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Introduction

In a normal brain, the blood flow is from arteries to veins through a 
capillary bed. In the case of Cerebral Arteriovenous Malformation 
(CAVM) condition, the normal blood flow is affected and there ar-

teries are directly connected to veins without a capillary bed, forming a 
tangle of abnormal blood vessels. The central part of the malformation 
consisting of tangled abnormal vessels is called ‘Nidus’ [1]. There is 
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ABSTRACT
Background and Objective: Cerebral Arteriovenous Malformation (CAVM) 
hemodynamic is disease condition, results changes in the flow and pressure level in ce-
rebral blood vessels. Measuring flow and pressure without catheter intervention along 
the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arterio-
venous Malformation patients. The vessel geometry in CAVM patients are complex, 
composed of varying diameters, lengths, and bifurcations of various angles. The varia-
tions in the vessel diameter and bifurcation angle complicate the measurement and 
analysis of blood flow features invasively or non-invasively.
Methods: In this paper, we proposed a lumped model for the bifurcation for sym-
metrical and asymmetrical networks in CAVM patients. The models are created using 
MATLAB Simulation software for various bifurcation angles. Each bifurcation angle 
created using electrical network- RLC. The segmentation and pre-processing of bifur-
cation vessels are implemented using adaptive segmentation. The proposed network 
address clinicians problem by measuring hemodynamic non-invasively. The method 
is applicable for any types of bifurcation networks with different bifurcation angles in 
CAVM patients.
Results: In this work, we constructed a mathematical model, measured hemody-
namic for 23 patients (actual and simulated cases) with 60 vessel bifurcation angles 
variations. The results indicate that comparisons evidenced highly significant correla-
tions between values computed by the lumped model and simulated mechanical model 
for both networks with p < 0.0001. A P value of less than 0.05 considered statistically 
significant. 
Conclusion: In this paper, we have modelled different bifurcation types and au-
tomatically display pressure and flow non-invasively at different node and at different 
angles of bifurcation in the complex vessel with help of bifurcation parameters, using 
lumped parameter model. We have simulated for different bifurcation angles and di-
ameters of vessel for various imaging modality and model extend for different organs. 
This will help clinicians to measure haemodynamic parameters noninvasively at vari-
ous bifurcations, where even catheter cannot be reached.
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very low pressure in the AVM; hence, a large 
amount of blood drawn into this. This causes 
lot of pressure built up in the blood vessels, 
especially in the veins. The risk of rupturing of 
the veins draining the malformation is high be-
cause veins cannot handle as much blood pres-
sure as that of arteries. The need for modelling 
is to help Doctors to take preventive steps and 
for early diagnosis for the risk of rupture and 
treatment planning for the AVM patients.

Figure 1 shows the AVM complex structure, 
which is very difficult and challenging to mod-
el bifurcations [2]. The researchers analysed 
vessels bifurcation for various organs based 
on the mechanical property of the blood flows, 
but some clinical parameters for modelling 
are not considered [3]. Hoogstraten studied 
the bifurcation angle and bifurcation analysis 
based on the radius and length of the vessel, 
but not considered angle variations [4]. The 
author Goubergrits investigated vessel geome-
try modelling for the carotid artery, to analyse 
various geometric parameters using mechani-
cal modelling [5]. In another study, the author 
Malve, analysed modelling of asymmetrical 
network, based on the Womersley numbers 

[6]. The literature shows symmetrical network 
modelling is available for the coronary artery, 
to model LAD and LCX based on the lumped 
parameter model [7]. The researchers studied 
various lumped network model for the analy-
sis, concentrating on the calculation of the 
bifurcation angle [8]. Ghasemalizadeh et.al, 
[9] analysed on the anatomical model for the 
blood flow in heart, the limitation is that the 
major assumptions included in the blood flow 
model concern the pressure radius relation-
ship, the radial velocity profile, and pressure 
loss at vessel bifurcations. Gijsen et al. [10] 
have produced a preliminary model, which 
indicates that blood vessel movement may 
have a significant effect on coronary blood 
flow. The author Smith [11] has analysed on 
the anatomical model for the blood flow in 
heart, the limitation is that the major assump-
tions included in the blood flow model con-
cern the pressure radius relationship, the radial 
velocity profile, and pressure loss at vessel bi-
furcations. Milan et al. [12] have produced a 
preliminary model, which indicates that blood 
vessel movement may have a significant effect 
on coronary blood flow. The effect of vessel 
movement limited by mechanical parameters 
in the mechanical model by determining the 
flow profile using, vessel movement relative 
to blood flow velocity. 

The author Murray [13], has showed that, 
ratio of the bifurcating vessel diameter (d1/
d2) ratio changes (increases/decreases) when 
the bifurcation angle varies. In literature, there 
exist relationship between the bifurcation an-
gle and ratio of the diameters, i.e. bifurcation 
angle is inversely proportional to the change 
in the branch diameter ratio.  However, there 
is no direct relationship between angle and 
lumped model networks as per the literature. 
The proposed model addresses the above 
limitations with creation of direct relationship 
with bifurcation angle, diameter and pressure 
measurement using electrical network. In this 
paper, we proposed the modelling for the seg-
ment of the bifurcation by navigating through 

 

Figure 1: AVM Complex Structure
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the complex vessels. The bifurcation is com-
bination of asymmetric and symmetric bifur-
cation based on the clinical parameters of the 
blood vessels and model output based on the 
segmented vessels.

Material and Methods
The methodology used to implement the bi-

furcation model for the blood vessel are as fol-
lows:

Pre-processing
The input image used is 2D/3D image of 

various imaging modality like Digital subtrac-
tion Angiography (DSA) and 3D-Rotational 
Angiogram [14]. The image is pre-processed 
using fast fourier transform (FFT) and image 
enhancement and smoothing filters applied to 
the image is performed, that helps to find the 
accurate distance and length of the vessels. 
[15-16].

Segmentation
The pre-processed image segmented using 

OTSU segmentation for drawn ROI (region of 
interest) [17-19]. We have segmented bifurca-
tion vessels near NIDUS for various frames 
based on adaptive segmentation [20].The seg-
mented bifurcation vessel diameters, length 
and bifurcation angles are calculated.

Electrical Model
The electrical model is based on the model 

was based on the principle of electrical net-
works -Kirchhoff’s voltage law (KVL) as 
shown in Table 1. Lumped models are equiv-
alent to simple electrical networks, where 
blood pressure represented by voltage and 
blood flow by amperage of the electrical cur-
rent through the network. The formation of 
lumped model using R-L-C elements is con-
structed using Windkessel model [21-22]. 
The three-element Windkessel model used to 
represent the pressure-blood flow relationship 
of regional circulation helps to capture the dy-
namics of the cerebral circulation.

The lumped parameter model derived from 
electrical circuit analogies where current (I) 
represents blood flow (cm3/s) and voltage (v) 
represents pressure (mmHg). Resistances (R, 
ohms) represent vascular resistances; capaci-
tor (C, microfarads) represents volume com-
pliance of the vessels that allows them to store 
significant amounts of blood. Windkessel 
models have advantages over other paramet-
ric models that they provide a simple model 
structure in terms of individual elements (R, 
C) of its electrically analogous circuit, fa-
cilitating the extraction and interpretation of 
physiological changes from the dynamic vari-
ation of each element. The diameter and length 
variation determines design of network forma-
tion such as R-R, R-L, R-C, RLC combina-
tions. This helps to simulate the exact vessel 
and bifurcation modelling construction [23]. 
The electrical network updated according the 
diameter and length of the vessel bifurcations 
[24] as shown in Table 2. The electrical net-
work created based on the vessel diameter and 
length, the equations 1 and 2 are formed by 
applying KVL for RLC and RC is as follows:

1( ) ( )  divi t RI t L dt
dt c

= + + ∫           (1)

2( )  0( )
2

dv dvvi t RC LC v t
dt dt

= + +    (2)

The equations are solved using ode-4 Run-
ge-Kutta method [25-26].

Electrical Analogy Mechanical Analogy
Current Flow
Potential Pressure

Capacitance Young Modulus
Resistance Poiseuille Coefficient

Charge Area

Table 1: Electrical Analogy 
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Symmetric Network Formation
Bifurcation 

angle
d1/d2 
ratio

D0 
(cm)

d1 
(cm)

d2 
(cm) Network for d0 Network for d1 Network for d2 Combination of 

Networks
Original Input

75 1 2 1 1
   

 
Simulated Input’

45 3 2 3 3
  

   
 

105 0.5 2 2 2
   

 

Asymmetric Network Formation
Bifurcation 

angle
d1/d2 
ratio

D0 
(cm)

d1 
(cm)

d2 
(cm) Network for d0 Network for d1 Network for d2 Combination of 

Networks
Original Input

75 1 2 1 1
C

R

   
   

Simulated Input

45 3 2 3 1
 

C

R

 R  
 

 

105 2 2 1 0.5
C

R

    
 

10 2.5 2 5 2
C

R

   R  
C

R

 R  

Table 2: Electrical Network components variations

146



J Biomed Phys Eng 2017; 7(2)

www.jbpe.org CAVM Bifurcation Modeling

Results
The lumped model implemented using 

MATLAB –SIMULINK. The input pressure 
at feeding arteries simulated using electrical 
parameters and the results are validated us-
ing Mechanical outputs [27]. The clinical pa-
rameters are converted to voltage and current, 
simulated with RLC networks, the part of the 
vessel analysis implementation by electrical 
network is shown in Figure 2. We have simu-
lated for the symmetrical and asymmetrical 
Bifurcation angles variation in the Vessels and 
our analysis shows that electrical network var-
ied for different bifurcation angles that help to 
determine the pressure and flow parameters of 
AVM hemodynamic non-invasively. The sim-
ulated angles are as per the bifurcation angles 
of the various locations of cerebral vasculature 
bending angles. The simulation performed for 
various signal combinations like square, pulse 
and simulated pressure waveforms [28-29].

Asymmetric Network
The bifurcation analysis for the asymmetric 

network based on the nodes unequal diame-
ter ratio and angle variations. The bifurcation 
model changed based on the diameters length 

and ratio as well as on the angles between the 
parent and child branch. The ratio differences 
have a huge impact, which affects the electri-
cal network of the bifurcation model. Figure 3 
shows the asymmetrical network of cerebral 
AVM vessel structure. It shows vessels P1 as 
the parent vessels, which bifurcate to vessels 
into various child branches – P2, P3, and P4. 
The P4 branch in turn bifurcates to sub-branch 
as P5 vessel. For each vessel the diameter and 
length is calculated and angle between the par-
ent and child branch is calculated. The elec-
trical network simulated for each vessel using 
vessel diameter, length and angles between the 
parent and child vessel. The complete network 
created for the given vessel by parallel com-
bination of T and PI network of vessels net-
works- ((P1 + || (P2 ||P3 || (P4 || P5)). The mea-
sured diameter for Vessel P1 is 0.93cm and 
corresponding network elements are RL with 
values R-6.17, L-2.5, Vessel P2 is of diameter 
1.19cm, and its corresponding network is RL 
with values, R-1.8, L-1.89. The measurements 
of Vessel P3 & P4 are 0.87cm &0.36 cm, with 
its corresponding network RL values, R-6.3; 
L-2.94; R-96.59 L-8.571 respectively. Table 3 
denotes the results of node pressure measure-
ments for various signal combinations.

Bifurcation 
angle

d1/d2 
ratio

D0 
(cm)

d1 
(cm)

d2 
(cm) Network for d0 Network for d1 Network for d2 Combination of 

Networks

150 9 2 9 1
C

R

 R    
R  

180 0.11 2 1 9
C

R

    
R  

L

R

R

 

90 0.33 2 2 6
C

R

 C

R

 
R   

135 2.5 2 10 4
C

R

 R  R  
C

R R

R  
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Angle P1-P2 = 84.32 

 
 
 
 
 
 

Angle P1-P2 = 
84.32 

P1 - 0. 93cm 

P2 - 1.19cm 
cm 

P3– 0.87 cm 
P4– 0.36 cm 

P5 – 0.15cm 

Figure 3: Asymmetrical network of cerebral AVM vessel structure

 

 Figure 2: Implementation of Bifurcation Angle
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Input

voltage

P1– Node
output

P2– Node
output

P3– Node 
output

P4– Node 
output

P5– Node 

output

0.6
0.55
Mechanical -0.52
Accuracy –5 %

0.5
Mechanical -0.48
Accuracy –4 %

0.53
Mechanical -0.5
Accuracy –5.6 %

0.49
Mechanical -0.467
Accuracy –4.6 %

0.42
Mechanical -0.389
Accuracy –7.3 %

1.5
1.34
Mechanical -1.3
Accuracy –3 %

1.3
Mechanical -1.23
Accuracy –5.3 %

1.32
Mechanical -1.278
Accuracy – 3.1 %

1.27
Mechanical -1.223
Accuracy – 3.7 %

1.21
Mechanical -1.1
Accuracy – 9 %

2.0
1.8
Mechanical -1.7
Accuracy – 5.5 %

1.7
Mechanical -1.58
Accuracy - 7 %

1.72
Mechanical -1.62
Accuracy – 5.8 %

1.68
Mechanical -1.6
Accuracy – 5 %

1.6
Mechanical -1.49
Accuracy – 6.8 %

0.4
0.3
Mechanical -0.21
Accuracy - 3 %

0.25
Mechanical -0.2
Accuracy -2 %

0.27
Mechanical -0.257
Accuracy – 1.02%

0.23
Mechanical -0.217
Accuracy – 5.6%

0.19
Mechanical –0.172
Accuracy – 9.4%

2.2
2.1
mechanical(2.02)
accuracy -3.8%

1.92
mechanical(1.89)
accuracy -1.5%

1.98
(mechanical - 1.958)
Accuracy-1.11 %

1.94
(mechanical - 1.898)
Accuracy-2.1 %

1.77 (small branch)
(mechanical -1.54)
Accuracy -9.4 %

1.2
1.08
mechanical(1.02)
accuracy -5.5%

1.04
mechanical(1)
accuracy -3.8%

1.07
mechanical(1.03)
accuracy -3.7%

1.01
mechanical(0.98)
accuracy -3.1%

0.97
mechanical(0.90)
accuracy -7.2%

1.1
0.99
mechanical(0.96)
accuracy -3.0%

0.95
mechanical(0.92)
accuracy -3.15%

0.98
mechanical(0.94)
accuracy -4.0%

0.94
mechanical(0.90)
accuracy -4.2%

0.895
mechanical(0.836)
accuracy -6.5%

0.8
0.76
mechanical(0.746)
accuracy -3.9%

0.72
mechanical(0.702)
accuracy -2.5%

0.73
mechanical(0.71)
accuracy -2.8%

0.71
mechanical(0.689)
accuracy -2.9%

0.63
mechanical(0.601)
accuracy -6.8%

1.0
0.95
mechanical(0.935)
accuracy -1.5%

0.93
mechanical(0.911)
accuracy -1.0%

0.91
mechanical(0.892)
accuracy -2.0%

0.88
mechanical(0.852)
accuracy -3.1%

0.815
mechanical(0.756)
accuracy -7.2%

1.4
1.25
mechanical(1.23)
accuracy -1.6%

1.2
mechanical(1.189)
accuracy -1%

1.23
mechanical(1.204)
accuracy -2.11%

1.20
mechanical (1.75%)
accuracy -2.11%

1.13
mechanical(0.66)
accuracy -4.2%

0.7
0.65
mechanical(0.63)
accuracy -3.07%

0.6
mechanical(0.581)
accuracy -3.16%

0.62
mechanical(0.596)
accuracy -3.8%

0.58
mechanical(0.556)
accuracy -4.1%

0.53
mechanical(0.496)
accuracy -6.4%

Table 3: Results of node pressure measurements for Asymmetrical networks using various sig-
nal combinations
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Symmetric Networks
The symmetrical networks are networks that 

have branch angles are equal and of same di-
ameter. The symmetric bifurcation model cre-
ated based on the diameters length and ratio as 
well as on the angles between the parent and 
child branch. Figure 4 shows the symmetri-
cal network of cerebral AVM vessel structure.  
The results of node pressure measurements 
for various input signal combinations for sym-
metrical networks shown in Table 4. For simu-
lation purpose, we change the bifurcation an-
gle of 75 to 45 degrees (decrement of angle), 
results in the increase in the diameter ratio, 
results change in electrical network, and leads 
to change pressure variations for each part of 
the bifurcation angle change.

Statistics
The electrical model validated with clinical 

outputs supported by the Clinicians, the pres-
sure values at bifurcations nodes validated 
with model outputs as voltages. We have also 
validated our results with mechanical simula-
tion using ANSYS FLUENT v12 software for 
various simulated inputs. Data expressed as 
mean +/- standard error of the mean (SEM). 

Correlations between values derived from the 
new method and the classical methods were 
evaluated using least squares and systematic 
bias was calculated as the mean of the dif-
ference between values derived from each 
method. The accuracy of the identification of 
parameters evaluated using the difference of 
1–R2. (R2 is the square of the multiple corre-
lation coefficient of the regression). Changes 
in hemodynamic were evaluated by a repeat-
ed-measures analysis of variance. A P value of 
less than 0.05 considered statistically signifi-
cant. Accuracy in percentage across various 
node outputs for various signal combinations 
for asymmetric networks and symmetric net-
works are examined.

Discussion
The development and integration of a CAVM 

complex vessel is a challenging task. The ves-
sels have lot of complex geometry structures 
with different types of bifurcations inside in 
asymmetric/symmetrical networks. The pro-
posed model helps to simulate the physiologic 
and hemodynamic variations of the CAVM 
patients. 23 CAVM patients are analysed using 
our simulated model with 60 bifurcations of 
symmetrical and asymmetrical networks. The 
pressure and flow parameters are measured for 
four bifurcation nodes for each cases, totally 
60 measurements are validated with clinical 
/mechanical simulation. The results are vali-
dated with clinical invasive measurements and 
through the mechanical simulation. The accu-
racy of the results is shown in Table 4. All sta-
tistical analyses were performed using SPSS 
for Windows (SPSS Inc., Chicago), version 17 
[30].We have also simulated the bifurcation 
analysis  for symmetrical and asymmetrical 
network using the various signal combinations 
as input source to replicate the actual clinical 
scenarios of pressure variations in CAVM pa-
tients by simulated pressure waveforms and 
by mixing of the signals.

In the asymmetrical network analysis, the 
accuracy analysis shows that observation is 

Figure 4: Symmetrical Network showing Par-
ent vessel – P1, vessel diameter – 0.8cm

 
 

P1 – 0.8cm 
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Input voltage P1 – Node output P2 – Node output P3 – Node output

0.6
0.55
Mechanical -0.52
Accuracy –5 %

0.51
Mechanical -0.49
Accuracy –4.08 %

0.51
Mechanical -0.49
Accuracy –4.08 %

1.5
1.34
Mechanical -1.3
Accuracy –3 %

1.3
Mechanical -1.24
Accuracy –4.6 %

1.3
Mechanical -1.24
Accuracy –4.6 %

2.0
1.8
Mechanical -1.7
Accuracy – 5.5 %

1.74
Mechanical -1.68
Accuracy – 3.4 %

1.74
Mechanical -1.68
Accuracy – 3.4 %

0.4
0.3
Mechanical -0.21
Accuracy - 3 %

0.25
Mechanical -0.21
Accuracy -1.9 %

0.25
Mechanical -0.21
Accuracy -1.9%

2.2
2.1
mechanical(2.02)
accuracy -3.8%

1.92
mechanical(1.9)
accuracy -1.04%

1.92
mechanical(1.9)
accuracy -1.04%

1.2
1.1
mechanical(1.02)
accuracy -5.5%

1.07
mechanical(1.01)
accuracy -5.6%

1.07
mechanical(1.01)
accuracy -5.6%

1.1
0.99
mechanical(0.96)
accuracy -3.0%

0.95
mechanical(0.9)
accuracy -5.12%

0.95
mechanical(0.9)
accuracy -5.12%

0.8
0.76
mechanical(0.746)
accuracy -3.9%

0.70
mechanical(0.66)
accuracy -5.7%

0.70
mechanical(0.66)
accuracy -5.7%

1.0
0.95
mechanical(0.935)
accuracy -1.5%

0.73
mechanical(0.701)
accuracy -3.9%

0.73
mechanical(0.701)
accuracy -3.9%

1.4
1.25
mechanical(1.23)
accuracy -1.6%

1.2
mechanical(1.149)
accuracy -3.5%

1.2
mechanical(1.149)
accuracy -3.5%

0.7
0.65
mechanical(0.63)
accuracy -3.07%

0.6
mechanical(0.571)
accuracy -5%

0.6
mechanical(0.571)
accuracy -5%

Table 4: Results of node pressure measurements for Symmetrical networks using various signal 
combinations
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that for the small  vessel diameter less than  
1cm,  the node pressure measurements has 
the  deviation  is in the range of  5-10%, and  
for the  vessel diameter more than 1.5 cm, the 
analysis is that deviation  is the range below 
5%. Similarly, for the symmetrical networks, 
the same behaviour is observed. We have sim-
ulated for various bifurcation branches of one 
to five child nodes from parent nodes. Our re-
sults shows bifurcation branch pressure mea-
surements of 60 branching vessels with node 
outputs for 30 input signal combinations. The 
hemodynamic measurements are calculated 
non-invasively at each bifurcation of the ves-
sels, which is the unique advantage of bifur-
cation modelling, where even catheter can-
not navigate to find pressure at various small 
branches or bifurcations.

Conclusion
In this paper, we have proposed Bifurcation 

modelling of the AVM based on the math-
ematical model to define bifurcation analysis 
in a vessel structure of symmetrical and asym-
metrical bifurcation networks and further 
assess its role. We have provided a rigorous 
approach for electric circuits whose physical 
constants (R, L and C), are parameterized on 
the standard length of the vessel using normal 
in order to recover correct values for pressure 
or flow-rate at Bifurcations for AVM patients. 
The Bifurcation angles simulated for various 
types of networks and pressure measurements 
are calculated non-invasively for symmetrical 
and asymmetrical networks. With the help of 
the clinical data, we are able to validate our re-
sults with invasive measurement and with the 
simulated Mechanical results as cross-valida-
tion analysis. 23 AVM patients were studied 
with evaluation of 60 bifurcation vessels loca-
tions as node point of symmetrical and asym-
metrical networks, the node measurements 
were evaluated with accuracy of 93%, and 
computed p-value is smaller than the signifi-
cance level 0.05. Our study acts as a natural 
link between simulation and clinical scenario. 

Such an integrative approach should possibly 
lead to a comprehensive understanding of the 
regulatory and management of cerebral neuro-
vascular abnormality analysis. Our  accuracy 
analysis shows that observation is that for the 
small  vessel diameter less than  1cm,  the 
node pressure measurements has the  devia-
tion  is in the range of  5-10%, and  for the  
vessel diameter more than 1,5 cm, the analy-
sis is that deviation  is the range below 5%. 
From a medical viewpoint, it provides us new 
insight into the role of haemodynamic analy-
sis on the neurovascular vessel analysis. This 
work can be extended to develop more com-
plex geometric bifurcations vessels analysis 
of the various parts of CAVM. In summary, 
a novel approach to determining access flow 
and pressure measurements by non-invasively 
at various bifurcation nodes and the feasibility 
of determining access volume flow indepen-
dent of access geometry is examined.
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