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ABSTRACT
Background: Irreversible electroporation (IRE) is a novel tumor ablation tech-
nique. IRE is associated with high electrical fields and is often reported in conjunc-
tion with thermal damage caused by Joule heating. For good response to surgery it 
is crucial to produce minimum thermal damage in both tumoral and healthy tissues 
named Non-Thermal Irreversible Electroporation(NTIRE). Non-thermal irreversible 
electroporation attempts have concentrated on tumor ablation with strong electric 
field with producing minimum thermal damage.
Objective: To establish a Multi Objective Genetic Algorithm (MOGA) for IRE 
treatment planning.
Methods: Numerical modeling and genetic programming were coupled to optimize 
thermal and electrical distribution in tissue. A 3D MRI based model was established 
and treatment parameters such as electrode thickness, electrode insertion, distance 
between electrode and applied voltage were optimized. 
Results: Prefect tumor ablation with IRE surgery with relatively little electrical 
and thermal damage on healthy tissue can be achieved by using genetic algorithm 
optimization. Such optimization can trade off between perfect tumor coverage and 
damage to healthy tissue. Concerning the thermal aspect of IRE surgery. 
Conclusion: The established multi-objective genetic algorithm based treatment 
planning system, can optimize both geometric and electric parameters in IRE surgery. 
Such optimization result in prefect tumor ablation as well as minimum thermal dam-
age to both normal and tumoral tissue.
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method, Numerical modeling 

Introduction

Tissue ablation is the resection of unhealthy tissue with the aim to 
cure a disease. This method is one of the modalities used in can-
cer treatment. Ablation of tumor (or undesirable tissue) often is 

performed via thermal method. Laser, ultrasound, radiofrequency elec-
tric current and microwaves are different physical principles that can be 
employed for heating tissue [1]. In addition to the methods listed, re-
cently a new method called irreversible electroporation (IRE) has been 
introduced in order to destroy unhealthy tissues. In general, electro-
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poration is a method to increase permeability 
of cells using electric fields [2, 3]. Respect to 
strength of electric field, the electroporation of 
cells can be reversible or irreversible. Unlike 
reversible electroporation (RE), in IRE strong 
electric field is used and consequently lead to 
permanent permeabilization of tissue’s cells. 
RE mainly used in electrochemotherapy and 
electrogenetherapy. Several teams proved that 
IRE can ablate undesired tissue [1-3]. But the 
main point that must be considered is minimal 
damage to normal tissue. Since strong electric 
fields are used in IRE, the ablated area can be 
extended to normal tissue. Ablation of tissue 
via IRE procedure can be performed in elec-
trical or thermal manner. For instance if elec-
tric field is greater than 900 V/cm, the target 
tissue can irreversibly electroporated (elec-
trical manner). In addition; this electric field 
can produce heat (joule heating) and this heat 
regardless of electric distribution, can ablate 
target tissue similar to other thermal ablation 
tumor methods. But IRE  surgery  on  animal  
tissue shows that non-thermal IRE (NTIRE) 
has many beneficial effects such as extremely  
rapid  regeneration  of  ablated  tissue  with  
healthy  tissue  without  scar formation, in-
ducing a good immune response [4], allowing 
treatment in the heart [5] and blood vessels [6] 
without the danger of coagulation and subse-
quent emboli.

Several studies have shown that numerical 
modeling can be used to estimate the electric 
and thermal distribution in tissue[7-10]. More-
over, the outcome of treatment prediction be-
fore its implementation in order to select the 
best treatment parameters is commonly used 
in radiotherapy named treatment planning. 
This study has been done to design a treatment 
planning system for IRE tumor ablation.

In this study we coupled numerical mod-
eling and genetic programming to optimize 
electrode configuration to optimum thermal 
and electric distribution in healthy and un-
healthy tissue. A 3D MRI based model used 
for numerical modeling ; we used multi-ob-

jective optimization in genetic programming 
to consider both electric and thermal effect on 
tissue. Such optimization leads to minimally 
invasive tissue ablation as well as minimum 
joule heating.

Materials and Methods

Numerical modeling
In order to numerically evaluate of the elec-

tric distribution in the tissues, Laplace equa-
tion was used [7, 11]:

 . σ φ 0                                 (1)

where σ and φ stand for the electric conduc-
tivity of the tissue and electric potential, re-
spectively. It should be noted that by solving 
above equation, the electric field distributions 
was obtained in the model. Boundary between 
reversible and irreversible electroporation for 
subcutaneous tumor is 900 V/cm[12], which 
is used as the criteria for calculating reversible 
and irreversible volume. This value is taken 
from a previously published study[13, 14].

A modified Pennes (bioheat) equation was 
used to determine temperature distribution.  In 
order to consider the heat generated from the 
IRE procedure, Joule heating 

2
(σ )φ ) is add-

ed to the original Pennes equation[15]:

    2'''
b b a p

T. k T ω c T T q σ φ ρc
t


       


 (2)

where k stands for the thermal conductivity 
of the tissue, T is the temperature, ωb is the 
blood perfusion, cb is the heat capacity of the 
blood, Ta is the arterial temperature, q’’’is the 
metabolic heat generation, ρ is the tissue den-
sity, and cp is the heat capacity of the tissue. 

The constant parameters in equations 1 and 2 
that used in the model are summarized in Table 1. 

In order to calculate thermal damage 
Ω, Arrhenius equation was used [7, 16]:

aE
RTΩ ξe dt


                         (3)
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Tissue/
Electrode

Quantity

Healthy tis-
sue Tumor

Electrode

(Aluminum)

Electric 
conductivity-

(S/m)
0.41[17] 0.4[12] 3.774×107

Thermal 
conductivity-

k(W/m.K)
0.5[17] 0.75[18] 250

Specific heat-
c(J/kg.K) 3800[19] 3700[20] 910

Blood 
perfusion 
rate-(1/s)

6.557×10-4[21] 2×10-3[18] ------

Metabolic 
heat source-

(W/m3)
800[19] 42000[18] ------

Density-(kg/
m3) 1040[17] 1050[20] 2700

in which ξ is the frequency factor in 1/s, Ea is 
the activation energy in Joule/mole, R is the 
universal gas constant (Joule/mole.Kelvin), 
and T is the absolute temperature in Kelvin.  

The finite element method (FEM) was 
used to solve partial differential equations 
(eq. 1,2) . All finite element analyses were 
performed using the commercial finite ele-
ment package Femlab v3.5a (Comsol AS, 
Stockholm, Sweden).  The Convergence test 
was performed to ensure adequate mesh den-
sity and validity of simulation.  To this end, 
the number of elements in the FE model was 
increased and electric potential was calcu-
lated for the model.  When simulated electric 
potential converged, that is, it changed by 
less than 1%, the convergence process de-
fined the number of elements in the model.

Boundary and initial conditions
To solve eq. (1), it is assumed that electrical 

boundary condition of electrode is

0φ V                                            (4)

The electrical boundary condition at the out-
er surface of tissue is electrically insulative, it 
means:

φ 0.
n





                                          (5)

To solve eq. (2), the outer surface domains 
are considered as adiabatic to predict the max-
imum temperature rise in tissue [7,11]:

T 0
n





                                            (6)

Furthermore, it is assumed that the initial 
temperature value of tissue is physiological 
temperature of 37° C.

The calculations were made using an elec-
troporation pulse of 0.1 ms. Because typically 
reversible and irreversible electroporation is 
done with eight to ten 100-μs pulses [2, 6], we 
choose 0.1 ms to estimate maximum tempera-
ture rise in our model.

Building a 3D geometry of tumor
In this study we used a 3D model of tumor 

and healthy tissue with needle electrode. Tu-
mor geometry used in the numerical modeling 
for treatment planning purpose of IRE were 
constructed from MRI scans of a patient with 
Squamous cell carcinoma (SCC) that were pro-
vided in the Cancer Research Center, Tehran. 
The MR images were obtained using a 3 Tesla 
scanner (Trio, Siemens Medical Solutions, Er-
langen, Germany), using 16 RF channels. Pa-
tient were administered Dotarem® via a hand 
injection (0.1 mmol/kg) over approximately 
20 s.  T2-weigthed imaging was started after 
20 min of injection with following protocol: 
Turbo spin-echo with TE=117 ms, TR=750 
ms, flip angel= 170˚ and voxel dimension of 
0.5×0.5×0.5 mm3. The MRI data was import-
ed into MIMICS (Materialize, Leuven, Bel-
gium) software where tissues of interest were 
identified (Figure 1). Following automatic and 
manual manipulation of the structure, the ge-
ometry was transferred to Femlab software in 
order to numerical modeling.

Electrode geometry

Table 1: Electrical and thermal constant used 
in the model.
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In this study we modeled 2-electrode ge-
ometry that used commonly in RE and IRE 
surgery. The electrodes were modeled as cyl-
inders of sizes like to those used in various 
studies [7, 22]. We select 4 essential geomet-
ric and electric parameters for optimization 
as following: electrode thickness (t), distance 
between electrodes (d), insertion of electrodes 
in tissue (i), and electrode voltage (v). This 
parameter is shown in Figure 2 schematically.

Genetic algorithm
Genetic algorithm (GA) is a nature-based 

stochastic computational technique. The ma-
jor advantages of GA is its broad applicability, 
flexibility and ability to obtain optimal solu-
tions[23].  GA, initiated by J.Holland(1975), 
have confirmed useful in a variety of search 
and optimization problems in engineering, 
science and commerce[24]. The algorithm is 
based on the survival of the fittest which tries 

Figure 1: Volume rendering of patient’s tumor using MRI data.

Figure 2: 3D geometry of tumor with cylindrical electrode. a) the surrounding healthy tissue 
around tumor b) x-y view of the model. the + and - sign represents the polarity of applied 
voltage(v). c) z-x view and geometric parameters of the model.
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to maintain genetic information from genera-
tion to generation. To execute a GA optimi-
zation, a population of initial solutions must 
first be generated randomly. GA is an iterative 
algorithm where each iteration has two steps, 
the evaluation of fitness function step and the 
generation step. In the evaluation of fitness 
function step, the value of fitness function was 
evaluated. In generation step two individuals 
(parents) with maximum (or minimum) value 
for fitness function are chosen from the popu-
lation. The selected parents are recombined to 

form two children, with two mechanisms of 
crossover and mutation [23, 25-27]. This pro-
cedure can be repeated until stopping criterion 
has been satisfied. This procedure is shown in 
Figure 3.

The genetic algorithm was written in Matlab 
R2010a (Mathworks, USA) and was coupled 
with the finite element models using the link 
between Matlab and Femlab software. In this 
study we used real coded multi-objective ge-
netic algorithm (MOGA) in order to optimize 
electric and thermal distribution in tumoral 

Figure 3: Flowchart of applied Genetic Algorithm
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and healthy tissue.  The written algorithm was 
validated using common test function (Table 
2). 

The mentioned functions in Table 2 have 
many local minimum with a global minimum 
and the written GA must find global minimum.

After validation, the main optimization 

was started. At first, initial population of so-
lutions was generated randomly considering 
constraints for each parameter (t, d, i and v). 
These constraints (Table 3) were chosen in or-
der to keep the solutions in real domain size. 
Such constraints come from tumor shape and 
clinical considerations. Initial population con-

sists of specified number of individuals (chro-
mosome). Each chromosome in population 
consists of 4 different variables (genes)(Figure 
4).  Each gene contains specified value for the 
variables in Table 3.  

The fitness functions were defined as fol-
lowing: 1-normalized volume of tumor with 
E>900 V/cm (E-T), 2- normalized volume of 
healthy tissue with E>900 V/cm (E-H), 3-ther-
mal damage of tumor (Ω-T) and 4- thermal 

damage of healthy tissue (Ω-H). The aim of 
optimization was E-T to be maximized and 
E-H, Ω-T and Ω-N to be minimized. E and 
Ω value for tumor or healthy tissue was cal-
culated with solving eq. 1 and 2 respectively 
then using post processing features in Femlab 
software. The optimization was performed for 
each of mentioned fitness function (one-objec-
tive optimization). Moreover as prefect tumor 
coverage is crucial for treatment response, E-T 

Table 2: Test function used in this study (all function were minimized).

† These functions were solve for n=2.
‡ This function have 18 global minimum.
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was optimizes with other fitness function si-
multaneously (two-objective optimization). It 
should be noted in both one and two-objective 
optimization, final results are the best solu-
tions among all generations.

The GA parameters can be found in Table 4. 
These parameters were optimized with both 
test function in Table 2 and problem fitness 
function. After the last generation, the fitness 
(or test) function reached a plateau and the 
algorithm was terminated.

Results
In Figure 5 the results for GA validation 

are shown. The results show the written GA 
is able to converge all of the test function in 
Table 2. In all cases the variance in five runs 
is also small. 

Figure 6 gives the one-objective optimiza-
tion results for each of the 4 fitness function. 
The optimization parameters were set corrod-
ing to Table 4. The results show the algorithm

Population 
size

No. of gen-
eration

Cross over 
rate

Mutation rate

60 150 0.8 0.1

was converged in all cases. Each point in the 
graph, associated with a value for electrode 
thickness (t), distance between electrodes (d), 
electrode insertion (i) and applied voltage (v). 
Table 5 presents the optimized parameters for 
each fitness function as well as fitness function 
values. 

According to Table 5 just maximization of 
E-T can cover tumor with electric field greater 
than 900 V/cm perfectly leading to consider-
able damage to the healthy tissue. Although 
other minimization can minimize thermal 
damage to both healthy and tumoral tissue and 
electrical damage to healthy tissue, these opti-
mization could not ablated tumor at all. In or-
der to consider both tumor coverage and mini-
mum damage simultaneously; two-objective 
optimization was performed.   

The results of two-objective optimization are 
presented in Figure 7. Like Figure 6 each point 
in Pareto-front of the problem, associated with 
a value for 4 problem parameters (t, d, i and 
v). With increasing the tumor coverage with 
electric field greater than 900 V/cm (vertical 
axis), electrical damage to healthy tissue and 
thermal one to both healthy and tumoral tissue 
(horizontal) were increased (Figure 7). But as 
show in Figure 7; with two-objective optimi-
zation it is possible to choose parameters that 
can improve tumor coverage ratio regarding 
minimal electrical and thermal damage. The 
optimized parameters and associated fitness 
function values are tabulated (Table 6).

Discussion
The simulations showed that the magnitude 

of electric field intensity falls rapidly as we 
go away from the electrode surfaces. Further-
more the area with the maximum electric field 
strength (and temperature) was in the vicin-

parameter unit Variable 
Bounds

t(electrode thickness) mm 0.5-2
d(distance between 

electrodes)
mm 18-50

i(electrode insertion) mm 0-1.6
v(voltage) V 500-4000

Table 3: Constraints of problem parameters 
(variables).

Figure 4: An individual (chromosome) in the 
population. Each chromosome consists of 4 
genes. The defined fitness function evalu-
ates for each chromosome.

Table 4: The GA parameters

A multi objective genetic algorithm in tumor ablation
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Figure 5: Convergence behavior of the GA for  a) Ackley b) Griewank c) Hump d) Michalewicz e) 
Rastrigins  f) Shubert functions. In all cases the algorithm converged before 120 th generation. 
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ity of electrodes and the area about them. In 
fact, the regions with the largest electric fields 
occur in the space between two electrodes. 
Therefore this region is crucial for consider-
ing both electric and thermal analysis. 

Concerning GA optimization, it is not pos-
sible to consider both thermal and electrical 
aspect of IRE surgery with one-objective op-
timization. As mentioned in Table 5 the cal-
culated parameters for maximization of E-T 
leads to significant electric damage to healthy 
tissue. Such parameters can produce dramatic 
temperature increases in the vicinity of elec-
trodes. But due to rapid decrease of tempera-
ture away from electrode, there is no consider-
able thermal damage in healthy and tumoral 

tissue. Such problems also exist for other one-
objective optimization. In fact minimization of 
E-H can lead to no part of tumor irreversibly 
electroporated. However it is possible to con-
trol such problems with two-objective optimi-
zation. Such optimization can preferentially 
ablate tumor tissue, preserving normal tissue 
at the treatment region considering two fitness 
functions (Pareto-front). Pareto-front is the 
solutions that cannot be improved in one-ob-
jective optimization. A complete representa-
tion of Pareto solutions is only possible using 
calculation of fitness value for each solution. 
It should be noted the solution are selected de-
pending on which function is more important. 
For example if we want to ablate tumor with 

 

t(mm) d(mm) i(mm) v(V)

Final value of fitness function
E-H E-T log(Ω-H) log(Ω-T)

E-H† 0.7 44.2 7.6 504 0 0 -11.59 -11.72
E-T‡ 1.5 22.0 9.9 3958 0.36 1 -9.91 -7.80
Ω-H† 0.5 44.4 0.5 541 0 0 -11.69 -11.7
Ω-T† 0.6 47.7 4 522 0.001 0 -11.47 -11.71

Table 5: Calculated values of problem parameters after one-objective optimization for E-H, E-T, 
Ω-H and Ω-T. After final result, the fitness function values were evaluated for the obtained pa-
rameters for each optimizatian.

Table 6: Calculated values of problem parameters after two-objective optimization. The fitness 
function values were evaluated for the one of the best solutions that was shown in Figure 7 with 
arrow.

† The function was minimized.
‡ The function was maximized.

A multi objective genetic algorithm in tumor ablation
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Final value of fitness function 

E-H E-T log(Ω-H) log(Ω-T) 

E-T and E-H 0.61 21.03 7.52 3843 0.16 0.98 -11.17 -10.36 
E-T and Ω-T 1.55 21.34 12.9 2812 0.36 0.99 -9.91 -10.90 
E-T and Ω-H  0.56 21.17 7.23 3910 0.17 0.99 -11.25 -11.30 
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minimum electric damage to healthy tissue, 
we must use Figure 7a. All associated chromo-
some in plateau region near E-T=1 lead to pre-
fect tumor ablation. Therefore if we choose a 
point with E-T=1 with less value for E-H, the 
consequent irreversibly electroporated area in 
healthy tissue becomes minimum. The similar 
argument exists for figures 7b and c. 

We demonstrated that using multi-objective 
optimization result in prefect tumor ablation 
as well as minimum thermal/electrical dam-
age. The nature of the genetic programming 
allows it to optimize functions with large 
number of parameters such as fitness func-
tions in this study. Such approach can be used 
in IRE surgery as a treatment planning system 
to help physician choose the best treatment pa-
rameters.
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Figure 6: one-objective optimization for a) 
normalized volume of healthy tissue with 
E>900 V/cm, b) normalized volume of tumor 
with E>900 V/cm, c) logarithm of thermal 
damage to healthy tissue d) logarithm of 
thermal damage to tumor. a, c and d were 
minimized and b was maximized.
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a) maximum tumor converge with mini-
mum electrical damage to healthy tissue b) 
maximum tumor converge with minimum 
thermal damage to tumor and c)  maximum 
tumor converge with minimum thermal 
damage to healthy tissue.
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