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Genetic Feedforward-Feedback Controller 
for Functional Electrical Stimulation 
Control of Elbow Joint Angle
Hesam Shariati N.1*, Maleki A.2, Fallah A.1

Abstract
Background: Functional electrical stimulation (FES) is the most commonly used 
system for restoring functions after spinal cord injury (SCI).
Objective: In this study we investigated feedback PID and feedforward-feedback 
P-PID controllers for regulating the elbow joint angle.
Methods: The controllers were tuned based on a nonlinear muculoskeletal model 
containing two links, one joint with one degree of freedom and two muscles in the 
sagittal plane that was simulated in MATLAB using Sim Mechanics and Simulink 
toolboxes. The first tune of the PID and P-PID controllers was done by trial and 
error. Then, the coefficients were optimized by genetic algorithm (GA). For check-
ing the robustness of the controllers, we compared the amount of rise time, settling 
time, maximum overshoot and steady state error under three conditions: the first was 
when the initial angle of the joint was fixed and only the desired angles changed; the 
second was with a fixed step as input and various initial angles; and the last condition 
was with different maximum forces for muscle.
Results: Genetic controllers had better performance than the trial and error tuned 
controllers. The amounts of settling time were not so different for the controllers in 
condition 1 but had more variations in condition 2 and had really better results in 
genetic P-PID in condition 3. The overshoot was pretty less in PIDs than in P-PIDs 
and the steady state error was almost zero for all of the controllers.
Conclusion: Genetic controllers had a better performance than the trial and error 
tuned controllers. The rise time was much less in P-PIDs than in PIDs.
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Introduction

Individuals with spinal cord injury (SCI) at the level of C5-C6 lose 
voluntary control of almost all muscles of their upper extremity. 
In these patients, a neuroprosthetic system like functional electri-

cal stimulation (FES) by stimulating paralyzed muscles to contract in 
appropriate patterns [1, 2], can be used to restore the impaired motor 
function.

FES generates short electrical pulses to create muscle contraction. 
FES can also be used to create joint movement by stimulating the flexor 
and extensor muscles of the joint. Each joint is actuated by at least two 
muscle groups—flexors and extensors. The maximum force that can be 
exerted by a muscle is a function of its length and the rate of change in its 
length, both of which can vary with joint angle. The tension produced in 
an electrically stimulated muscle depends on the intensity and frequency 
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of the stimulation. The stimulation intensity is 
in turn a function of the total charge transferred 
to the muscle, which depends on the pulse am-
plitude, duration, and frequency as well as the 
shape of the pulse train. The resulting torque 
about the joint that is actuated by the muscle 
depends on the tension in the flexor and ex-
tensor muscles as well as factors such as the 
biomechanics of the joint. The angle of a joint, 
or alternatively, the torque produced about a 
joint, can be regulated by varying the tension 
produced in the flexor and extensor muscles of 
the joint. Consequently, the joint angle or joint 
torque can be controlled by modulating the 
pulse amplitude, pulse duration or frequency 
of the stimulation. Typically, either the pulse 
duration or the amplitude of stimulation is 
controlled [4-6].

Lynch, et al [5], based on a nonlinear physi-
ological model of the knee, tested four con-
trollers for regulating knee angle. The con-
trol methods used were open-loop controller, 
closed-loop PID controller, feedforward-feed-
back controller and adaptive controller.

Feedback control monitors the output to 
make corrections and to make output to be-
have as desired [7]. Feedback has been used 
for a variety of FES applications. In addition 
to feedback controllers, a variety of tech-
niques including combined feedforward and 
feedback control [2, 3] have been used. These 
highly tuned controllers are often comparable 
to linear PD and PID controllers [8] that may 
be suboptimal.

In this paper, two types of FES controllers 
are proposed: a proportional-integral-deriva-
tive (PID) controller and a combined feedfor-
ward-feedback controller for regulating elbow 
joint angle.

Materials and Methods
In our setup, while the feedforward con-

troller generated the nominal muscle activa-
tions required for the desired movement, and 
the feedback controller corrected the errors 
caused by muscle fatigue and external distur-

bances. The feedforward controller used was 
a proportional (P) controller and the feedback 
controller was a PID controller. 

The controllers were first tuned by trial and 
error, and then optimized by a genetic algo-
rithm. The controllers’ tuning was done using 
a musculoskeletal model of the elbow joint 
and two mono-articular muscles as flexor and 
extensor with one degree of freedom which 
was simulated in MATLAB using Simulink 
and SimMechanics toolboxes. The model was 
based on the elbow joint’s response to electri-
cal stimulation of the biceps.

The Model
The Musculoskeletal Model
The musculoskeletal model that was used in 

this study, was a two-dimensional model of 
the arm in the sagittal plane. It included two 
muscles and one degree of freedom—elbow 
flexion-extension. The range of the elbow 
angle was from 0° to 160° [3]. The body seg-
ment and joint parameters for the model were 
obtained from cadaver studies by Zatsiorsky 
[9]. These parameters included the position of 
joint centers, inertia and mass parameters for 
body segments.

The muscles concerned here were biceps and 
triceps—a pair of antagonist muscles func-
tioning as the flexor and extensor of the elbow 
joint, respectively. The biceps has two heads: a 
long and a short head. Triceps has three heads: 
lateral, medial and long heads. As our focus 
was on single joint movement control in 2D 
plane, only uniarticular muscles of elbow joint 
were considered. Therefore, biceps long head 
(LH) and triceps lateral head (LtH) were se-
lected for FES control. The simplified muscu-
loskeletal model is illustrated in Figure 1 [10].
The Muscle Model
The muscle model was based on Zajacmus-

culo-tendon actuator which considers both the 
static and dynamic properties of both muscle 
and tendon. In this model, the muscle response 
to stimulation signal is composed of two parts: 
activation dynamics and contraction dynamics 
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[11].
When a muscle is stimulated by electri-

cal pulses, a dynamic process happens in the 
muscle that generates the force. This electrical 
characteristic of the muscle is named “activa-
tion dynamics” [10-12].

Muscle activation is composed of spatial 
and temporal summation that acts according 
to a nonlinear recruitment curve, a nonlinear 
activation-frequency relationship, and calci-
um dynamics. A fatigue/recovery model and 
an additional constant time delay were also in-
corporated (Fig. 2).
Muscle recruitment curve can be 

modeled by a piece-wise function with 
two values: a threshold pulse width (re-
cruit deadband), and a saturation pulse 
width. If the pulse width of the electri-
cal pulse is represented as z, the nor-
malized muscle recruitment curve (ar) 
can be described as follows:
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Frequency characteristics: 
When the frequency of stimulation pulse var-
ies, it also affects the force produced by the 
muscle. This can be described by the follow-
ing equation:

2
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where q represents the characteristic factor 
of the stimulation frequency.
Calcium dynamics: There is always a 

delay between muscle contraction and relax-
ation—these cannot be simultaneous. This 
phenomenon can be modeled as a first order 
differential equation:

21 1
( ) ( )

ac ad
a ua u au

τ τ
= − + −

where a is the muscle activation without fa-
tigue, u = ar q, τac is the activation time con-
stant and τda is the deactivation time constant.
Muscle fatigue: When stimulating a 

muscle electrically, the force generated by the 
muscle will drop by time. This phenomenon 
is due to muscle fatigue that depends on the 
activation level (a) and frequency (  f  ) of the 
stimulation according to the following equa-

Figure 1: Left graph is the physiological mod-
el of the elbow joint. Right graph is the sim-
plified musculoskeletal model of the elbow 
joint [10]. 

Figure 2: Block diagram of the activation dynamics
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tions:
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where p represents the fatigue, τfat the fatigue 
time constant, τrec the recovery time constant, 
pmin the minimum fitness, λ the frequency fac-
tor on fatigue, and β is the shaping factor.
Contraction dynamics: Muscle con-

traction property originates from the mechani-
cal structure of the muscle (Fig. 3).
Force-length factor: A Gaussian-

like function is used to model the relationship 
between the muscle force and length.
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where fl is a normalized factor that describes 
the relationship between the muscle force and 
muscle length, and l is the normalized mus-
cle length with respect to the optimal muscle 
length: l = lm/lopt. The muscle active force 
strongly depends on lm. The peak force, Fmax 
occurs at the optimal muscle length, lopt.
Force-velocity factor: The mus-

cle velocity also has an effect on the muscle 
force, and the factor fv is used to describe this 
relationship as follows:

10.54 tan (5.69 0.51) 0.745f vv
−= + +

where v is the normalized muscle veloc-
ity with respect to the maximum contraction 

(shortening) velocity, vmax of the muscle: v = 
vm/vmax.

However, direct measurement of muscle 
length, lm and muscle velocity, vm in real ex-
periment are very difficult, but they can be 
calculated by measuring the joint angle and 
the angular velocity according to the follow-
ing equations:

( )m rl r θ θ= −

where θr is the rest angle, and r is the muscle 
moment arm; and

mv rθ= 

where θ and θ  are the elbow joint angle and 
angular velocity respectively.

The force, F produced by a muscle is then 
could be calculated as the product of maxi-
mum muscle force, Fmax and the dimensionless 
factors fl,  fv and am, as follows:

max mF F f f avl= × × ×

where am is the muscle activation with fa-
tigue and equals to a×p.
Passive torque  originates from pas-

sive elements in the muscle and for the elbow 
joint (Fig. 4); it can be modeled as:

36
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where sgn is the signum function.
Genetic Algorithm
Genetic algorithm (GA) is a stochastic global 

search method that mimics the process of nat-
ural evolution. The GA starts with no knowl-
edge of the correct solution and depends en-
tirely on responses from its environment and 
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evolution operators to arrive at the best solu-
tion. By starting at several independent points 
and searching in parallel, the algorithm avoids 
local minima and converging to suboptimal 
solutions [13, 14].

A GA is typically initialized with a random 
population. This population is usually repre-
sented by a real-valued number or a binary 
string called a “chromosome.” How well an 
individual performs a task is measured by an 
objective function. The objective function as-
signs a number, the so-called fitness to each 
individual. The fitness of each chromosome is 
then assessed and a survival of the fittest strat-

egy is applied.
There are three main stages of a genetic al-

gorithm. These are termed “reproduction,” 
“crossover,” and “mutation.”
Reproduction: During the reproduction 

phase the fitness value of each chromosome 
is assessed. Just like in natural evolution, the 
probability of an individual being selected for 
reproduction is related to its fitness, ensuring 
that fitter individuals are more likely to leave 
offspring.

There are four common methods for selec-
tion:

1.	 Roulette wheel selection
2.	 Stochastic universal sampling
3.	 Normalized geometric selection, and
4.	 Tournament selection
All selection methods are based on the same 

principle that is giving fitter chromosomes a 
larger probability of selection. If this proce-
dure is repeated until there are enough select-
ed individuals, this selection method is called 
roulette wheel selection. If instead of a single 
pointer spun multiple times, there are multi-
ple, equally spaced pointers on a wheel that 
is spun once, it is called stochastic universal 
sampling. Repeatedly selecting the best indi-
vidual of a randomly chosen subset is tourna-
ment selection. Taking the best half, third or 
another proportion of the individuals is geo-
metric selection.
Crossover: Once the selection process 

Figure 5: Genetic algorithm process flow-
chart
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is completed, the crossover algorithm is ini-
tiated. The crossover operation swaps certain 
parts of two selected strings in a bid to capture 
the good parts of old chromosomes and create 
better new ones. Genetic operators manipulate 
the characteristics of a chromosome directly, 
using the assumption that certain individual’s 
gene codes, on average, produce fitter individ-
uals. The crossover probability indicates how 
often crossover is performed. A probability of 
0% means that “offspring” will be replicas just 
the same as their “parents” and a probability 
of 100% means that each generation will be 
composed of entirely new offspring.
Mutation: Using selection and crossover 

on their own will generate a large amount of 
different strings. However, there are two main 
problems with this: 

Depending on the initial population chosen, 
there may not be enough diversity in the initial 
strings to ensure the GA searches the entire 
problem space.

The GA may converge on sub-optimum 
strings due to a bad choice of initial popula-
tion.

These problems may be overcome by the in-
troduction of a mutation operator into the GA. 
Mutation is the occasional random alteration 
of a value of a string position. The probabil-
ity of mutation is normally low because a high 
mutation rate would destroy fit strings and de-
generate the genetic algorithm into a random 
search.

Mutation probability values of around 0.01% 
to 0.1% are common; these values represent 
the probability that a certain string will be se-
lected for mutation.

The process of GA used is summarized in 
Figure 5.

A general scheme of a GA can be described 
by the following steps [13]:

1.	 Initialization of the population of chro-
mosomes (set of randomly generated 
chromosomes)

2.	 Evaluation of the fitness for all chromo-
somes

3.	 Selection of parent chromosomes (the 
fittest members of the population)

4.	 Crossover and mutation of the parents 
children

5.	 Completion of the new population from 
the new children and selected members 
of the old population (until a predefined 
convergence criterion is met)

6.	 Jump to the step 2.
Controller Optimization
The controller: There is different 

control strategies used in existing FES sys-
tems. Feedforward control has the advantage 
that no sensors are required to facilitate rapid 
movements and greatly simplifies control-
ler implementation in humans. This kind of 
controller is generally used in clinical tasks 
and the output depends only on the user com-
mand, and not on the system performance. 
Another advantage of feedforward control is 
that corrective action is taken for a change in 
a disturbance input before it affects the con-
trol parameter. However, drawbacks include 
the inability to make corrections if the actual 
movement deviates from the desired one due 
to muscle fatigue or any changes in the envi-
ronment, and the requirement to have detailed 
system behavior to produce an accurate move-
ment [3, 15].

Feedback control uses sensors to monitor the 
system output, so it can correct when the out-
put does not behave as desired. Feedback is 
necessary in order to maintain good tracking 
performance in the presence of fatigue and any 
external disturbances encountered. Challenges 
to the success of feedback control include lim-
itations in sensor signal quality, the relatively 
slow response properties of muscles, and in-
herent delays in system response, which are of 
particular concern for fast movements.

In this study, at first we used a classic control-
ler for regulating the elbow angle—a propor-
tional-integral-derivative controller. The con-
troller was placed in a negative feedback loop 
to compensate the error between the desired 
elbow angle and the actual one. So the PID 
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controller generates muscle stimulations that 
are proportional to the errors in joint angles 
and their time-derivatives and time-integrals.

In the next step, we added a feedforward 
path to the previous controller. Feedforward 
control is commonly used in clinical practice. 
The advantage of this design is that it does not 
need sensors to measure the system output, but 
the disadvantage is that it is unable to make 
corrections if the actual angle deviates from 
the desired angle. 

Therefore, a combination of feedforward 
and feedback control has the best results, and 
is the preferred control method in several FES 
system design, including the one presented in 
this paper.

The feedforward controller is typically an 
inverse-dynamic model of the controlled sys-
tem. Since an actual inverse-dynamic model is 
usually not available, here we used a propor-
tional control as the feedforward controller. 

The input of the controllers was the desired 
angle, and the output was pulse width needed 
for stimulating the biceps. 

The FES controllers presented in this paper 
were designed and tested in simulation.
The controller optimization 

using GA: In optimizing, the controllers 
use GA to get the required pulse width for 
stimulating the biceps to bring the elbow joint 
to the desired angle.

The initial guess of the parameters was de-
rived by adding a uniform random number 

ranging from zero to one to the coefficients 
tuned by trial and error; further adjustment 
was then performed with a GA.

One of the important steps in GA is deter-
mining the number of population. However, 
there is no fast and rule of thumb for determin-
ing which method is the best to adopt. The de-
cision on the population size is usually based 
on trial and error. In this study, an initial popu-
lation size of 20 was used since there were 3 or 
4 variable parameters.

The convergence criterion of a genetic algo-
rithm is a user-specified condition. GA uses 
four different criteria to determine when to 
stop the solver: GA stops when the maximum 
number of generations is reached. GA also de-
tects when the string fitness value exceeds a 
certain threshold for some time given in sec-
onds, or for some number of generations. An-
other criterion is the maximum time limit in 
seconds. In our study, GA stopped when the 
maximum number of generations exceeded 
200 or when there was no change in the best 
fitness value for 150 generations.

The fitness (objective) function is used to 
provide a measure of how individuals have 
performed in the problem domain. In the case 
of a minimization problem, the fittest indi-
viduals will have the lowest numerical value 
of the associated objective function. This raw 
measure of fitness is usually only used as an 
intermediate stage in determining the relative 
performance of individuals in a GA. In this 

Figure 6: Block diagram of feedforward-feedback P-PID control of the musculoskeletal model
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study, sum square of errors was used to assess 
the fitness of each chromosome.

GA uses operators to produce the next gen-
eration of the population. The different opera-
tors are selection, crossover, and mutation.

Here we chose tournament selection. Tour-
nament selection involves running several 
tournaments among a few individuals chosen 
at random from the population. The winner of 
each tournament (the one with the best fitness) 
is selected for crossover. Selection pressure is 
easily adjusted by changing the tournament 
size. If the tournament size is larger, weak in-
dividuals have a smaller chance to be selected. 
Tournament selection has several benefits: it 
is efficient to code, works on parallel architec-
tures and allows the selection pressure to be 
easily adjusted.

Results
The four controllers described were tuned 

and optimized when the initial elbow angle 
was 10° and the desired angle was 80°. For 
checking the robustness of the controllers, we 
compared the amount of rise time, settling 
time, maximum overshoot and steady state er-
ror in three conditions for the controllers.

The first case was when the initial angle of 
the elbow was fixed on 10° and the final angles 
were changed. The alteration of the desired 
angles was between 30° and 150° with steps 
of 10°. The results for rise time, settling time, 
maximum overshoot and steady state error for 

comparing the four controllers are shown in 
Figures 7 to 10.

The next case was studied while the step 
size between the initial and desired angles was 
constant (70°) and the initial angles varied 

Figure 7: Comparison of the rise time for a) 
PID, b) genetic-PID, c) P-PID and d) genetic P-
PID controllers; with the same initial angle of 
10° and various desired angles of 30°–150°

Figure 8: Comparison of the settling time for 
a) PID, b) genetic-PID, c) P-PID and d) genetic 
P-PID controllers; with the same initial angle 
of 10° and various desired angles of 30°–150°

Figure 9: Comparison of the overshoot for a) 
PID, b) genetic-PID, c) P-PID and d) genetic P-
PID controllers; with the same initial angle of 
10° and various desired angles of 30°–150°

Figure 10: Comparison of the steady state 
error for a) PID, b) genetic-PID, c) P-PID and 
d) genetic P-PID controllers; with the same 
initial angle of 10° and various desired angles 
of 30°–150°

FES Control of Elbow Joint

23



J Biomed Phys Eng 2012; 2(1)

www.jbpe.ir

between 10° and 80°. Figures 11 to 13 show 
the results for the rise time, settling time and 

maximum overshoot for comparing the four 
controllers. The steady state error was zero for 
all the controllers in this condition.

The last case was with a different maximum 
force for the muscle. The default was 900 N, 
and we also considered 700 N and 1100 N, as 
the biceps maximum force to check the ro-
bustness of the controllers.

The steady state error was zero in this condi-
tion too for all the four controllers. The chang-
es in the rise time, settling time and overshoot 
are shown in Figures 14 to 16. 

Discussion
A feedback PID controller and a feedfor-

ward-feedback P-PID controller were de-
veloped for a nonlinear musculoskeletal arm 
model with two muscles, one joint and one 
degree of freedom in sagittal plane. In feed-
forward-feedback controller, the feedback part 
brought the elbow angle to the desired range, 
and the feedforward part held it on the desired 
angle. The objective of our study was to im-
prove the controllers’ performance using GA 
for the PID and P-PID tuning.

We first tuned a feedback PID controller by 
trial and error and then optimized its coeffi-
cients by GA that made its performance much 
better. Then, a combination of feedforward 
and feedback, as a P-PID, was tuned and op-
timized by GA. The genetic P-PID performed 
somewhat better than the P-PID tuned by trial 
and error. As mentioned earlier, the desired 
angle that the controllers were tuned based on 
was 80° while the initial angle was 10°.

The criteria that we checked to determine 
the performance and robustness of the con-
trollers were the rise time and settling time for 
the system speed, and maximum overshoot 
and steady state error as the accuracy of the 
system. These criteria were measured in three 
conditions.

The first condition was when the initial an-
gle of the elbow joint was fixed at 10° and the 
desired angles were altered between 30° and 
150° with steps of 10°. In comparing PID, ge-

Figure 11: Comparison of the rise time for a) 
PID, b) genetic-PID, c) P-PID and d) genetic P-
PID controllers; with the same step between 
the initial and desired angle of 70° and vari-
ous initial angles (10°–80°)

Figure 12: Comparison of the settling time 
for a) PID, b) genetic-PID, c) P-PID and d) ge-
netic P-PID controllers; with the same step 
between the initial and desired angle of 70° 
and various initial angles (10°–80°)

Figure 13: Comparison of the overshoot for 
a) PID, b) genetic-PID, c) P-PID and d) ge-
netic P-PID controllers; with the same step 
between the initial and desired angle of 70° 
and various initial angles (10°–80°)
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netic PID, P-PID and genetic P-PID, in this 
case, the rise time was much less in both P-
PIDs than the PIDs. The settling time in both 
P-PIDs was smaller than 80° with 10° more 
or less than that, but not necessarily at other 
angles. In general, the amounts of settling time 
in four controllers were not so different. The 
amounts of overshoot were really better (less) 
in PIDs and in P-PIDs but were quite large, 
especially for desired angles >80°. The steady 
state error was almost nothing for the control-
lers and exactly nothing for genetic PID con-
troller.

The next condition for checking the robust-
ness was with a fixed step size (70°) and vari-
ous initial angles. In this case, the rise time in 
P-PIDs was totally less than PIDs (near 0.2 sec 
for genetic P-PID and approximately 0.9 sec 
for genetic PID). Variation in settling time in 
P-PIDs was rather large (from 0.5 to 3 sec) but 
in genetic PID it was quite constant at 1.5 sec. 
The overshoot was zero for PIDs but not for 
P-PIDs. The steady state error was zero for all 
the four controllers.

Finally, we checked the performance of the 
controllers with two different muscle maxi-
mum forces beside its default value. In this 
condition, the rise time was about 0.2 sec for 
P-PID, about 0.3 for genetic P-PID, almost 
1.1 in genetic PID and near 1.2 sec for PID 
controller. Also, the settling time was great 
for genetic P-PID (about 0.4 sec), average (1 
sec) for P-PID, and almost 1.6 and 2.2 sec for 
genetic PID and PID, respectively. As the pre-
vious conditions, the overshoot was large for 
P-PID, much better for genetic P-PID and zero 
for PIDs. And again, the steady state error was 
zero for all studied controllers.

In conclusion, the combination of feedfor-
ward-feedback controller optimized by GA 
has the best results in general. For compari-
son of the amount of rise time, we can say that 
P-PID tuned by trial and error is less but the 
overshoot in genetic P-PID is much better. Of 
course, the overshoot in PID feedback control-
ler especially the one tuned by GA is absolute-

Figure 14: Comparison of the rise time for a) 
PID, b) genetic-PID, c) P-PID and d) genetic 
P-PID controllers with the same initial and 
desired angle (10° and 80°, respectively) and 
various maximum forces for biceps (700–
1100 N)

Figure 15: Comparison of the settling time 
for a) PID, b) genetic-PID, c) P-PID and d) ge-
netic P-PID controllers with the same initial 
and desired angle (10° and 80°, respective-
ly) and various maximum forces for biceps 
(700–1100 N)

Figure 16: Comparison of the overshoot for 
a) PID, b) genetic-PID, c) P-PID and d) genetic 
P-PID controllers with the same initial and 
desired angle (10° and 80°, respectively) and 
various maximum forces for biceps (700–
1100 N)
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ly zero. So, the feedforward-feedback control-
ler causes the system to speed up. However, it 
brings some overshoot to the system response.
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