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ABSTRACT
Background: The time and frequency features of motor unit action potentials 
(MUAPs) extracted from electromyographic (EMG) signal provide discriminative 
information for diagnosis and treatment of neuromuscular disorders. However, the 
results of conventional automatic diagnosis methods using MUAP features is not con-
vincing yet.
Objective: The main goal in designing a MUAP characterization system is obtain-
ing high classification accuracy to be used in clinical decision system. For this aim, in 
this study, a robust classifier is proposed to improve MUAP classification performance 
in estimating the class label (myopathic, neuropathic and normal) of a given MUAP.
Method: The proposed scheme employs both time and time–frequency features of 
a MUAP along with an ensemble of support vector machines (SVMs) classifiers in 
hybrid serial/parallel architecture. Time domain features includes phase, turn, peak to 
peak amplitude, area, and duration of the MUAP. Time–frequency features are discrete 
wavelet transform coefficients of the MUAP. 
Results: Evaluation results of the developed system using EMG signals of 23 sub-
jects (7 with myopathic, 8 with neuropathic and 8 with no diseases)  showed that the 
system estimated the class label of MUAPs extracted from these signals with average 
of accuracy of 91% which is at least 5% higher than the accuracy of two previously 
presented methods. 
Conclusion: Using different optimized subsets of features along with the present-
ed hybrid classifier results in a classification accuracy that is encouraging to be used in 
clinical applications for MUAP characterization.  

Keywords
EMG,Hybrid classifier design, MUAP characterization, Mutual information, 
Wavelet

Introduction

Electromyographic (EMG) signals demonstrate the electrical 
activity of muscles during voluntary contraction. Each mus-
cle consists of many muscle fibers which are organized into 

groups for the control of muscle force with each muscle fiber of a 
group being connected to a motor neuron. Each muscle fiber of a 
group is activated concurrently by the motor neuron to which they 
are connected. Each muscle consists of small muscle fibers which 
are controlled by different α-motoneurons via the connected axons. 
A motor neuron, its axon and the set of connected muscle fibers are 
called a motor unit (MU) [1].

Original
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The summation of the muscle fiber poten-
tials created by the spatially and temporally 
dispersed depolarization and repolariza-
tion of all of the excited fibers of a single 
MU is known as motor unit action potential 
(MAUP). During a muscle contraction, sev-
eral MUs may be activated each of which 
fire repetitively to maintain the force of the 
muscle contraction. Therefore, each activat-
ed MU generated a train of MUAP known 
motor unit action potential train (MUAPT). 
EMG signal acquired from a contracted 
muscle is the summation of MUAPTs and 
background noise [1].

EMG can be detected using either needle 
electrodes or surface electrodes each of 
which has its own advantages, disadvantag-
es and usages. Surface electrodes record the 
summation of activities from many motor 
units and even the activity of adjacent mus-
cles. On the other hand, needle electrodes 
permit recording of individual motor unit po-
tentials and provide much information about 
deep muscles. For diagnostic applications it 
is desired to get detailed temporal and spa-
tial information about the muscle fibers of 
a MU; therefore EMG signals detected di-
rectly from the muscles by needle electrodes 
are used for clinical use [2]. 

Neuromuscular diseases alter the morphol-
ogy and physiology of MUs and ultimately 
their firing patterns and MUAP shapes. 
Neuromuscular disorders, in general, are 
grouped in two principal categories: myo-
pathic and neuropathic. Myopathic disorders 
are caused by death or atrophy of muscle fi-
bers and neuropathic disorders are caused 
by the death or damage of motor neurons. 
MUAPs detected from myopathic patients 
usually have high frequency contents, short 
peak to peak amplitude, short duration and 
consequently are smaller and more complex 
than normal cases.  MUAPs detected from 

neuropathic patients are polyphasic (number 
of baseline crossings are increased), have 
long peak to peak amplitude, long dura-
tion and consequently are larger and more 
complex than normal cases. Consequently, 
analyzing MUAPs created by the MUs of a 
contracting muscle can assist with identify-
ing its state of health [3]. 

In traditional clinical practice, neurolo-
gists assess individual MUAPs visually and 
auditory to diagnose disorders. In visually 
assessment of MUAPs, neurologists analyze 
isolated MUAP morphology and MU firing 
patterns. These features demonstrate MUAP 
shape and MU firing patterns which are rep-
resentative for the underlying diseases. In 
auditory assessment neurologists investigate 
frequency and amplitude of the clicks and 
crackles made by amplified EMG signals. 
In general, both visual and auditory assess-
ments of MUAP are performed simultane-
ously and the one with better discriminative 
information is considered as a reference for 
decision. MU firing pattern are considered 
as a supplementary source of information. 
Although such a qualitative analysis can as-
sist with diagnosing neuromuscular disor-
ders, there are several limitations with these 
techniques [4].

Qualitative EMG analysis results depend 
on expert skills and may prone to errors and 
misinterpretations. Both subjective visually 
and auditory assessment of MUAPs may 
crude with poor sensitivity and specificity. 
In addition, qualitative EMG analyzing can-
not provide quantitative data for comparison 
purposes and measuring disease severity and 
improvement. Therefore, computer based 
quantitative EMG algorithms have been de-
veloped to overcome these shortcomings [5].

The literature describes different sets of 
extracted features and classification schemes 
for automatic diagnosing of neuromuscular 
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disorders. Pattichis et al. [6] used MUAP pa-
rameters as input to a sequential parametric 
pattern recognition classifier. Pattichis and 
Pattichis [7] have analyzed the effectiveness 
of the wavelet transform (WT) for describ-
ing MUAP morphology and three different 
neural networks for classification. Pattichis 
and Elia [8] used autoregressive, cepstral 
and time domain analysis in classification of 
EMG signals. Subasi et al. [9] investigated 
the usefulness of using an autoregressive 
model and wavelet neural network to extract 
discriminative features from EMG. Katsis 
et al. used SVM [10], RBFN and Decision 
Tree (DT) [11] for MUAP classification. 
Pino et al. [12] used Naïve Bayesian (NB), 
DT and pattern discovery (PD) classifiers for 
MUAP classification and characterization. 
Dobrowolski et al. [13] used MUAPs de-
composition using wavelet and SVM for the 
classification of neuromuscular disorders. 
Recently, Subasi [14] used ANFIS with AR 
and discrete wavelet transforms (DWT) fea-
tures to automatically diagnose neuromus-
cular disorders. The principal shortcoming 
of all these works is absence of high classifi-
cation accuracy which is critical for clinical 
decision support systems.

In this research, we proposed a novel clas-
sification scheme that uses the combina-
tion of time and time-frequency features 
for characterizing MUAPs detected from a 
given EMG signal. The objective was to de-
velop a robust MUAP characterization sys-
tem to be used in clinical decision system. 
In the next sections, details of the employed 
features, proposed classification scheme, 
evaluation mechanism and obtained results 
are presented.

Material And Methods

Extracting MUAPs from EMG signal

To extract features and analyze electrical 
activities of muscles, two main approaches 
are exist: MUAP analysis [15] and inference 
pattern (IP) [16] analysis. In the first ap-
proach, features are extracted from individ-
ual MUAPs whereas in the second approach 
features are elicited from composite EMG 
signal. MUAP analysis provides more com-
prehensive and informative set of features 
compared to IP method because in this meth-
od features are elicited from MUAPs direct-
ly. Therefore, in this study MUAP analysis 
technique is employed to study neuromuscu-
lar disorders. To extract MUAPs, templates 
of motor unit action potential trains (MUA-
PTs) are estimated via decomposing a given 
EMG signal into its component MUAPTs 
using validity–based EMG decomposition 
(VBEMGD) system. The VBEMGD sys-
tem is an extension of decomposition–based 
quantitative EMG (DQEMG) system [16-
18] and is an algorithm for decomposing 
intramuscular EMG signals acquired during 
isometric contractions. The VBEMGD sys-
tem decomposes an EMG signal off–line by 
band–pass filtering the signal, identifying 
the position of  MUAPs in the filtered signal 
by a threshold crossing technique, and then 
grouping the detected MUAPs using a clus-
tering and a knowledge–based supervised 
classification algorithm. For more informa-
tion, please refer to [19].

Feature Extraction and Selection
Successful MUAP characterization sys-

tem is highly dependent on the discriminate 
ability of feature set used to represent each 
MUAP. In other words, distribution of the 
elicited features for different MUAP class-
es should not overlap with that of the other 
classes. As far as physicians make a decision 
about a MUAP via assessment of its param-
eters, it is desirable to project MUAP infor-
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mation from different aspects. Due to vari-
ability of time and frequency based features, 
no single feature are sufficiently discrimina-
tive to be used; consequently, various fea-
tures should be used to represent MUAPs. In 
this work, time domain and discrete wavelet 
transforms (DWT) features were employed 
for this purpose. Details of feature extraction 
and reduction used in this study are given in 
the following two sub–sections.
Time Domain Features
The six time–domain parameters listed in 

table 1 are used to represent each MUAP 
[20-21]. Time domain features play an im-
portant role in clinical decision system since 
they are transparent and interpretable by cli-
nicians.

To select appropriate time domain features, 
first, we need to investigate the relationship 
between neuromuscular disorders and the 

resulting MUAP shape. Table 2 lists ana-
tomical correlations between abnormalities 
in MUAPs and the corresponding changes in 
the muscles. 

Time domain feature selection is per-
formed in two steps. In the first step, based 
on neurophysiologic effects of myopathic 
and neuropathic disorders, a group of fea-
tures are selected for discriminating each 
MUAP class from others. As an example, 
neurophysiologic features for separating 
myopathic type from other (normal and neu-
ropathic) are selected. In the second step, be-
tween the features of each group, sequential 
forward floating selection algorithm (SFFS) 
[22] is performed and for each class, final 
candidate features are selected. 
DWT Coefficients Extraction
Wavelet transform has been introduced by 

Daubechies [23] and can be used to describe 

Kamali T et al

Table 1: MUAP morphological features and their definition.

Feature Definition
Rise Time The time between the initial positive to the next negative peak within the main spike.
Duration The time between start and end point of a MUAP.

Spike Duration The time between the first to the last positive peak.
Area Rectified MUAPs integrated over the calculated duration.

Phases The number of baseline crossings where amplitude exceeds ±25μV, plus one.
Thickness The ratio of the area to the peak to peak amplitude.

Table 2: Relationship between MUAP abnormalities and anatomical consequences.

MUAP Abnormality Anatomical Consequences Predicted MUAP 
Type

Reduced duration Loss or atrophy of muscle fibers Myopathic
Increased duration Increased number of muscle fibers Neuropathic
Reduced amplitude Loss or atrophy of muscle fibers Myopathic
Increased amplitude Regeneration, reinnervation or splitting of muscle fibers Neuropathic

Increased number of phases Regeneration, reinnervation or splitting of muscle fibers Neuropathic-Myopathic
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time and frequency characteristics of a signal 
simultaneously. One of the main properties 
of the wavelet transform is its capability in 
handling non stationary signals such as bio-
medical signals (e.g EMG). To extract DWT 
features, first an appropriate mother wavelet 
(MW) should be selected. This selection is 
performed based on the experiments. In this 
study, DB4 MW provides the highest simi-
larity to the structure of employed MUAPs 
and therefore is selected for this application. 
To reduce dimension of DWT coefficients, 
the following three statistical indexes are 
used [24]:

1) Mean of the absolute values of the 
coefficients in each sub-band.

2) Average power of the wavelet coef-
ficients in each sub-band.

3) Standard deviation of the coefficients 
in each sub-band.

To select features from the extracted DWT 
coefficients, mutual information (MI) crite-
rion is used. MI is a measure of interdepen-
dence between random variables [25]. Let X 
and Y be two random variables, the mutual 
information I(X;Y) is defined as follows:

I(X;Y)=H(X)+H(Y)-H(X,Y)          (1)

Where H (.) is the entropy of a random 

variable and determines the associated un-
certainty. Suppose that the random variable 
X is continuous, H(X) is defined as

( ) ( )2( ) logH X p x p x dx= −∫      (2)

In case of discrete value for random vari-
able X, H(X) is defined as follows:

( ) ( ) ( )2logH X p X p X= −∑       (3)

In Eqs. (2) and (3), p(X) represents the 
marginal probability distribution of random 
variable X. According to the Bayes rule on 
conditional probability, Eq. (1) can be re-
written as:

I(X;Y)=H(X)-H(X|Y)=H(Y)-H(Y|X)     (4)

In Eq. (4), there is no assumption about 

the relationship between random variables; 
therefore, it is quite general and often con-
sidered as the generalization of the linear 
correlation coefficient. However, if X and Y 
are Gaussian random variables, their mutual 
information is a simple transformation of 
their linear correlation coefficient ρ [26]:

21( ; ) (1 )
2

I X Y log ρ= − −             (5)

Mutual information can be easily expanded 
to include more than two random variables. 
According to the chain rule [25], the joint 
mutual information among a set of features 
(X1, X2,…, Xn) and the outcome Y is

1 2 1 1 2 1( , ,..., ; ) ( ; | , , ,.. ).N
n i i i iI X X X Y I X Y X X X= − −= ∑ (6)

JMI represents how much the information 
provided by the feature vector (X1, X2,…, 
Xn) decreases the uncertainty about the ran-
dom variable X. When we have a large fea-
ture space, we expect that some of features 
may be dependent to each other. By employ-
ing JMI as the feature selection criterion, an 
optimal feature space can be achieved which 
contains not only the most relevant, but also 
contains the least redundant features. 

To select the time-frequency domain fea-
tures based on MI and JMI, a stepwise al-
gorithm was employed so that each new se-
lected feature has the highest individual MI 
with the output and lowest possible JMI with 
the preselected features. This procedure is 
as follows in the first step, single feature Xi 
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which has highest MI with the output vari-
able Y, is  selected. It should be noted that 
in each selection step, the candidate feature 
Xj should be selected if it maximizes the fol-
lowing weighted difference:

      ( );  ( ; )k jI X Y I X Xβ− ∑           (7)

Where k represents preselected features 
and j represents the candidate features [27]. 
The parameter value β is determined empiri-
cally between 0.5 and 1.0

Classification Scheme
Recently, multi-classifier scheme becomes 

so popular due to the basic idea that classi-
fiers using different architectures or different 
features can complete each other to enhance 
the classification performance. This has led 
to a belief that by simultaneously using fea-
tures and classifiers of different types, clas-
sification accuracy can be improved such 
that the performance of the combination is 
not worse than the average of the individual 
classifiers, but not necessarily better than the 

Figure 1: Roadmap of developed classification scheme
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best classifier [28]. Based on this idea, we 
have used different classifiers with various 
feature sets to increase overall MUAP clas-
sification accuracy. 

An important step in developing our hybrid 
structure was selecting the type of classifier. 
In this study, support vector machine (SVM) 
introduced by Vapnik [29] with Gaussian ra-
dial basis function (RBF) kernel is selected 
to focus on finding the marginal samples 
(support vectors), in addition to guarantee 
controlling the expected errors. The selected 
SVM has the following kernel function:

( ) 2'', x xK x x e γ− −=                         (8)

Where x is the input feature vector to the 
SVM, x ′  is the center of the support vector, 
and γ is the width of the kernel. In this paper, 
parameters including C (penalty factor) and 
γ were found experimentally through the 
cross validation.

Figure 1 shows the roadmap of the pro-
posed classification scheme. As shown, the 
proposed structure does not follow the con-
ventional serial or parallel topology and is 
structured in a hybrid manner. Three clas-
sification modules are defined: myopathic 
detection, neuropathic detection and normal 
detection. In each module, two base classi-
fiers are existed: one is fed with the selected 
time domain features and the other one is fed 
with the selected time-frequency domain fea-
tures. In the training phase, among the base 
classifiers used in each module, the most ac-
curate one is selected as the candidate base 
classifier for this module. Therefore, three 
base classifiers out of six are selected and 
ranked based on their accuracies. In the test 
phase, the two first best classifiers selected 
in the training phase corporate in voting and 
estimate the class label of a given MUAP.

Dataset and Classifier Evaluation
The proposed method in this study was 

tested using the real dataset provided by Dr. 
Miki Nikolic [30]. This dataset consists of 
real single-channel EMG signals recorded in 
Rigshospitalet in Copenhagen, Denmark and 
were detected from normal, myopathic and 
neuropathic muscles using a standard con-
centric needle electrode during low and con-
stant level of contractions. The signals were 
decomposed using the VBEMGD system 
[19] and the MUAPs for each MU are esti-
mated. The resulting MUAPs were assessed 
and labeled by an expert. The classification 
completed by the expert is considered as 
the gold standard data. Seven performance 
indicators were defined to evaluate the sug-
gested method: an accuracy measurement, 
three sensitivity and three specificity mea-
surements.

( )
( ) 100TN myo

TN FP myo
= ×

+MyoSpc               (9)

( )
( ) 100TN Neuro

TN FP Neuro
= ×

+NeuroSpc         (10)

( )
( ) 100TN Normal

TN FP Normal
= ×

+NormalSpc     (11)

( )
( ) 100TP myo

TP FN myo
= ×

+MyoSen              (12)

( )
( ) 100TP Neuro

TP FN Neuro
= ×

+NeuroSen         (13)

( )
( ) 100TP Normal

TP FN Normal
= ×

+NormalSen     (14)

Number of MUAPs correctly classified% 100
   Total number of MUAPs

= ×TotA    (15)
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Results and Discussion
Classification performance of the devel-

oped MUAP characterization system is sum-
marized in table 3. The numbers provided in 
this table was obtained by running 10 fold 
cross validation on the dataset introduced 
in subsection “Dataset and Classifier Evalu-
ation”. The results show that how well the 
proposed method can classify myopathic, 
neuropathic and normal cases.

For comparison purpose, we have imple-
mented two of most famous reported works 
for MUAP characterization on our dataset: 
Katis [11] and Pattichis [7] and present ob-
tained accuracy calculated with leave one 
out method in table 4. As results show, our 
algorithm can discriminate myopathic, neu-
ropathic and normal classes with higher rate 
of accuracy. The strength of our algorithm is 
due to cooperating both time and time-fre-
quency features in addition to selecting opti-
mized set of features for each class type. We 
also employ multi classifier scheme which 
help to enhance overall classification accu-

racy compared with the case of single clas-
sifier scheme.

Conclusion
The main goal in MUAP characterization 

system is preserving acceptable classifica-
tion accuracy. In this study, a novel classi-
fication scheme is proposed which consists 
of six base classifiers implemented by SVM 
base learners. Each base classifier is fed with 
different set of time or time-frequency do-
main features. The developed classification 
scheme consists of two stages and in each 
stage best classifiers are selected based on 
accuracy and finally the first two best classi-
fiers are corporate to produce the final results. 
The achieved results show that multi clas-
sifier scheme can significantly enhance the 
classification results and provide acceptable 
classification accuracy to be used in clinical 
support system.  In compare to two MUAP 
characterization systems presented in litera-
ture [7,11], the developed classifier system 
showed better accuracy and increased the 
classification accuracy of MUAP by at least 

Work
Classification

Accuracy
Approach Type Features Used

Pattichis [7] 79.5 MUAP analysis Time, frequency and time-frequency domains
Katis [11] 86.0 MUAP analysis Time domain
This work 91.0 MUAP analysis Time and time-frequency domains

Table 4: Comparison between two famous reported works and our work.

Table 3: Obtained performance indices by running proposed multi-classifier scheme on Rig-
shospitalet real EMG signals datasets.

Specificity Sensitivity
Total Accuracy

Myo Neuro Normal Myo Neuro Normal
88.6 82.0 94.0 86.0 100 80 90.01.5
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5%. The achieved results are promising and 
show that the developed system can assist 
with diagnosing, managing, and treatment 
of neuromuscular disorders.
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