the respective group. Additionally, 
although delay time values of less than 0.05 
seconds are considered as optimal values in 
the NMI algorithm, their results are not per-
ceived as desirable. Thus, the values within 
this interval should be neglected. The most ef-
ficient delay is obtained empirically from the 
optimal values for each group and the optimal 
time delay is constant in all of the experiments 
for each group, as shown in Table 1. Figure 5 
also illustrates the variation of normalized mu-
tual information with respect to delay changes 
along with the time delay value in each group. 
Subsequently, the signal is transmitted to the 
state space while taking the appropriate delay 
into account, where the result is plotted in a 
two-dimensional space and used as an image.

In the second section, a total number of 19 
features were extracted from the obtained im-
age for the artificial neural network training. 
Out of these 19 features, two features repre-
sented the length and width of the center of 
gravity. One feature represented the total area 
of the image and six features were obtained 
by applying the efficient, as shown in Figure 4 
masks, for the image and counting the number 
of black pixels. Two other features were ob-
tained by applying the H and B masks, shown 
in Figure 4, and then taking the length and 
width of the center of gravity into account, 
respectively. Furthermore, the 12th feature 
was also obtained by applying the opening 
morphological operator and then determining 
the total area. Finally, seven GLCM features 

were extracted from the images. Therefore, all 
of the 19 features were extracted and laid the 
groundwork for the artificial neural network 
training. Figure 6 depicts a number of the ob-
tained features after applying the mask.

In the last section, the obtained features were 
initially applied to the appropriate MLP neural 
network, according to the performed classifi-
cation.

Conclusion
In this paper, a new approach was developed 

to classify the abnormal signals obtained from 
an ECG such as VT, VF, and SVT compared to 
a normal signal. In the first step, these signals 
were transmitted to the state space in order 
to obtain valuable information from each of 
them. Finally, the corresponding signals were 
mapped to a 100 by 100 image. The param-
eter τ was considered as the delay and one of 
the main challenges in this research was ob-
taining an optimal value of τ. Initially, data 
were divided into nine groups of normal-VF, 
VT-SVT, normal-SVT, VT-VF, normal-VT, 
normal-VF-VT, normal-SVT-VF, VT-VF-
SVT and normal-VT-VF-SVT. Then, using 
the NMI algorithm, the obtained level of simi-
larity between the images was measured in 
terms of the variations of delay in the previ-
ously mentioned groups. Finally, the optimal 
value was obtained separately in each group 
using the PSO optimization algorithm. There-
fore, the most optimal time delay can be em-
ployed in each group for the transmission to 

 

Figure 5: Time delay and normalized mutual information (NMI) ratios, along with the illustra-
tion of the globally optimal time delay for (A) Normal-Supraventricular Tachycardia (SVT), (B) 
Ventricular Tachycardia (VT)-SVT, (C) N-Ventricular Fibrillation (VF) and (D) VF-VT
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Figure 6: The results were obtained after applying the masks presented in Figure 4 and some of 
the introduced features. In these figures, rows 1, 3, and 5, refer to the VF images, while 2nd,4th, 
and 6th rows represent the normal images. In addition, Figures A) and D) illustrate the center of 
mass; B) and E) demonstrate applying -45 degrees masks with thicknesses of 15 pixels; C) and 
F) illustrates applying -45 degrees masks with thicknesses of 10 pixels; G) and J) demonstrate 
applying -45degrees masks with thicknesses of 7 pixels; H) and K) illustrate applying -45degrees 
masks with thicknesses of 3 pixels images shown in I) and L); results from applying the mask 
presented in Figure 4 (C), M) and P) from applying the mask presented in Figure 4 (D), and im-
ages N) and Q) represent applying the “opening” operator, followed by considering the area, 
and finally O) and R) images demonstrate applying the mask presented in Figure 4 (B) and de-
termining the center of mass in the images.

state space. This value assists to minimize the 
probability of obtaining similar images. In the 
second section, a total number of 19 features 
were extracted from the image; then, all of 
the features were combined, where three and 
four classes were separately selected for each 
data group, according to the type of data in the 
group. The selected features exhibited a high 
level of performance in terms of data classi-
fication. Finally, each feature group was ap-

plied to the MLP classifier and the respective 
accuracy was determined. The most optimal 
structure of the classifier was also obtained 
empirically in a trial-and-error process.

The sixth feature in the N-VF group, the first, 
second, third, fourth and 10th features in the 
VT-SVT group, the first feature in the N-SVT 
group, and the 10th feature in the VT-VF group 
were considered as the most appropriate fea-
tures. In the next section, a number of features 
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were used in the neural network training and 
testing. The results of classification accuracy 
were determined at 99.5%, 100%, 94.98%, 
100% and 100%, respectively, compared to 
the related studies, and reported higher levels 
of efficiency. A more complex neural network 
system was the only disadvantage of a multi-
feature rather than a single feature system. In 
the last section, groups with three and four 
classes are presented and the desirable neural 
network was trained using the appropriate fea-
tures. Moreover, the data were tested in this 
network. The accurate results were determined 
100% for the VT-VF-normal group, 96.3% for 
the normal-VF-SVT group, 96.5% for the VT-
VF-SVT and 95% for the VT-VF-SVT-normal 
group. In addition, other novelties of this pa-
per include the comprehensiveness of the 
proposed system in the classification of other 
data groups. Other related studies mainly fo-
cus on the classification of VT and VF signals. 
Compared to these studies, our proposed sys-
tem significantly performed better. However, 
the main contribution of this research was in 
the separation of normal, VT, and VF signals 
and the normal-VF-SVT signal, VT-VF-SVT 
as well as all of the four normal, VT, VF, and 
SVT signals. Thus, the accurate values were 
determined at 100%, 99.5%, 96.5% and 95% 
of the proposed system, respectively
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