Updating the Planar Patterson-Parker Table for Ir-192 and Cs-137 Brachytherapy Sources Using the Most Recent TG-43U1 Recommended Dosimetric Parameters

Naghshnezhad Z.¹*, Faghihi R.¹, Mosleh-Shirazi M. A.², Meigooni A. S.^{1,3}

Abstract

Background: The Patterson-Parker table was created in 1934 to determine mg-hr required to deliver the prescribed dose to the treatment area. These tables were created using the dosimetric data for ²²⁶Ra that was determined in air and were utilized for dose calculations around implants with Ra-equivalent radionuclides such as ¹³⁷Cs and ¹⁹²Ir. Therefore, the differences of the tissue attenuation and anisotropy of these radionuclides and their impact on dose uniformity of the implants were ignored.

Objective: In this study, the Patterson-Parker table has been updated for ¹³⁷Cs and ¹⁹²Ir sources using their recent dosimetric data. Furthermore, the dose uniformity for different loading schemes, as a function of the implant area, was tested.

Methods: The updated Paterson-Parker tables were generated for ¹³⁷Cs and ¹⁹²Ir sources using their published dosimetric parameters that have been determined following the American Association of Physicists in Medicine (AAPM) Task group 43 (TG-43U1) recommendations. The accuracies of the updated tables were examined by two independent methods, Monte Carlo simulation technique and a commercially available treatment planning system. In addition to the dose values along the central axis of the implant, dose profiles along two orthogonal directions were evaluated for the selection of the optimal radioactivity distribution in an implant.

Results: We found that the original Paterson-Parker loading scheme of the radioactivity as a function of the implant size has to be adjusted to achieve the optimal dose distribution (1000 cGy $\pm 10\%$) in an implant. In addition, it was shown that the same implant size for the mg-hr required for ¹³⁷Cs was not identical to that of ¹⁹²Ir. Similarly, there were some differences between the updated table and the published Paterson-Parkers tables. Independent Monte Carlo simulations and treatment planning data had excellent agreement with the updated data.

Conclusion: The conventional version of Paterson-Parker tables are not useful for the two commonly used brachytherapy sources. The updated version of the tables should be used instead.

Keywords

Paterson-Parker table, TG-43, Dosimetry, Ir-192, Cs-137

Introduction

B rachytherapy is one of the common radiation therapy techniques for malignant tumors. In this technique, the required radiation dose for the target area is delivered by placing the sources within the tumor or adjacent to it. Prior to the modern computerized treatment planning systems, brachytherapy was based on lookup tables. In 1934, *Corresponding author: Zeinab Naghshnezhad, MSc, Department of Medical Radiation Engineering, School of Mechanical Engineering, Tel: +98-711-647-3474 Fax: +98-711-647-3474 E-mail: znaghsh@gmail. com

Original

¹Department of Medical Radiation Engineering, Shiraz University, Shiraz, Iran

²Center for Research in Medical Physics and Biomedical Engineering, and Department of Radiotherapy, Shiraz University of Medical Sciences, Shiraz, Iran ³Comprehensive Cancer Center of Nevada, 3730 S. Eastern Dr., Las Vegas, NV, USA

Figure 1: Schematic diagram of the high dose rate Flexisource ¹⁹²Ir source (distances are given in mm)

Ralston Paterson and Herbert M. Parker created a table, then named after them Paterson-Parker or P-P table for determination of mg-hr that was needed to deliver a dose of 1000 R to the treatment area [1-3]. These tables were based on dosimetric data for ²²⁶Ra sources determined in air. The prescribed treatment area in this table was assumed to be at a distance h from the surface of the applicator. This table could presumably provide the dose uniformity within $\pm 10\%$ in the treatment area. Later on, this table was corrected by several investigators, first by utilizing dose rate constants of 8.4 R cm²/mg-hr, for ²²⁶Ra in the original table, instead of 8.25 R cm²/mg-hr. Thereafter, in the original table the conversion of exposure to dose was assumed to be unity and hence 1 cGy was assumed to be equal to 1 R. This was corrected by including exposure-to-dose conversion factors in order to achieve 1000 cGy rather than 1000 R [4].

The field of brachytherapy was later advanced by introduction of other sources such as ¹³⁷Cs and ¹⁹²Ir as alternatives to ²²⁶Ra. In addition, within the past decade, the protocols and algorithms of brachytherapy sources have been globally improved. The Task Group 43 of the American Association of Physicists in Medicine (AAPM) has published its original and updated reports (TG-43 [5], and TG-43U1 [6]) for low-energy brachytherapy sources in 1995, and 2004, respectively. Interestingly, several investigators have examined the feasibility of utilizing these recommendations for dosimetric evaluation of high-energy brachytherapy sources such as ¹³⁷Cs and ¹⁹²Ir [7-11]. Therefore, it is desirable to verify the accuracy of the Paterson-Parker tables for these sources with their most recently published dosimetric parameters.

In this study, the published TG-43U1 dosimetric parameters for two commercially available ¹³⁷Cs and ¹⁹²Ir sources were used to update the Paterson-Parker planner table. In order to verify the area of the coverage for each isotope, doses were calculated at several points away from the central axis of the plan, but located at the same height relative to the plane of implant. Moreover, in addition to the Paterson-Parker's recommendation for the distribution of the activity, the impact of some other activity distributions for optimal coverage of the treatment area was examined. The accuracy of the updated table was examined by two

Figure 2: Schematic diagram of the low dose rate 3M ¹³⁷Cs (model 6500/6D6C) source (dimensions are given in mm)

independent methods, Monte Carlo simulation technique and a commercially available treatment planning system.

Materials and Methods

Source Characteristics

In this work, the planar Patterson-Parker tables [1-3] were updated using the published TG-43U1 dosimetric parameters for high dose rate Flexisource ¹⁹²Ir [9] (used in the Flexitron afterloading system, Isodose Control, Veenendaal, the Netherlands) and low dose rate Minnesota Mining and Manufacturing (3M) ¹³⁷Cs (model 6500/6D6C, St. Paul, Minnesota, USA) [7] sources. The schematic diagram of the geometric design of the Flexisource $^{192}\mathrm{Ir}$ and 3M $^{137}\mathrm{Cs}$ sources are shown in Figures 1 and 2. According to the updated recommendations of TG-43 from AAPM (TG-43U1) [6], the source dimensions include the tolerances in the manufacturing process. For the Flexisource ¹⁹²Ir source, the active core is made of a pure iridium cylinder (density 22.42 g/cm^3) with an active length of 3.5 mm and a diameter of 0.6 mm. The active core is covered by a stainless steel 304 capsule (composi-

tion by weight: Fe 67.92%, Cr 19%, Ni 10%, Mn 2%, Si 1% and C 0.08%, density 8 g/cm³). Granero, et al [9], used a 5 mm in length and 0.5 mm in diameter cylinder stainless steel 304 cable for their Monte Carlo simulations. A similar source geometry was used in this study. For 3M ¹³⁷Cs sources, the active core is a Zirconium phosphate glass cylinder (density 2.22 g/cm³) with an active ceramic length of 13.8 mm and a diameter of 1.19 mm [7]. The active ceramic was covered by an AISI 316 stainless steel capsule (composition by weight: Si 2%, Cr 20%, Mn 2%, Fe 67%, Ni 9%, density 8.02 g/cm³), leading to outer dimensions of the source of 3.05 mm in diameter and 20 mm of total length. The eyelet presented by this source was neglected in the simulations. In both sources, the Monte Carlo simulations were performed with the origin of the coordinate system placed at the center of the physical length of the source.

Methodology

In this study, the integrated doses were calculated to several points above a planar implant, containing a matrix of $n \times m$ sources (where n and m were integers 2–10) for either

Figure 3: Schematic diagram of the brachytherapy source arrangements used for updating the Paterson-Parker planar table. In these arrangements the spacing between the source(s) was chosen to be 1 and 2 cm for ¹⁹²Ir and ¹³⁷Cs sources, respectively. Doses are calculated at distance h from the plane of implant.

¹⁹²Ir or ¹³⁷Cs, using their most recent published TG-43U1 parameters [7, 9]. Figure 3 shows a schematic diagram of the source arrangements and the calculation points used in this study. The spacing between the sources on each row was selected to be 1 cm for ¹⁹²Ir and 2 cm for ¹³⁷Cs source (Fig. 3). The larger spacing for ¹³⁷Cs was chosen to avoid the overlap of the sources. However, the spacing between the rows, for both source types, was chosen to be 1 cm. A comparison of dose profiles along the two orthogonal directions, X and Z axes, for several different distributions of the source strengths in the peripheral and middle of the implants, were used to achieve the maximum

Table 1: Paterson and Parker recommenda-tion on the distribution of activity for a pla-nar implant (Ref. 4)

Area (cm²)	Fraction used in periphery
<25	2/3
25–100	1/2
>100	1/3

dose coverage from a given implant. The results of these distributions were compared with the values obtained using Patterson-Parker's recommendations [4] (Table 1).

For these calculations, the TG-43U1 formalism and dosimetric characteristics of each source model were incorporated in an MS Excel[®] spreadsheet. The orientations of the coordinate systems in these implants were selected in a way that they could easily match with the coordinate system used in TG-43U1 recommendation (*i.e.*, Z-axis is along the longitudinal direction of the source, and X and Y axes in the transverse directions) (Fig. 3). In addition, the origin of these coordinate systems was placed between the rows, approximately at the middle of the implant area.

For a planner implant, Manchester, Paterson and Parker defined the area of implant as the width of the implant times the active length, assuming that there were crossing needles on both ends of the implant [4, 22]. This area was then reduced by 10% for each uncrossed end. However, there was no clear transition

of the length and width of an implant when small seeds were used in place of a continuous active source. In our study, the active length (AL) and active width (AW) of the implant, following the TG-43U1 guidelines, were defined as:

$$AL=n \times Sl$$

 $AW = (m-1) \times S2$

where n represents the number of sources in each row and m is the number of rows in the implant; S1 is center-to-center spacing between the sources in each row and S2 is the spacing between the rows in the implant.

Treatment Planning Procedures

To verify the accuracy of the updated Paterson-Parker table described previously, the integrated dose for two samples of implants with effective area of 20 and 90 cm² for ¹⁹²Ir, and 180 cm² for ¹³⁷Cs sources was calculated using a commercially available treatment planning system. These calculations were performed by using the Eclipse, ver 8.1, treatment planning system (Varian Medical System Inc., Worldwide Headquarters, 3100 Hansen Way, Palo Alto, CA94304, USA). In these calculations the published TG-43U1 dosimetric parameters of the sources [7, 9] were first entered into the treatment planning system. The sources were then positioned in a planar arrangement with their locations and orientations identical to those mentioned above. In addition, the activity of each source, time period, and the calculation points were selected to be identical to the ones described in the Methodology section. The final doses derived from these calculations were compared with the values from the Methodology section and also Monte Carlo simulation as described below.

Monte Carlo Simulations

Monte Carlo simulation is one of the most commonly used techniques for dosimetry of brachytherapy sources and implants. In this study, the MCNP Monte Carlo code (MC-

Updating the Planar Patterson-Parker Table

NP4C) was used to determine the integrated doses from two planar implants with 5×5 matrix (20 cm²) of ¹⁹²Ir Flexisource and 4×8 matrix (56 cm²) of ¹³⁷Cs. The arrangements of the sources in these simulations were identical to those described in the Methodology section. The details of the Monte Carlo simulation technique are described below.

To establish the integrally of our Monte Carlo simulation technique, a single source simulation was performed with ¹⁹²Ir Flexisource and ¹³⁷Cs. Their simulated TG-43U1 dosimetric parameters were compared with the published data. In these simulations, the source was placed at the center of a spherical water phantom with a radius of 40 cm, which acted as an unbounded phantom up to 20 cm of radial distance. The density of the water used in the simulation was 0.998 g/cm³ at 22 °C, as is recommended in the TG-43U1. The ¹⁹²Ir gamma spectrum used in this study was obtained from the NuDat database [12]. In these simulations, it was assumed that the activities of the sources were uniformly distributed within the source core of the source. The beta spectrum of the ¹⁹²Ir source was not considered since its contribution to the dose rate distribution for distances greater than 1 mm from the source is negligible due to the encapsulation and the plastic catheter in which the source is introduced [13]. Collision KERMA was scored instead of the absorbed dose because in points where electronic equilibrium is achieved collision KERMA coincides with the absorbed dose. The cutoff energy used in the calculations was 10 keV for photons.

Simulations of the multi-source planar implants were performed after demonstrating the success of single source dosimetry for ¹⁹²Ir and ¹³⁷Cs sources. Since, MCNP does not allow variable source activity within one implant, these simulations were performed using two separate sections—one with peripheral sources and another with central sources. The total integrated dose for each point was calculated as a summation of dose contributions

from each simulation. These simulations were performed using "*f4" Tally with the mass absorption coefficient taken from tabulated data by Hubble and Seltzer [14]. A "conversion factor" was calculated for each source model, following the guidelines of Zhang, et al [15], in order to take the mg-hr of each source into account as well as the self absorption of the source. In addition, the correction for the self absorption of each source type was calculated as a ratio of the simulated KERMA rate at a given point for a single source with its true geometric and chemical structure to the KERMA rate at the same point from an imaginary source with identical geometry but all the components were replaced by air. Care was taken to have the same amount of the radioactivity contained in both source geometries. The self absorption of ¹⁹²Ir, and ¹³⁷Cs sources were found to be 11% and 3.5%, respectively. With these corrections, the results of the Monte Carlo simulations for multi-source planar

www.jbpe.ir

Figure 5: Comparison of dose profiles along the X-axis at 1 cm away from a 56 cm² ¹³⁷Cs (the upper panel) and ¹⁹²Ir (the lower panel) planar implants as a function of different loading scheme for the peripheral and central aspect of the implant.

implants were corrected for the self absorption of single sources and they were not required to be normalized to in-air simulations

Results

1200

1100

1000

904 Dose(cGv)

800

Figure 4 shows a comparison of dose profiles, along the Z-axis at distances of 0.5 cm and 1.0 cm from a 7×7^{192} Ir planner implant with different distributions of the source strengths in the peripheral and central part of the implant. These graphs also show the loading schemes that provided the dose profile with $\pm 10\%$ deviation from the central dose. Moreover, these results indicated that at 1 cm height, the length of the area (i.e., twice the distance from the center) was covered by the prescribed dose (1000 cGy $\pm 10\%$ in this case) is 4.2, 6.2, and 7.0 cm for 1/2×1/2, 2/3×1/3, and $3/4 \times 1/4$ loading scheme, respectively. However, for a height of 0.5 cm, the coverage was 4.6 and 6.2 cm for 1/2×1/2 and 2/3×1/3 loading scheme, respectively, and the $3/4 \times 1/4$

Figure 6: Comparison of Monte Carlo simulated radial dose functions of the high dose rate Flexisource ¹⁹²Ir source (the upper panel) and ¹³⁷Cs source (the lower panel) with data published by Granero, *et al* [9], and Perez, *et al* [7], respectively. The error bar in the graph is within 2% of uncertainty associated with the present data; the solid and dashed curves are 3rd degree polynomial fits through the data points just to guide the eye.

loading scheme was not appropriate.

In this study, we also determined the dose profiles of both ¹³⁷Cs and ¹⁹²Ir for the same implant area and different distributions of the source strengths. Figure 5 shows a sample of these comparisons for a 56-cm² implant area. These results indicated that for both source types, the loading scheme of the $2/3 \times 1/3$ for

Figure 7: Comparison of Monte Carlo simulated 2D anisotropy functions of the high dose rate Flexisource ¹⁹²Ir source (the upper panel) and ¹³⁷Cs source (the lower panel) with data published by Granero, *et al* [9], and Perez, *et al* [7], respectively. The error bar in the graph is within 2% of uncertainty associated with the present data; the solid curve is a 4th degree polynomial fit to the present data, just to guide the eye.

the peripheral and central source strength provided a better coverage than the $1/2 \times 1/2$ suggested by Paterson and Parker.

Monte Carlo simulations were validated by simulating single source TG-43U1 parameters for both ¹³⁷Cs and ¹⁹²Ir sources. Table 2 shows the comparison of dose rate constants of these sources with the published data [7, 9]. In addi-

Table 2: Comparison of Monte Carlo simulated dose rate constant determined in this study for 3M ¹³⁷Cs and Flexisource ¹⁹²Ir sources with data published by Perez, *et al* [7], and Granero *et al* [9], respectively.

Source	Dose rate const	ant (cGy h ⁻¹ U ⁻¹)		Difference (%)
	Present work (MCNP4c)	Ref 7 (GEANT4)	Ref 9 (GEANT4)	
¹⁹² lr	1.12	_	1.109	1.4
¹³⁷ Cs	0.964	0.96	_	0.4

Table 3: Comparison of Monte Carlo simulated integrated dose on the central axis and several off-axis points for a 5×5 source (20 cm²) ¹⁹²Ir implant, with the calculated data using an MS Excel[®] spreadsheet program using published TG-43U1 parameters [9]. These calculations were performed using a $2/3 \times 1/3$ source strength distribution.

Position (cm) (X,Y,Z)	Excel (cGy)	Monte Carlo (cGy)	Difference (%)
(0,1,0)	1000	1018	-1.80
(0,1,1)	1000	1011	-1.10
(1,1,0)	1000	1027	-2.70
(1,1,1)	1000	985	1.50
(0,1,2)	907	915	-0.88
(2,1,0)	908	916	-0.88
(2,1,2)	822	824	-0.24
(0,1,3)	633	643	-1.58
(3,1,0)	645	649	-0.62
(1,1,3)	633	641	-1.26
(2,1,3)	571	586	-2.63
(3,1,3)	417	427	-2.40

tion, Figure 6 shows a good agreement (within $\pm 2\%$) between the Monte Carlo simulated radial dose function of single ¹³⁷Cs and ¹⁹²Ir sources in obtained in this study and published data by Perez, et al [7], and Granero, et al [9], respectively. Figure 7 shows a good agreement (within $\pm 2\%$) between the new Monte Carlo simulated 2D anisotropy function of these sources at a radial distance of 2 cm relative to the source center and the published data [7, 9]. There was also a good agreement between Monte Carlo simulated dosimetric data for each source model and published data that confirmed the accuracy of sources geometry and parameters used in the simulations. The validated Monte Carlo simulations were used for simulation of a multi-seed implant. Tables 3 and 4 compare the Monte Carlo simulated and TG-43U1-based calculated-dose profiles for a 5×5 ¹⁹²Ir planar implant and a 4×8 ¹³⁷Cs planar implant with effective areas of 20 and 56 cm², respectively, at height of 1 cm. The results reflected excellent agreement (within $\pm 5\%$) between the two methods.

www.jbpe.ir

Table 4: Comparison of Monte Carlo simulated integrated dose on the central axis and several off-axis points for a 4×8 source (56 cm²) ¹³⁷Cs implant, with the calculated data using an MS Excel[®] spreadsheet program using published TG-43U1 parameters [7]. These calculations were performed using a 2/3×1/3 source strength distribution.

Position (cm) (X,Y,Z)	Excel (cGy)	Monte Carlo (cGy)	Difference (%)
(0,1,0)	1000	984	1.60
(0,1,1)	961	974	-1.35
(0,1,-1)	961	954	0.73
(1,1,0)	1074	1045	2.70
(-1,1,0)	1074	1035	3.63
(0,1,2)	936	919	1.82
(0,1,-2)	936	926	1.07
(1,1,2)	1011	975	3.56
(1,1,-2)	1011	990	2.08
(2,1,0)	971	959	1.24
(-2,1,0)	971	938	3.40
(2,1,2)	907	904	0.33
(2,1,-2)	907	897	1.10
(0,1,3)	824	815	1.09
(0,1,-3)	824	825	-0.12
(3,1,0)	979	935	4.49
(-3,1,0)	979	947	3.27
(3,1,2)	921	916	0.54
(3,1,-2)	921	879	4.56
(0,1,4)	615	594	3.41
(0,1,-4)	615	582	5.37
(4,1,0)	632	614	2.85
(-4,1,0)	632	641	-1.42
(4,1,2)	587	570	2.90
(4,1,-2)	587	581	1.02

The accuracy of the values calculated with TG-43U1 parameters in an MS Excel[®] spreadsheet was also confirmed by comparing the dose profiles for two samples of a planar implant with the values obtained using a commercially available system. Tables 5 and 6 show good agreement (within $\pm 2\%$) between the two methods for a 10×10 and 5×5 planar implants of ¹⁹²Ir sources. Similar level of agreement (within $\pm 3\%$) was observed for ¹³⁷Cs sources (Table 7).

Once the methodology of our calculations

Table 5: Comparison of the integrated dose on the central axis and several off-axis points of a $10 \times 10 (90 \text{ cm}^2)$ ¹⁹²Ir planner implant, calculated using published TG-43U1 parameters [9] by an MS Excel[®] spreadsheet program and a commercially available treatment planning system. These calculations were performed using a $1/2 \times 1/2$ source strength distribution.

Position (cm) (X,Y,Z)	TG- 43U1 (cGy)	Treatment planning (cGy)	Difference (%)
(0,1,0)	1000	982	1.80
(1,1,0)	995	977	1.81
(0,1,1)	995	978	1.71
(1,1,1)	990	973	1.72
(2,1,0)	979	962	1.74
(0,1,2)	981	964	1.73
(3,1,0)	954	937	1.78
(0,1,3)	959	942	1.77
(0,1,4)	920	902	1.96
(0,1,5)	712	698	1.97
(4,1,0)	910	894	1.76
(3,1,3)	909	893	1.76
(4,1,4)	799	784	1.88
(1,1,5)	707	694	1.84
(2,1,5)	692	678	2.02
(3,1,5)	659	647	1.82
(4,1,5)	592	580	2.03

was tested by Monte Carlo simulation and also a commercially available treatment planning software, the calculations were performed for determination of mg-hrs of different implant sizes for each source type. Tables 8 and

Figure 8: Comparison of mg-hrs for ¹⁹²Ir vs ¹³⁷Cs as a function of the implant area to deliver 1000 cGy at 1 cm away from a planar implant.

Updating the Planar Patterson-Parker Table

Table 6: Comparison of the integrated dose on the central axis and several off-axis points of a 5×5 source (20 cm²) ¹⁹²Ir implant calculated using published TG-43U1 parameters [9] by an MS Excel[®] spreadsheet program and a commercially available treatment planning system. The calculations were performed using a 2/3×1/3 source strength distribution.

Position (cm) (X,Y,Z)	TG- 43U1 (cGy)	Treatment planning (cGy)	Difference (%)
(0,1,0)	1000	995	0.50
(1,1,0)	1000	995	0.50
(0,1,1)	1000	995	0.50
(1,1,1)	1000	995	0.50
(2,1,0)	908	903	0.55
(0,1,2)	907	902	0.55
(2,1,2)	822	817	0.61
(3,1,0)	645	641	0.62
(0,1,3)	633	630	0.47
(1,1,3)	633	630	0.47
(2,1,3)	571	568	0.53
(3,1,3)	417	415	0.48

9 show the updated Paterson-Parker tables for high dose rate Flexisource ¹⁹²Ir and low dose rate 3M ¹³⁷Cs, respectively; the generated data was based on their most recent published TG-

TABLE 7: Comparison between treatment planning results and MS Excel^{\circ} calculated dose for a 10×10 seed (180 cm²) ¹³⁷Cs with a 1/2×1/2 source strength distribution.

Position (cm) (X,Y,Z)	TG- 43U1 (cGy)	Treatment planning (cGy)	Difference (%)
(0,1,0)	1000	1022	-2.20
(1,1,0)	995	1017	-2.21
(0,1,2)	997	1020	-2.31
(1,1,2)	992	1014	-2.22
(2,1,0)	980	1001	-2.14
(0,1,4)	990	1013	-2.32
(2,1,4)	970	991	-2.16
(3,1,0)	955	975	-2.09
(0,1,6)	986	1007	-2.13
(3,1,6)	936	955	-2.03
(4,1,0)	913	928	-1.64
(0,1,8)	1033	1050	-1.65
(4,1,8)	884	899	-1.70

Table 8: Updated Paterson-Parker table for high dose rate Flexisource ¹⁹²Ir. The values represent the mg-hrs of the source required to deliver 1000 cGy to a given distance from the planar implant.

Area			D	istance fro	om the pla	nar implai	nt (cm)		
(cm²)	0	0.5	1	1.5	2	2.5	3	3.5	4
4	86	123	228	392	613	894	1234	1636	2101
5	97	138	249	418	642	925	1267	1670	2136
6	108	152	269	443	671	956	1300	1704	2171
7	122	168	287	462	690	975	1319	1724	2191
8	136	184	305	481	709	995	1339	1743	2210
9	150	200	323	500	729	1014	1358	1763	2230
10	164	215	341	518	748	1033	1377	1782	2249
12	192	247	377	556	786	1072	1416	1821	2288
14	227	287	424	609	844	1134	1481	1876	2359
16	263	327	471	662	902	1196	1547	1930	2429
18	298	366	517	714	959	1257	1612	1985	2500
20	333	406	564	767	1017	1319	1677	2039	2570
24	384	466	635	846	1100	1405	1765	2150	2661
28	435	525	706	925	1183	1491	1852	2261	2752
30	460	555	742	964	1225	1534	1896	2316	2797
34	489	590	789	1022	1293	1610	1979	2406	2893
38	519	626	836	1079	1360	1685	2062	2495	2988
40	533	643	860	1108	1394	1723	2104	2540	3036
44	574	691	919	1177	1471	1806	2192	2634	3135
48	627	751	990	1257	1557	1897	2287	2732	3236
50	654	782	1025	1296	1599	1943	2334	2780	3286
54	707	842	1096	1376	1685	2034	2429	2878	3387
58	759	902	1167	1456	1772	2126	2527	2981	3494
60	785	931	1202	1495	1816	2174	2577	3034	3550
64	837	990	1272	1575	1903	2269	2678	3141	3661
68	889	1049	1342	1654	1991	2363	2779	3248	3773
70	915	1079	1377	1693	2034	2411	2830	3302	3828
74	967	1137	1447	1772	2120	2503	2928	3405	3935
78	1019	1196	1516	1850	2205	2594	3023	3504	4037
80	1045	1225	1550	1889	2247	2639	3071	3554	4088
84	1097	1284	1619	1966	2332	2730	3167	3653	4191
88	1149	1343	1688	2044	2417	2821	3262	3752	4293
90	1175	1372	1723	2083	2459	2866	3310	3802	4344

43U1 dosimetric parameters. Like the original Paterson-Parker table, the values in these tables represent the mg-hrs for each source type that is required to deliver 1000 cGy to a given distance on the central axis of the planar implants. Figure 8 shows a comparison of the mg-hrs obtained in this technique for ¹⁹²Ir and ¹³⁷Cs sources, as a function of implant area.

Tables 11 and 12 compare the updated Paterson-Parker table for ¹⁹²Ir and ¹³⁷Cs with the original table. The results indicated that for ¹⁹²Ir and ¹³⁷Cs sources, there are approxi-

Updating the Planar Patterson-Parker Table

Table 9: Updated Paterson-Parker table for low dose rate 3M ¹³⁷Cs. The values represent the mg-hrs of the source required to deliver 1000 cGy to a given distance from the planner implant.

Area			D	istance fr	om the pla	ınar implaı	nt (cm)		
(cm²)	0	0.5	1	1.5	2	2.5	3	3.5	4
4	139	187	310	489	726	1052	1389	1820	2320
5	142	191	315	494	731	1054	1394	1825	2326
6	146	195	319	499	736	1056	1400	1831	2331
7	149	199	324	503	741	1057	1405	1836	2337
8	153	203	328	508	746	1059	1410	1842	2342
9	156	206	333	513	751	1061	1415	1847	2348
10	159	210	337	518	756	1063	1421	1852	2353
12	166	218	346	527	766	1066	1431	1863	2364
14	183	238	373	561	806	1111	1480	1915	2420
16	199	258	399	594	845	1156	1529	1967	2475
18	215	277	424	624	880	1195	1571	2012	2523
20	230	295	448	654	914	1233	1614	2058	2571
24	261	333	497	714	984	1311	1698	2148	2666
28	292	370	546	774	1053	1388	1783	2239	2762
30	308	389	571	804	1088	1427	1825	2284	2810
34	341	428	620	865	1122	1506	1910	2376	2907
38	375	468	670	922	1174	1576	1985	2456	2991
40	393	488	694	950	1209	1607	2018	2489	3025
44	429	529	743	1004	1279	1669	2083	2556	3094
48	466	571	792	1059	1348	1732	2147	2623	3163
50	484	591	817	1086	1383	1763	2180	2657	3198
54	520	632	866	1141	1453	1825	2245	2724	3267
58	556	673	915	1197	1521	1892	2316	2799	3346
60	573	694	939	1226	1553	1928	2355	2841	3391
64	608	734	988	1283	1618	1999	2433	2925	3480
68	658	791	1055	1359	1703	2091	2532	3030	3590
70	682	819	1088	1398	1745	2137	2581	3082	3645
74	732	876	1155	1474	1829	2229	2679	3186	3755
78	781	932	1222	1550	1914	2321	2778	3291	3865
80	806	961	1256	1588	1956	2366	2827	3343	3920
84	856	1017	1323	1665	2040	2458	2925	3447	4030
88	905	1074	1390	1741	2125	2550	3024	3552	4140
90	930	1102	1423	1779	2167	2596	3073	3604	4195
120	971	1160	1515	1907	2330	2790	3296	3854	4468

mately 25% and 35% difference between the table values, respectively. These differences might be attributed to the updated source information, as well as the selection of a proper distribution of the source strengths for a better coverage of the implanted area.

Discussion

The clinical application of brachytherapy is based on a limited unique methodology describing the distribution of source strength within an implanted area or volume to achieve

Naghshnezhad Z., Faghihi R., et. al.

Table 10: The Optimal distribution of the source strength used in the updated Paterson-Parker table.

Implant area (cm²)	Peripheral loading	Central loading
<20	4/5	1/5
20–42	3/4	1/4
43–90	2/3	1/3

the desired dose delivery. Paterson-Parker system [1], Quimby System [16], and Paris system [17] are the most commonly used systems in conventional brachytherapy. The linear, planar, and volume tables of the Paterson-Parkers have been used widely round the globe for many years. It is interesting that these tables were created for determining the mg-hrs for all high energy brachytherapy sources, for which the Compton interaction was dominant. These tables did not differentiate between various radionuclides sources such as ¹³⁷Cs and ¹⁹²Ir. In-

www.jbpe.ir

novative radiation dosimetry expanded [5, 6] and technological advancements in equipment manufacturing permitted us to obtain very detailed distributions of radiation from variety of sources [19-21]. Old systems were replaced by computerized planning systems. However, many clinicians still use the traditional methods and old Paterson-Parker tables either as their primary method of planning or as a tool for the second check of a plan.

In this study, the Paterson-Parker planar table was updated using the most recent published TG-43U1 dosimetric parameters of the commercially available high dose rate Flexisource ¹⁹²Ir and low dose rate 3M ¹³⁷Cs brachytherapy sources. A schematic diagram explaining the pattern of distribution of the sources used in this study is shown in Figure 3. In addition to the integrated dose at the central axis of the planar implants, dose profiles in two orthogonal directions were calculated for different distributions of source strengths. The results

Table	11: Comp	oariso	n of th	ne new tab	le for 1	⁹² lr and	d P-P table	e [1]				
Aroa				Dista	nce fro	om the	planar im	plant (c	:m)			
(cm ²)		1			2			3			4	
	Updated	P-P	Dif%	Updated	P-P	Dif%	Updated	P-P	Dif%	Updated	P-P	Dif%
1	156	182	14	524	571	8	1137	1204	6	2000	2100	5
2	187	227	18	555	632	12	1168	1274	8	2031	2172	6
3	208	263	21	584	689	15	1201	1331	10	2066	2241	8
4	228	296	23	613	743	17	1234	1388	11	2101	2307	9
5	249	326	24	642	787	18	1267	1436	12	2136	2369	10
6	269	354	24	671	832	19	1300	1495	13	2171	2432	11
7	287	382	25	690	870	21	1319	1547	15	2191	2490	12
8	305	409	25	709	910	22	1339	1596	16	2210	2548	13
9	323	434	26	729	946	23	1358	1645	17	2230	2605	14
10	341	461	26	748	982	24	1377	1692	19	2249	2660	15
20	564	682	17	1017	1303	22	1677	2106	20	2570	3155	19
30	742	846	12	1225	1582	23	1896	2468	23	2797	3562	21
40	860	994	13	1394	1843	24	2104	2787	25	3036	3931	23
50	1025	1141	10	1599	2083	23	2334	3082	24	3286	4275	23
60	1202	1283	6	1816	2319	22	2577	3362	23	3550	4605	23
70	1377	1426	3	2034	2532	20	2830	3628	22	3828	4913	22
80	1394	1567	11	2078	2726	24	2898	3891	26	3915	5213	25

Updating the Planar Patterson-Parker Table

Table 12	2: Comparis	on of the ne	ew table fo	or ¹³⁷ Cs and	P-P tabl	e [1]						
A					Distar	ice from the p	lanar impla	nt (cm)				
Area (cm²)		-			2			ω			4	
	Updated	P-P	Diff%	Updated	P-P	Diff%	Updated	P-P	Diff%	Updated	P-P	Diff%
2	258	227	-14	657	632	4	1311	1274	င္ပ်	2238	2172	ယ်
ω	284	263	\$	692	689	0	1350	1331	<u>'</u>	2279	2241	-2
4	310	296	ს	726	743	2	1389	1388	0	2320	2307	<u>'</u>
ъ	315	326	ω	731	787	7	1394	1436	ယ	2326	2369	2
6	319	354	10	736	832	12	1400	1495	6	2331	2432	4
7	324	382	15	741	870	15	1405	1547	9	2337	2490	6
8	328	409	20	746	910	18	1410	1596	12	2342	2548	œ
9	333	434	23	751	946	21	1415	1645	14	2348	2605	10
10	337	461	27	756	982	23	1421	1692	16	2353	2660	12
20	448	682	34	914	1303	30	1614	2106	23	2571	3155	19
30	571	846	33	1088	1582	31	1825	2468	26	2810	3562	21
40	694	994	30	1209	1843	34	2018	2787	28	3025	3931	23
50	817	1141	28	1383	2083	34	2180	3082	29	3198	4275	25
60	939	1283	27	1553	2319	33	2355	3362	30	3391	4605	26
70	1088	1426	24	1745	2532	31	2581	3628	29	3645	4913	26
80	1256	1567	20	1956	2726	28	2827	3891	27	3920	5213	25

of these calculations were compared with the values obtained using the recommended distribution by Paterson and Parker (Table 1).

Comparison of dose profiles indicated that selection of a suitable distribution of source strengths in a planar implant depends not only on the distance from the implant but also on type of the radionuclide source. Figure 4 shows that for a 7×7^{192} Ir implant (42 cm²) a $2/3 \times 1/3$ source strength distribution would provide a larger coverage area than a $1/2 \times 1/2$ scheme recommended by Paterson-Parker, at both 0.5 cm and 1.0 cm away from the plane of the implant. In addition, Figure 5 shows that for a 56 cm² planar implant with ¹³⁷Cs source, a $2/3 \times 1/3$ source strength distribution scheme would provide a smaller dose coverage area than an ¹⁹²Ir implant with the same area. These variations could be partially attributed to the differences in radial dose function of the two sources used, *i.e.*, g₁(r=6 cm) is 0.946 and 0.991 for ¹³⁷Cs and ¹⁹²Ir, respectively.

Table 2 shows an excellent agreement (within 2%) of the dose rate constants for ¹³⁷Cs and ¹⁹²Ir sources with the data published by Perez, et al [7], and Granero, et al [9], respectively. Moreover, Figure 6 shows the agreement of Monte Carlo simulated radial dose function of ¹³⁷Cs and ¹⁹²Ir sources obtained in this study and the data published by Perez, et al [7], and Granero, et al [9], respectively. Similarly, Figure 7 shows the agreement of Monte Carlo simulated 2D anisotropy functions with the published data. With completion of this validation process, the simulated dose profile of a 5×5 source ¹⁹²Ir implant (20 cm²) and 4×8 source ¹³⁷Cs implant (56 cm²) were compared with the calculated data using the TG-43U1 parameters using a $2/3 \times 1/3$ source strength distribution (Tables 3 4). The results reflected a good agreement between the two sets of data (within $\pm 3\%$). Tables 5 and 6 shows the agreement (within $\pm 2\%$) of the data obtained from the treatment planning software and the TG-43U1 parameter based dose profile for a 10×10 (90 cm²) and 5×5 (20 cm²) ¹⁹²Ir implant,

respectively. Similar agreement was observed for ¹³⁷Cs source (Table 7).

After confirming the accuracy of the dose calculation methodology, the updated Paterson-Parker table was generated (Tables 8 and 9) using the optimal distribution of the source strengths that was extracted (Table 9) from the comparison of the dose profiles for each implant area. Tables 11 and 12 show the differences between the updated Paterson-Parker table and the original data for ¹⁹²Ir and ¹³⁷Cs sources, respectively. These observed differences may be attributed to the differences between the source dosimetric information and also to the selection of distribution of source strength that provide a better coverage of doses for each isotope. Figure 8 shows a comparison of the mg-hrs of ¹³⁷Cs and ¹⁹²Ir sources needed for delivering 1000 cGy at 1 cm away from a planar implant. These results indicated that the total mg-hr needed for an implant with ¹³⁷Cs is not identical to that with ¹⁹²Ir, due to the doimetric differences between the two sources

In summary, an updated Paterson-Parker table was generated using the most recent published TG-43U1 dosimetric parameters of ¹³⁷Cs and ¹⁹²Ir sources. In addition to the central axis, dose profiles in two orthogonal directions were utilized to extract a better coverage of the treatment area. The results indicated that the mg-hrs used for ¹³⁷Cs source in a planar implant is lesser than that of the mg-hrs needed for ¹⁹²Ir to achieve the same dose coverage.

Acknowledgements

The authors would like to thank Mr. Muhammad Ali Shah, Shahid B. Awan and David Soleimani-Meigooni for their valuable comments and suggestions during the preparation of this manuscript. In addition, the authors would like to appreciate the support and assistance of Miss Samira Sina, Miss Anahita Hajizadeh, Mr. Mehdi Zehtabian and Mr. Milad Baradarn.

References

- 1. Paterson JR, Parker HM. A dosage for gamma-ray therapy. *Br J Radiology* 1943;**7**:592–612.
- Parker HM. A dosage system for interstitial Radium therapy. Br J Radiology 1983;11:252-66
- 3. Paterson JR. The treatment of malignant disease by Radium x-rays being a practice of radiotherapy. Londan, Edward Arnold **1948**.
- 4. Meredit WJ. Radium dosage the Manchester system. Edinburgh, Livingston, Inc. **1967**.
- Nath R, Anderson LL, Luxton G, *et al.* Dosimetry of interstitial brachytherapy sources: Recommendation of the AAPM Radiation Therapy Committee Task Group No. 43. *Med Phys* 1995;22:209-33.
- Rivard MJ, Coursey BM, DeWerd LA, et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. *Med Phys* 2004;**31**:663-74.
- Pérez-Calatayud J, Granero D, Ballester F, et al. Technical note: Monte Carlo derivation of TG-43 dosimetric parameters for radiation therapy resources and 3M Cs-137 sources. *Med Phys* 2005;**32**:2462-70.
- Meigooni AS, Wright C, Koona RA, *et al.* TG-43U1 Based Dosimetric Characterization of Model 67-6520 Cs-137 Brachytherapy Source. *Med Phys* 2009;**36**:4711-19.
- Granero D, Pérez-Calatayud J, Casal E, *et al.* A dosimetric study on the Ir-192 high dose rate Flexisource. *Med Phys* 2006;**33**:4578-82.
- Liu L, Prasad SC, Bassano DA. Determination of 137Cs dosimetry parameters according to the AAPM TG-43 formalism. *Med Phys* 2004;**31**: 477-83.
- 11. Medich DC, Munro JJ. Monte Carlo characterization of the M-19 high dose rate Iridium-192brachytherapy source. *Med Phys* 2007;**34**:1999-2006.
- 12. National Nuclear Data Centre [Internet]. New York: Nuclear data from NuDat; Brookhaven

Updating the Planar Patterson-Parker Table

National Laboratory. Available from: *www.nndc. bnl.gov/nudat2*.

- Baltas D, Karaiskos P, Papagiannis P, et al. Beta versus gamma Dosimetry close to Ir-192 brachytherapy sources. Med Phys 2001;28:1875-82.
- Hubble JH, Seltzer SM. National Institute of Standards and Technology[Internet]. [Place unknown]:Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest; 1996. Available from: www.nist.gov/pml/data/xraycoef/ index.cfm
- Zhang H, Baker C, McKinsy R, Meigooni AS. Dose verification with Monte Carlo technique for prostate brachytherapy implants with ¹²⁵I sources. Medical Dosimetry 2005;**30**:85-91.
- Quimby EH. Dosage calculations in Radium therapy. "Physical Foundations of Radiology 1952;339-72.
- 17. Pierquin B, Dutreix A, Paine C. The paris system in interstitial radiation therapy. *Acta Radiol Oncol Biol. Radiat Phys* 1978;**17**:33-48.
- Williamson JF, Morin RL, Khan FM. Monte Carlo evaluation of the Sievert integral for brachytherapy dosimetry. *Phys Med Biol* 1983;28:1021-3.
- Butson MJ, Yu PKN, Cheung T, Metcalfe P. Radiochromic film for medical radiation dosimetry. *Mater Sci Eng R* 2003;41:61–120.
- 20. Devic S, Seuntjens J, Sham E, *et al.* Precise radiochromic film dosimetry using a flat-bed document scanner. *Med Phys* 2005;**32**: 2245-53.
- Stevens MA, Turner JR, Hugtenburg RP, Butler PH. High-resolution dosimetry using radiochromic film and a document scanner. *Phys Med Biol* 1996;41;2357-65.
- 22. Gillin MT, Kline RW, Wilson JF, Cox JD. "Single and double plane implants: a comparison of the Manchester System with the Paris System," *Int J Radiat Oncol Biol Phys* 1984;**10**;921-5.