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Introduction

Attenuation correction (AC) is an important step in the analysis of 
PET images. In current PET/CT systems, the attenuation coeffi-
cients are calculated directly from CT images; this one provides 

a good separation between the bone and other tissues, but unfortunately 
the patient’s body is exposed to additional radiation. PET/MRI systems 
do not have that drawback, but they cannot distinguish between some 
tissues, since bone and air show the same signal on MR images. In ad-
dition, magnetic resonance imaging (MRI) cannot precisely define the 
attenuation coefficients of tissues [1]. 

Atlas-based methods are mostly used for estimating pseudo-CT using 
conventional MRI sequences. However, these techniques suffer from 
the local minima of the non-rigid deformation energy function leading 
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ABSTRACT
Background: One of the challenges of PET/MRI combined systems is to derive 
an attenuation map to correct the PET image. For that, the pseudo-CT image could be 
used to correct the attenuation. Until now, most existing scientific researches construct 
this pseudo-CT image using the registration techniques. However, these techniques 
suffer from the local minima of the non-rigid deformation energy function which leads 
to unsatisfactory results.
Objective: We propose in this paper a new approach for the generation of a pseu-
do-CT image from an MR image. 
Materials and Methods: This approach is based on a dense stereo match-
ing concept, for that, we encode each pixel according to a shape related coordinates 
method, and we apply a local texture descriptor to put into correspondence pixels 
between MRI patient and MRI atlas images. The proposed approach was tested on a 
real MRI data, and in order to show the effectiveness of the proposed local descriptor, 
it has been compared to three other local descriptors: SIFT, SURF and DAISY. Also it 
was compared to registration method.
Results: The calculation of structural similarity (SSIM) index and DICE coeffi-
cients, between the pseudo-CT image and the corresponding real CT image show that 
the proposed stereo matching approach outperforms a registration one. 
Conclusion: The use of dense matching with atlas promises good results in the 
creation of pseudo-CT. The proposed approach can be recommended as an alternative 
to registration techniques.
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to unsatisfactory results, and there is a non-
negligible discrepancy in terms of quality 
of matching between non-rigid registrations 
techniques [2]. To overcome these issues, a 
new prediction of pseudo-CT images from 
a given MR image is proposed in this paper. 
This approach is based on a stereo matching of 
pairs of patient’s MRI and MRI atlas images. 

After discussing related work, we introduce 
in section 2, our new dense stereo matching 
approach based on the shape related coordi-
nates method to encode pixels, and on a local 
texture descriptor to put pixels into correspon-
dence. In next sections, we describe other de-
scriptors and the data set used in this work. 
Then, we present a quantitative and qualitative 
evaluation of our approach.

In order to obtain attenuation correction 
(AC) maps from MRI for PET/MRI systems, 
many studies have been reported. In general, 
there are two main methods to correct the at-
tenuation: the segmentation-based methods 
and the atlas-based methods.

 In segmentation-based methods, MRIs are 
divided into three classes (bone, soft tissue 
and air) after that, the attenuation coefficients 
at 511 kev corresponding to the biological tis-
sues of each class, are assigned to the voxels 
belonging to that class. Unlike atlas-based 
methods, the main advantage of this method 
is its ability to give an interesting result even 
if there were anatomical differences between 
subjects (patients). However, the most chal-
lenging issue in this particular context is that 
direct bone segmentation, using MR image 
intensities, is a very difficult task [3]. A par-
ticular pulse sequence such as the ultra-short 
echo time (UTE) has been proposed recently 
in order to distinguish between bones and air 
cavities [4, 5]. These authors have obtained 
an interesting result; nevertheless, they show 
that the classification of the bone using UTE is 
still subject to an over- or under-segmentation 
of bony structures. Some recent studies have 
exploited the information contained in PET 
emission data as well as the anatomical infor-

mation from MRI, to estimate the attenuation 
maps. They have been mainly suggested to use 
the information from the time of flight (TOF) 
[6, 7]. In general, we can conclude that the 
segmentation methods have the disadvantage 
of just providing discrete AC maps.

In atlas-based methods, the used atlas is a set 
of MRI/CT or MRI/PET images of the same 
subject. These methods consist of registering 
the MRI images atlas to MR image of the pa-
tient for whom the attenuation map must be 
derived. The resulting spatial transformations 
are then applied to all corresponding images in 
the CT atlas. Thereafter, a pseudo-CT image 
is generated, where each voxel is obtained as 
an average of the intensities of the registered 
CT atlas images. The pseudo-CT is then used 
for the correction of attenuation. These meth-
ods have the advantage of providing continu-
ous values in addition to robustness, because 
they are less affected by the acquisition arte-
facts such as movement. However, the disad-
vantage of these methods is the possibility of 
making an erroneous representation of differ-
ent pathological anatomical regions of the at-
las image [8].

The first atlas approaches used PET template 
as the atlas [9, 10]. Hofmann and Al [1] were 
the first to have developed an atlas approach 
with CT images, they proposed to combine the 
atlas approach and pattern recognition, con-
sequently, for each voxel in the image of the 
patient, a pseudo-CT value based on the near-
est voxels of images in the atlas database, is 
predicted using a Gaussian process regression. 
This one is considered as the first original ap-
proach which offers a significant improve-
ment of the simple registration methods. Sch-
reibmann [11] proposed an alternative method 
for constructing a pseudo-CT; however, they 
obtain significant errors on bone structures in 
the sinus area which presents great anatomi-
cal variability. Subsequently, several research 
works have been conducted in order to im-
prove the quality of pseudo-CT, and to avoid 
local registration errors. The authors in [12] 
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have recently proposed an improved Hof-
mann’s method for generating a pseudo-CT in 
the case of the study of whole body images.  In 
[13], the authors developed a pseudo-CT from 
the fusion of special sequences of MRI, UTE 
and FLASH, but they did not give a quantita-
tive evaluation of their approach. In [14], the 
authors proposed a fast pseudo-CT volume 
generation, using a group-wise patch-based 
approach, along with an MRI-CT atlas dic-
tionary, for each voxel of the input MR image, 
the similarity between the patch containing 
that voxel and the patches of all MRI imag-
es existing in the database is calculated. The 
pseudo-CT image is obtained as a weighted 
linear combination of CT values. We notice 
that this method does not use the atlas-based 
registration technique, the problem of homo-
geneity of intensities in MR images penalizes 
that technique, because it is based on the use 
of pixel patches. More recent studies have 
used multi-atlas methods to improve the qual-
ity of pseudo-CT images, these methods are 
based on the fusion of results obtained by the 
registration of several atlases [15, 16].

Image-registration methods often do not 
yield satisfactory results, because of local 
minima of the no-rigid deformation energy 
function [1]. To overcome this issue, we pro-
pose in this study, a new approach to create a 
pseudo-CT, it is based on a stereo correspon-

dence concept in order to provide an increased 
robustness to handle the prediction local de-
fects in registration.

Material and Methods

Principle of the Approach
Our proposed approach uses an atlas without 

registration. It is based on a stereo correspon-
dence concept to find each corresponding pairs 
of pixels.  Stereo matching methods are wide-
ly used in digital image processing field, we 
can cite for example image alignment, object 
recognition, remote sensing, motion tracking, 
indexing and content-based search [17-21]. A 
proposed method consists of finding the points 
of interest (salient points or vertices) in both 
images, each point is indicated by a vector 
(local descriptor), and an algorithm is used to 
find the corresponding pairs of points from the 
two images.

Compared with other types of imaging, im-
ages in MRI, CT or PET have got two specific 
properties: the first one is that these images can 
be in the same space (space of coordinates), 
and the second one is that their content siz-
es are approximately equal (Figure 1). These 
properties allow us to reduce the field of corre-
spondence search to a local one, which is only 
around the position of the point of interest, and 
not in the entire image. Thus, our approach is 

Figure 1: Left: MR image of patient 1, right: MR image of patient 2, middle: the two images 
juxtaposed.
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based on the assumption that the pixel and its 
homologous (called corresponding point) are 
located roughly at two similar positions with 
the same spatial coordinates. So, grateful to 
this local search specificity and the local de-
scriptor (the vector used to describe the pixel), 
it is possible to match each pixel of the first 
image to one pixel of the second image.

If this approach is used with an atlas (MR 
images + CT images), it becomes possible to 
create a pseudo-CT image from an MR image 
of a patient. The proposed method uses a local 
correspondence search process with an atlas, 
in order to spread the intensities of the atlas to 
the relevant MR image.

In the remainder of this article, we use the 
following notations:

• AMR: Atlas Magnetic resonance image
• ACT: Atlas CT image
• PMR: Patient magnetic resonance image
• PPC: Patient pseudo-CT image 
A local descriptor should be calculated for 

all pixels of both images PMR and AMR.Take a 
pixel p in image PMR, defined by the descriptor 
vector V. Consider a search window of pixels 
[q1...qk] in the image AMR of the atlas. These 
pixels are defined by the descriptor vectors 
[W1...Wk]. This search window is around the 
same position of pixel p. Consider a pixel q in 
the search window, and defined by the vector 
W. This pixel corresponds to pixel p, when it 
meets the following formula (1):

W = arg min (Dist (V, [W1...Wk]))         (1)

A look-up table is built by calculating the 
matches for all pixels in image PMR. This table 
is used with the CT image atlas ACT to build the 
pseudo-CT PPC. The intensity values in PPC are 
deduced using the formula (2):

PMR(x,y) = AMR(x’,y’)  PPC(x,y) = ACT(x’,y’)   (2)

Shape-related Coordinates (SRC)
In the remainder of the article, the shape is 

the organ shown in the image. A new concept 
for encoding pixel positions in an image is de-

fined in the present work. The principle is to 
encode the coordinates of a pixel within the 
shape, with the objective to have a relative po-
sition at the centre of the shape. This centre 
is the point from which a circle can be drawn 
around that shape. In the present article, this 
concept concerns images of the head.     

Consider a pixel p with the coordinate (X,Y). 
The new shape-related coordinates (XSRC,YSRC)  
are calculated (eq.3):

0

0

 –  X *100;
 

Y –    *100;
LV

SRC

SRC

XX
LH

YY

  =   


  =   

      (3)

Where (X0,Y0) are the coordinates of the cen-
tre of the shape, LH is the distance from the 
centre of the shape to the horizontal bound-
ary of the shape, and LV is the distance from 
the centre to the vertical boundary of the shape 
(Figure 2).

Figure 2: The principle of shape-related co-
ordinates
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Figure 3 shows a set of pixels in MR images 
of two subjects, each pixel in the first image 
is connected to the pixel in the other image 
which has the same SRC coordinates. We note 
that the pixels that are in the same anatomi-
cal areas in the two images are connected, al-
though the differences in the size and shape of 
the two heads. This encoding method (SRC) 
allows a first mapping between two images.

To find the exact matching of a pixel in the 
left image, just search around the pixel (with 
the same SRC coordinates) in the other right 
image. SRC method reduces the search field 
at the nearest neighbourhood, which promises 
a better match. The use of SRC allows us to 
achieve a guided local search.

Local Texture Descriptor for Match-
ing (LTEMA)

Several local descriptors have been devel-
oped to put into correspondence pairs of im-
ages. A descriptor is used to identify each 
pixel in the image; it defines and distinguishes 
the pixels in the local neighbourhood. We use 
LTEMA descriptor in our proposed approach.

In magnetic resonance imaging (MRI), bone 
and air produce no signal, so additional infor-

mation is needed to distinguish the two classes, 
i.e. bone and air. For that, we propose to use a 
texture analysis like LTEMA to define a set of 
measurements. We will show in the following 
that it allows an interesting performance.

We notice that the property of texture as an 
important characteristic for image analysis has 
been proved by a large majority of research-
ers. In [22], the authors noted that some tex-
ture features are very robust to changes in 
MRI acquisition settings, invariant to changes 
in image resolution, and unaffected by the cor-
ruption of the MRI image by magnetic field 
inhomogeneity. Moreover in [23], the authors 
concluded that the texture features extracted 
from MR images (sequence T1) from different 
MRI devices are statistically very similar for 
the same type of tissue. 

Therefore, the texture properties should be 
used instead of the values of the neighbour-
hood. Since we have to calculate a descriptor 
for each pixel in the image, we have chosen 
to use measurements easy to calculate. First 
order textural properties are selected; these 
are statistics that are calculated from the pixel 
values such as variance; they do not include 
neighbourhood relations among the pixels.  

Figure 3: Matches between points with the same shape-related coordinates
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Our method uses three texture measurements: 
• Mean: it is a measure of the brightness of 

pixel Pr,s located at position (r,s).
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• Standard deviation: it is a measure of con-
trast
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• Entropy: it is a statistical measure of ran-
domness
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Where p(b) = N(b)/n2 for {0 ≤ b ≤ L-1}, 
where L is the number of different values 
which pixels can adopt, N(b) is the number of 
pixels of amplitude b in the pixel window of 
size (n × n).

To extract the most significant features of 
MR images, the textural properties (mean, 
standard deviation and entropy) are calculated 
from different neighbourhood window sizes. 
For the neighbourhood of a pixel in MR imag-
es, eight windows were selected, and the pixel 
is a corner, beside two windows centred on the 
pixel as shown in Figure 4. The normalized 
vector contains a total of 30 characteristics (3 
measurements * 10 windows).

In MR images, we faced a problem of the 
signal heterogeneity. Indeed, similar tissues 
do not give the same signal intensity, and each 
tissue does not have the same intensity. Our 
descriptor contains two types of data which 
were used to describe the pixel with the mini-
mum of confusion. The first data include the 
information of close neighbourhood (windows 
centred on the pixel, with sizes 3 * 3 and 5 * 
5), and the second are the information on the 
distant neighbourhood (windows of corners, 

with sizes 10 * 10 and 12 * 12). We mention 
that these values are obtained from a set of 
tests intended to determine the optimum val-
ues; the objective is to introduce one descrip-
tor able to describe a pixel in both near and 
distant neighbourhoods. Therefore, if there is 
confusion with the close data (which is often 
the case with the problem of heterogeneity in 
MR images), the information in the distant de-
scription may help to eliminate that confusion. 
This descriptor was used for the segmentation 
of bone structures in a previous study [24].

Several local descriptors have been devel-
oped in a stereo matching process and some 
descriptors were tested in order to define the 
pixels in MR images. In this section, the cho-
sen descriptors in this paper are introduced in 
the following:

─ SIFT (Scale-Invariant Feature Transform): 
it is one of the oldest local descriptors, it uses 
a vector having 128 dimensions to describe a 
point [25].

─ SURF (Speeded-Up Robust Features): this 
local descriptor is similar to SIFT. The main 
advantage of SURF over SIFT is its process-
ing speed, because SURF uses a vector having 
only 64 dimensions [26].

─ DAISY is a new local descriptor, it is in-
spired from previous descriptors, and it can be 
calculated more efficiently in a dense match-
ing case. Its fast computational time results 
from the replacement of the weighted sums, 

Figure 4: Distribution of used neighbour-
hood in LTEMA
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used by previous descriptors, by the sum of 
convolutions [27].

Main Steps of the Approach
• Algorithm: Construction of a pseudo-CT
• Input:
	 • AMR: MR Image atlas
	 • ACT: CT Image atlas
	 • PMR: MR Image patient
	 • k: number of neighborhood search
• Output:
	 • PPC: pseudo-CT image
• Start:
• L = length of PMR
• C = width of PMR
• Calculate the shape-related coordinates of 

all pixels in the image PMR 
• Calculate the shape-related coordinates of 

all pixels in the image AMR 
• Calculate descriptors [V1,1...VL,C] of all pix-

els in the image PMR
• Calculate descriptors [W1,1...WL,C] of all 

pixels in the image AMR
• % Access to all pixels using shape-related 

coordinates
• For x = 1 to L
	 • For y = 1 to C
	 • D = []   % initialization of table dis-

tances between descriptor vectors
	 • % browse a neighbourhood in e AMR
	 • For i = (x – k)  to  (x + k)
		  • For j = (y-k) to (y + k)
		  • D[i,j] = distance (Vx,y,Wi,j)   % cal-

culate the distance
		  • End for
	 • End for
	 • [x’,y’]=Min (D)     % Select the candi-

date P(x’,y’) with minimum distance
	 • Pseudo CT [x, y] = Act [x’, y’]
	 • End for
• End for
• % A median filter is applied to the resulting 

image to harmonize intensities.
• Median_Filter (PseudoCT)
• End.

Results

Data Set
Our method was applied on MRI data of a 

patient’s brain. These data are obtained from 
the Vanderbilt database, called the Retrospec-
tive Image Registration Evaluation Project 
(RIRE). These datasets are now available 
as open-access data [28]. In this database, 
T1-weighted MR data were obtained using 
a Magnetization Prepared Rapid Gradient 
Echo (MP-RAGE) sequence. This is a quick 
gradient-echo technique in which a prepara-
tion pulse is applied before the acquisition 
sequence to enhance contrast. The MR data 
dimensions were 256 x 256 x 128 with an 
average resolution of 0.98mm x 0.99mm x 
1.484mm. The corresponding CT scans had a 
3mm slice thickness with slice dimensions 512 
x 512 with an average resolution of 0.419mm 
x 0.419mm, the number of slices for each vol-
ume varied between 42 and 49.

Performance Assessment Metrics
The index of Structural Similarity (SSIM) 

is used as an evaluation measurement. SSIM 
measures the similarity between two images. 
It has been shown that SSIM is better suited 
than the traditional methods such as MSE and 
PSNR [29].

Dice similarity index (DSI) was also used 
to measure the quality of predictions of the 
three major classes of tissue, namely bone, 
voids and other tissues. DICE aims to quantify 
the intersection of our results with the ground 
truth masks [30]. The Dice similarity index is 
calculated as follows (eq7):
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A B

A B

M M
D

M M
=

+
∩   (7)

Where MA is the result mask, and MB is the 
ground truth mask. 

Note that the truth mask is obtained by 
thresholding the real CT images, and the result 
mask is obtained by thresholding the pseudo-
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CT images. Tissue classes were obtained by 
thresholding CT images and pseudo-CT (HU 
= Hounsfield units) [31]:

- Air: < -500 HU
- Soft tissue: [-500; 300] HU
- Bone: > 300 HU

Qualitative and Quantitative Re-
sults

It should be noted that the proposed method 
is evaluated without the need for a pre-pro-
cessing step. First to construct our atlas, CT 
images were registered to the corresponding 
MR images using SPM [32]. Secondly, several 
correspondence search windows were tested to 
adjust the proposed method. In our database, 
the value k = 7 was found as the optimum val-
ue, i.e. a neighbourhood window of 14 * 14 
pixels. This value was used in the following 
tests, and the different descriptors were tested 
for the construction of pseudo-CT images.

Our approach proposes a new way for the 
atlas use and has been compared to a regis-
tration method. To check the quality of our 
proposed approach compared to other reg-
istration methods, Elastix was used as a reg-
istration tool [33]. As all classical methods 
based on atlas use for creating pseudo-CT, a 

rigid transformation was applied followed by 
a non-rigid transformation for the registration 
of the patient’s MRI image with the MRI atlas 
image, then these same transformations were 
applied to CT Atlas image in order to have a 
pseudo-CT by registration. The average val-
ues of SSIM and DICE calculated for all data 
are presented in Table 1. Figure 5 shows the 
qualitative results.

Discussion
A quantitative and qualitative evaluation of 

our approach is presented in this article. We 
notice that the intensities of the pseudo-CT 
images obtained (the results) are computed 
with continuous values (Hounsfield unit). A 
proposed approach shows that the use of a ste-
reo correspondence technique with an atlas is 
much better than the classical registration ap-
proach (Table1), the choice of the appropriate 
descriptor is also required. Compared to other 
descriptors, our proposed LTEMA descriptor 
gives the best results, it allows the best identi-
fication of bone structures and voids. 

In addition, LTEMA descriptor allows a 
good discrimination in local search matches. 
SIFT comes in the second position.  However, 
SURF and DAISY descriptors give the poor-

Figure 5: Test of different descriptors. From left to right: MRI patient image,  corresponding real 
patient CT image, pseudo CT image by registration method, pseudo-CT image by the proposed 
method, with the descriptors  LTEMA ,SIFT, SURF, and DAISY.
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est results because they are not discriminat-
ing in non-salient regions (lines and texture 
regions). The bad results of SURF are due 
to its reduced dimensions compared to SIFT. 
Unlike SURF, DAISY is a descriptor designed 
for a dense matching case but it does not seem 
suitable for MR images. DAISY descriptor is 
probably penalized by the nature of intensities 
in MR images. From Figure 5, it can be seen 
that our descriptor LTEMA is better suitable 
for a dense stereo matching in MR images. 

In Figure 6, we notice the differences in 
bone thickness between the actual CT image 
and the Pseudo-CT resulting from registra-
tion and from the descriptor LTEMA. When 
the registration technique changes the shape 

of the atlas to conform to the shape of the pa-
tient’s image, without taking into account the 
local difference between the two images, our 
method with LTEMA descriptor can recognize 
that difference, because it compares the values 
of all pixels. This leads to a better estimation 
of the thickness of bony structures.

The purpose of the construction of a pseudo-
CT is not only in its visual aspect, but in its use 
for CA. The best results were obtained in the 
images of the upper part of the skull, the aver-
age DICE value of bone structures is 0.774. It 
should be noted that the quality of the results 
depends on the atlas images used.

Pseudo-CT Generation Approach from MRI

REGISTRATION LTEMA SIFT SURF DAISY
SSIM 0.685 0.721 0.708 0.608 0.606

DICE AIR 0.320 0.400 0.230 0.072 0.063
DICE SOFT 0.932 0.937 0.928 0.867 0.863
DICE BONE 0.760 0.774 0.752 0.360 0.202

Table 1: Test results on all data

Figure 6: Difference in quality of pseudo-CT images. From left to right: real CT image, Pseudo-CT 
image by registration method, pseudo-CT image with LTEMA descriptor.
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Conclusion
In this paper, a new approach is proposed to 

generate a pseudo-CT from an MRI image. It 
is a new way to use an atlas in medical im-
age processing without the need of a registra-
tion step and pre-processing step. It has been 
demonstrated that it is possible to find corre-
spondences between two MR images, pixel by 
pixel. Using an atlas (MRI images + CT im-
ages), it is possible to create a pseudo-CT with 
Hounsfield intensities. This pseudo-CT can be 
used for the attenuation correction in PET im-
ages. 

This approach is distinguished by two main 
contributions. The first is SRC, a new concept 
for encoding pixel positions in a medical im-
age, and the second contribution is LTEMA, 
the local descriptor based on texture proper-
ties. Obtained results with LTEMA are better 
than a registration method and other descrip-
tors. The use of dense matching with atlas 
promises good results; however, we must 
choose the appropriate local descriptor for this 
task.

We can also deduce that with the use of an 
appropriate atlas, the proposed approach can 
be recommended in the segmentation of medi-
cal images as an alternative to registration 
techniques.
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