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Introduction

Diffusion Magnetic resonance imaging is a unique noninvasive 
method for in vivo measuring mobility and diffusivity of water 
molecules [1]. This imaging modality can be used to estimate 

the micro-structural geometry and the shape of brain white matter indi-
rectly [2, 3]. Application of Apparent Diffusion Coefficient (ADC), as 
the most common parameter extracted from Diffusion-Weighted (DW) 

Original

ABSTRACT
Background: Presurigical planning for glioma tumor resection and radiotherapy 
treatment require proper delineation of tumoral and peritumoral areas of brain. Dif-
fusion tensor imaging (DTI) is the most common mathematical model applied for 
diffusion weighted MRI data. Neurite orientation dispersion and density imaging 
(NODDI) is another mathematical model for DWI data modeling. 
Objective: We studied whether extracted parameters of DTI, and NODDI models 
can be used to differentiate between edematous, tumoral, and normal areas in brain 
white matter (WM). 
Material and Methods: 12 patients with peritumoral edema underwent 3T 
multi-shell diffusion imaging with b-values of 1000 and 2000 smm-2 in 30 and 64 
gradient directions, respectively. We fitted DTI and NODDI to data in manually 
drawn regions of interest and used their derived parameters to characterize edema-
tous, tumoral and normal brain areas.
Results: We found that DTI parameters fractional anisotropy (FA), mean diffusiv-
ity (MD), axial diffusivity (AD) and radial diffusivity (RD) all significantly differen-
tiated edematous from contralateral normal brain WM (p<0.005). However, only FA 
was found to distinguish between edematous WM fibers and tumor invaded fibers (p 
= 0.001). Among NODDI parameters, the intracellular volume fraction (ficvf) had 
the best distinguishing power with (p = 0.001) compared with the isotropic volume 
fraction (fiso), the orientation dispersion index (odi), and the concentration param-
eter of Watson distribution (κ), while comparing fibers inside normal, tumoral, and 
edematous areas.
Conclusion: The combination of two diffusion based methods, i.e. DTI and 
NODDI parameters can distinguish and characterize WM fibers involved in edema-
tus, tumoral, and normal brain areas with reasonable confidence. Further studies will 
be required to improve the detectability of WM fibers inside the solid tumor if they 
hypothetically exist in tumoral parenchyma. 
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images, in different clinical domains such as 
neuro-oncology and central nervous system 
(CNS) surgery is increasing [4-6]. It has been 
shown that there is a negative correlation be-
tween ADC quantities and cellularity of tu-
mors [7].

Among many extractable parameters from 
DWI models, ADC and its relation with two 
different types of diffusion in tumoral areas, 
i.e. restricted and hindered diffusion, have 
been explored in many studies [8]. Indeed, an 
increase in cellularity causes more restricted 
diffusion, which is likely to reduce ADC com-
pared to normal WM. On the other hand, the 
role of edema and necrosis and their partial 
volume effects should not be neglected [9, 10]. 
Hindered diffusion of extracellular water mol-
ecules elevates the ADC in tumoral areas so 
that those regions could not be distinguished 
from normal apparent white matter.

Fractional anisotropy (FA) is the most 
known parameter of diffusion tensor imaging 
(DTI) models and it is used as a stopping crite-
rion in deterministic tractography algorithms 
for 3D reconstruction of brain white matter 
bundles [11]. Application of tractography re-
sults for presurgical planning, tumor resection 
and navigation surgery of the brain is increas-
ing [12-14]. A reduction of FA parameter in 
peritumoral areas of brain is a challenging 
problem [15]. To  find a proper FA value as the 
lowest threshold for tractography algorithms, 
it is necessary to prospect how different tissue 
types, tumoral, normal apparent ,and peritu-
moral white matters of brain are separable. 

In recent years, the application of neu-
rite orientation dispersion and density imag-
ing (NODDI) model as a multi-compartment 
model for study of microstructures of brain 
tissue in the research domain as well as for the 
clinical use is progressive [16-18]. NODDI 
model by differentiating intra- and extracel-
lular water molecules’s roles in the diffusion 
process within the nervous fiber boundless 
and considering an isotropic term for model-
ing of free water diffusion presents a more 

proper and sensible model ,and physically in-
terpretable parameters. Multi b-value imaging 
(multishell-DWI) is a prerequisite condition 
for applying NODDI model [16].

Tumoral tissues could affect white matted 
fiber bundles in different ways: displacement, 
disorientation and disruption and/or invad-
ing, and beside each mentioned alterations, 
edematous areas with significantly reduced 
FA could be developed around tumors. Some 
studies have explored the effect of edema on 
the white matter fiber bundles [19]. One of 
the oldest classifications for different types of 
edema was done by Klatzo[20]. According to 
definition, edema is the result of accumulation 
of water or related fluids in tissue which leads 
to increasing the volume of brain parenchyma 
in that area. The effects of two most famous 
types of edema, cytotoxic and vasogenic ede-
ma, on biochemical and biomechanical char-
acteristics of brain parenchyma have been 
studied in [21]. Indeed, when encountering 
with glioma tumors, especially high grade gli-
omas, damage to Blood Brain Barrier (BBB) 
increases the water (protein plasma) in extra-
cellular spaces, consequently the diffusion be-
havior of water molecules will be changed. It 
is important to differentiate between the white 
matter fiber tracts in tumoral and edematous 
areas, in order to plane a safe and efficient sur-
gery; the determination of a border for them 
is clear because it can affect presurgical plane 
also radiotherapy treatment planning.

In this study, we will explore differentiabil-
ity of three different brain tissues, edematous, 
normal and tumoral areas of brain in glioma 
patients based on DWI signals applying DTI 
and NODDI models for the purpose diffusion 
MRI from 12 patients with glioma tumor ac-
quired, preprocessed and analyzed. Details for 
data processing and statistical analysis will be 
explained in the next sections.

Material and Methods
According to schematic depicted in Figure 

1, after data acquisition and preprocessing of 
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DWI raw data, DTI model was applied on the 
data. ROI selection was based on conventional 
MR images, thus before drawing ROIs, struc-
tural images were registered on non-diffusion 
weighted DW image (b0). Next, mean values 
of parameters FA, MD, AD and RD extract-
ed from DTI model in three regions of inter-
ests (ROI) related to edematous, normal and 
tumoral areas, were calculated. ROIs were 
drawn within the tumoral area, and special 
parts of white matter in peritumoral and con-
tralateral normal areas. In the next step, NOD-
DI model was fitted on DWI signals and its 
corresponding parameters ficvf, fiso, odi and κ in 
the predetermined ROIs determined. After av-
eraging extracted parameters within all ROIs 
for each patient, their differentiability, as three 
different groups, was assessed through proper 

statistical tests.

Patients
This retrospective patient study was ap-

proved by the institutional review board of 
Tehran University of Medical Sciences.12 
Glioma patients, (average age: 37.8±13.5, 
male/female: 8/4), underwent to a 3 Tesla 
MRI scanner. All data acquisition was done at 
Imaging Center of Imam Khomeini complex. 
Before using patient’s data, all images were 
anonymized, and selected for further diffusion 
analysis. Further patient details are in Table 1.

Data Acquisition
MR data acquisition was performed using 

a 3-T clinical whole-body scanner (TrioTim; 
Siemens Medical Solutions, Erlangen, Ger-

Patient No. Age (years) Sex Diagnosis Location of Lesion
1 30 Male GBM               Frontal lobe
2 44     Female HGG               Frontal fossa
3 51     Female GBM               Temporo Occipital
4 32 Male GBM               Left Parietal
5 60 Male GBM               Left FrontoTemporal
6 11     Female              Astrocytoma               Left Parietal
7 29 Male GBM               Left Temporo Occipital
8 45 Male LGG               Pineal
9 36 Male LGG               Frontal parasagittal

10 23 Male LGG               Left frontal cortical
11 43 Male HGG               Right temporo frontal
12 50     Female HGG               Left parietal

Table 1: Demographic and clinical characteristics of the patients in this study (GBM: GlioBlas-
toma Multiform, LGG: Low Grade Glioma, HGG: High Grade Glioma).

Figure 1: Block diagram of data processing pipeline.

The Role of Advanced Diffusion MRI in Patients with Brain Tumors
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many) equipped with the standard 32 channel 
head coil.

For extracting anatomical details of the 
brain structure, we applied conventional MR 
imaging modalities for each patient as fol-
low: a) a three-dimensional (3D) magnetiza-
tion prepared rapid acquisition gradient echo 
(MPRAGE) sequence (TR/TE 1800/3.4 ms, 
1 mm isotropic matrix, 256×256 mm FOV, 
176 slices), and b) an axial fluid-attenuated 
inversion recovery (FLAIR) sequence (TR/TE 
8000/104 ms, 3 mm slices). 

Diffusion MRI consisted of diffusion-
weighted echo-planar imaging (EPI) pulse 
sequences. For our purpose the following 
parameters were set: TR/TE 9600/101 ms, 
128×128 matrix size, 240×240 mm2 the field 
of view (FOV), 2 mm slice thickness, 1502 
Hz/pixel bandwidth. Sixty-eight slices with no 
intersectional gaps and an isotropic voxel size 
of 2×2×2 mm3 were acquired. Diffusion gradi-
ent encoding vectors were in 30 and 64 direc-
tions for b=1000 smm-2, and b=2000 smm-2, 
respectively. Additionally, two b=0 smm-2 (no 
diffusion gradient) images were acquired at 
the start of diffusion encoding gradients. The 
sequence design was based on balanced diffu-
sion gradients in order to minimize eddy cur-

rent artifacts. The patients’ heads were fixed in 
a headrest to minimize artifacts secondary to 
the unavoidable motion. Figure 2 shows some 
typical MR images related to subject 1 among 
patients.

Preprocessing of diffusion MRI im-
ages

After data acquisition, the data sets were 
preprocessed according to the block diagram 
shown in Figure 3. Eddy current artifact and 
patient head motion of DWI data were cor-
rected using the FSL software [22]. The non-
local-means algorithm [23] was applied for 
DWI data noise effects reduction and finally 
DTI and NODDI models were fitted on the 
corrected data. For working through a unique 
spatial space all structural data were registered 
on b0 images.

Data Analysis
DTI Data Analysis
Applying Dipy software, the diffusion ten-

sor model was fitted to the data for each voxel 
of the data using nonlinear least square fitting 
[24]. After the calculation of principal eigen-
values ( 1 2 3,  ,  λ λ λ ) 4 maps corresponding to 

Figure 2: Sample structural T1-weighted (left-above) and Flair (right-above) images in sagital 
and axial view as well as FA (left-below) and color FA (right below) maps in axial view for subjec1.
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parameters of DTI model, i.e. fractional an-
isotropy (FA), mean diffusivity (MD), axial 
diffusivity (AD) and radial diffusivity(RD) 
were extracted for all patients. FA, MD, AD, 
and RD maps are related to eigenvalues as fol-
low:

2 2 2
1 2 2 3 3 1

2 2 2
1 1 1
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− + − + −
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Figure 4 shows an axial view of the ex-
tracted quantitative maps from DTI model for 
patient #1.
NODDI Data Analysis
After two decades from the introduction 

of diffusion models for living tissues, many 
different multi-compartments models have 
been presented, i.e. ball and sticks model, 
CHARMED model, AxCaliber and many more 
[25-27]. Among multi-compartment models a 
model with the name NODDI has been pre-

sented and noticed more in recent years [16]. 
NODDI model assumes that the acquired dif-
fusion signal is composed of three different 
compartments: intracellular, extracellular and 
CSF compartments. The mathematical equa-
tion for describing NODDI model is as follow:

( ) ( )( )  1 1     (5)iso iso iso ic ic ic ecf f f f= + − + −S S S S

in which fiso, fic are CSF and the intracellu-
lar volume fraction of signals and Sic, Sec and 
Siso are intracellular, extracellular and CSF 
signals, respectively. Figure 5 demonstrates 
different parameter contrasts estimated from 
NODDI model for subject #1. As we can see, 
the variation of contrasts with respect to DTI 
contrasts is more obvious.
ROI selection
Considering anatomical and structural MR 

images, T1-, T2-weighted and Flair, a radiolo-
gist expert with more than 15-years experienc-
es drew three different ROIs for peritumoral, 
normal and tumoral areas of brain white mat-
ters. For this work, applying itk-snap software 
[28], an ROI was drawn on a part of brain 
tissue occupied with edema so that it encom-
passed some parts of white matter tissue of the 
brain. A typical ROI selection for the dataset 
related to subject #1 has been shown in Figure 
6. Normal ROI was drawn in a contralateral 

Figure 3: DWI data analysis pipeline and utilized softwares.

Figure 4: Maps extracted from DTI model. From left to right: FA, MD, AD, and RD.
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area hemisphere of the brain and it was drawn 
as same as possible to the edematous area. For 
tumoral area, the ROI was selected near the 
core and massive part on the tumor. Because 
all anatomic images were registered to DWI 
images, the same ROIs were applied so as 
to extract the scalar quantities of all DTI an 
NODDI maps. Finally, after applying ROIs on 
the maps and getting average, eight different 
quantities were extracted from each ROI for 
all patients. Scalar values calculated for each 
selected ROI were inserted into Table 2 and 
Table 3 for DTI and NODDI models, respec-
tively.

Statistical Analysis
We applied nonparametric statistical tests for 

assessing the differentiability of 3 groups of 
tissues. On the other hand, comparison should 
be made among more than two groups. Hence, 
in the first stage we used Kruskal-Wallis test 
which corresponds to one-way ANOVAs test 
[29]. The level of significance was considered 
to be 0.05. We applied Kruskal-Wallis on four 
variables extracted from DTI model and four 
variables extracted from NODDI model. In the 
second stage of statistical analysis, we used 
Mann-Whitney U test as our post-hoc test for 
a pair test between each group of variables. All 
statistical analyses were done using SPSS ver-
sion 24 for windows OS.

Results
In this section, the statistical analysis results 

Figure 5: Maps extracted from NODDI model. Above maps from left to right: ficvf, fiso, odi, 
kappa from a coronal view. Lower maps are like upper row unless they are from a coronal view.

Figure 6: Coronal view of conventional MR images for subject 1. From left to right: T1, T1-post 
contrast, Flair and T2 with overlaid ROIs. An edematous portion of left corticospinal tract (CST) 
in red and its normal corresponding on right side in green was drawn as edematous and normal 
ROIs.
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from DTI and NODDI model as explained in 
the previous sections are represented in Tables 
2 and Table 3.

DTI model statistical results
Here statistical analysis results regarding 

to DTI model parameters will be described 
in more details. As we can see from the first 
row of Table 2, four extracted DTI model 
variables, FA, MD, AD and RD have passed 
Kruskal-Wallis test, therefore, we can keep on 
pairwise comparison for our three groups. Ac-
cording to pairwise Mann-Whitney U test, FA 
can discriminate all groups from each other. 
FA capability for separating the normal group 
from the edematous group in comparison to 
other pairwise comparisons is weaker (p-value 
= 0.005 versus p-value = 0.001). As it is clear 
from the third row of the same table, the dif-
ferentiation of edematous from tumoral group 
is more challenging. As we can see among 
four DTI variables only FA and RD can be 
distinguished between tumoral and edematous 
areas.

NODDI model statistical results
The statistical analysis for quantified DWI 

signals using NODDI model is represented 
in Table 3. It is clear from first table that un-
less fiso parameter that has a relative low sig-

nificance with respect to others, the three other 
variables extracted from NODDI model have 
passed Kruskal-Wallis statistical test with a 
high score (p<0.01). Among other parameters, 
ficvf can distinguish the normal class from both 
other edematous and tumoral classes with 
p-value = 0.001. On the other hand, odi and 
kappa parameters can separate edematous and 
tumoral groups from each other with p=0.003 
and p = 0.004 respectively, and finally fiso map 
is a good contrast for separating tumoral from 
the normal region.

Discussion
The effects of tumor on brain white matter 

are not distinguishable using conventional 
MRI (T1, T2, Flair), also those images do not 
provide any information about directionality 
and orientations of fiber bundles. Presurgical 
functional MRI and intraoperative electrical 
stimulations could help to the identification 
of eloquent regions of gray matter,but they do 
not give any information about white matter. A 
more complete presurgical planning requires 
some data about the white matter fiber bundles 
that surround the lesion. Awareness about the 
spatial relation between tumoral area and fiber 
tracts can help neurosurgeon to retain the func-
tional relations of the brain more precisely. 

An outburst and developing of tumoral cells 

Kruskal-Wallis Test/ Mann-Whitney Test ficvf(0.001) fiso(0.02) odi(0.004) kappa(0.008)
Edematoas vs Normal 0.001 0.158 0.01 0.17
Edematoas vs Tumoral 0.97 0.082 0.003 0.004

Normal vs Tumoral 0.001 0.014 0.22 0.45

Table 3: non-parametric statistical analysis for NODDI model parameters.

Kruskal-Wallis Test/ Mann-Whitney Test FA (0.001) MD(0.001) AD(0.001) RD(0.001)
Edematuas vs Normal 0.005 0.001 0.001 0.001
Edematous vs Tumoral 0.001 0.2 0.87 0.09

Normal vs Tumoral 0.001 0.001 0.007 0.001

Table 2: Statistical analysis results for DTI model parameters.
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by altering the micro structural organization of 
the brain that lead to tissue alteration change 
the anatomy of the brain. One of these physio-
logic changes around the tumoral environment 
is a change of water content in parenchyma of 
the brain variation of velocity and the direc-
tion of water molecules diffusion. From the 
other hand, conventional MRI underestimates 
the tumoral area, thus applying more ad-
vanced imaging methods is necessary. Appli-
cations of diffusion MRI for clinical goals are 
one of those more advanced strategies. There 
are many studies to assess brain tumors using 
diffusion MRI. 

In this study, using a 3T scanner we acquired 
a two shell diffusion dataset from 12 patients 
with brain tumors to explore if we can dis-
tinguish among tumoral, normal and edema-
tous areas within white matter or not. Two-
shell data set involves 30 and 64 volumes of 
brain corresponding to b-values of 1000 and 
2000, respectively. For modeling the acquired 
data, we used the well-known and most com-
mon DTI model and a more advanced model 
known as NODDI. 

All the parameters extracted from DTI mod-
el, in the edematous ROIs of white matters 
were significantly different from correspond-
ing areas in the normal areas within the other 
hemisphere. The reduction of FA in the edem-
atous and tumoral areas is due to activities of 
tumoral cells that affect the geometrical mi-
crostructure of the tissues within and around 
them. Indeed, with increasing the amount of 
water and changing the size of intracellular 
and extracellular spaces around the fiber bun-
dles could alter the diffusivity constants in all 
directions. A comparison between AD and RD 
quantities in the edematous areas with corre-
sponding values in the normal regions shows 
that an increase in the diffusivity in both direc-
tions (axial and perpendicular to the axons) is 
explicit but for RD this growth is about two 
times more than healthy parts. These findings 
are compatible with the reports presented by 
[30]. 

The estimated mathematical relationship 
among FA, MD, AD, and RD satisfies the sta-
tistical analysis results. The large difference 
between the growth rate of AD and RD in 
edematous areas with respect to healthy parts 
of white matter refers to this note that the dif-
fusion alterations are not isotropic, the point 
that has been expressed clearly in a paper ti-
tled “Is the swelling in brain edema isotropic 
or anisotropic?” [31]

In comparison to DTI model, extracted maps 
from NODDI model from the variability and 
information enrichment point of view are 
more exhaustive. This variability of NODDI 
model for distinguishing among edematous, 
normal and tumoral groups is originated from 
the intrinsic difference between two models. 
NODDI model with a more complicated math-
ematical model could prepare some output 
parameters with fewer redundancies. On the 
other hand, there is not a closed form math-
ematical relationship among different param-
eters extracted from NODDI model. 

Among all eight parameters extracted from 
DTI and NODDI models, only 2 parameters 
could distinguish between edematous and nor-
mal as well as edematous and tumoral areas, 
FA extracted from DTI and ODI from NOD-
DI. Proliferation of tumoral cells within and 
around fiber tracts reduces their parallelism, 
convergence and regulation and this factor is 
the main cause for odi alteration. The reduc-
tion of extracellular space is another factor 
that affects odi values. MD could separate the 
normal group from two other ones but could 
not distinguish between edematous and tu-
moral areas; it means that water volume and 
its diffusivity factors have increased in those 
two areas. 

As we know diffusion weighted imaging is 
capable to detect micro structural characteris-
tics of brain neuronal tissues. Indeed, because 
the semi-cylindrical shape of white matter 
fibers, diffusion of water is not isotropic for 
white matter bundles, therefore, within the 
high cellularity environments we expect to see 
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higher FAs and lower MDs with respect to ar-
eas with lower cellular densities and concen-
trations. One limitation of this study is that we 
did not consider distinguishing tumoral areas 
in details, the areas with proliferating, necrosis 
and affected by invasion from one hand and 
the separation of edematous from infiltrative 
regions from the other hand are some prob-
lems that could be explored in future works. 
Applying classification methods for clustering 
and segmenting different parts of glioma is in 
our next future list of works. Another model 
that we can work on using our multi-shell data 
is diffusion kurtosis imaging (DKI) [32].

Conclusion
In this work, we evaluated two different 

models to separate normal apparent, edema-
tous and tumoral white matters of brain. Each 
model has its specific limitations and advan-
tages. One of most interested applications of 
DTI model is tractography of fiber tracts for 
the 3D visualization of fiber bundles paths. 
Application of other quantized parameters like 
odi extracted from NODDI model instead of 
FA map as a stopping parameter in the trac-
tography algorithms could be explored in the 
future works.
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