
J Biomed Phys Eng

www.jbpe.org

Pattern Change of Inhibitory Drug 
Craving Control in Brain: A Study of 
Effective Connectivity

Zare-Sadeghi A.1,2, Jafari A. H.3*, Oghabian M. A.3,  
Salighe-Rad H.3, Batouli S. A. H.2,4

1Faculty, Skull Base 
Research Center, Iran 
University of Medical Sci-
ences, Tehran, Iran
2Research Assistant 
at Neuroimaging and 
Analysis Group (NIAG), 
Imam Khomeini Hospital 
Complex, Tehran Univer-
sity of Medical Sciences, 
Tehran Iran
3Faculty, Biomedical 
Engineering and Medi-
cal Physics Department, 
Tehran University of 
Medical Sciences, Teh-
ran, Iran
4School of Advanced 
Technologies in Medi-
cine, Tehran University 
of Medical Sciences, 
Tehran, Iran

*Corresponding author: 
A. H. Jafari 
Faculty, Biomedical 
Engineering and Medi-
cal Physics Department, 
Tehran University of 
Medical Sciences, Teh-
ran, Iran
E-mail: h_jafari@sina.
tums.ac.ir
Received: 18 June 2016
Accepted: 12 July 2016

Introduction

There are distinguished studies on drug craving and inhibitory 
behavioral control mechanisms of the brain [1, 2]. These stud-
ies have highlighted the pivotal roles of ventromedial prefrontal 

cortex (VMPFC) and the amygdala in dissuasive decisions about drug 
taking [3, 4]. These regions function as correlated parts of the top-down 
and bottom-up regulatory systems [1, 5, 6].

There are a few studies monitoring the causal relations between these 
regions [7]. These studies have reported a causal effective connectivity 
network in  different conditions [8-10]. There are some methods for 
quantifying the causal network but Dynamic Causal Modeling (DCM) 
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ABSTRACT
Background: The inhibitory behavioral control of  brain in treated drug abusers 
encountering drug cues, as well as the constructing regions of its network, has been 
widely studied previously. The causal relation of  relevant brain regions has also been 
noticed in the literature, but the time/task condition variability of this causal network 
has not been studied yet.
Method: Thirteen drug abusers successfully treated with Methadone maintenance 
therapy, were scanned during a drug cue fMRI task. Two regions of interest (VMPFC 
and amygdala) were chosen based on the literature. Using Dynamic Causal Model-
ling (DCM), an effective connectivity network was estimated between these two 
brain regions and a craving-inducing input. Later, implementing a sliding window 
method on the extracted time-series, five further DCM networks were estimated to 
evaluate the time variability of the DCM network.
Results: The result of ordinary DCM showed that there were  reciprocal connec-
tions between regions, and the craving input only affects the amygdala region. Slid-
ing window showed that the input link strength changes during the task. This change 
was an exponential growth which moved from near zero to a positive value.
Discussion: The pattern of our DCM network demonstrated that the craving 
input passes from bottom brain regions to the top, and therefore, it indirectly affects  
top regions. However, the causal relations of this network varies during the task, and 
the craving link strength also grows exponentially. Our findings are in agreement 
with the hypothesis of craving inducement during stimulation, and therefore it may 
be considered as a proxy craving measurement.
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has shown prominent results in  networks 
with external input [11]. In addition to this, 
neuronal activations have shown to be time-
variable, and the resulted effective connectiv-
ity networks also have been proved to behave 
in a similar manner [12, 13]. These changes 
may depend on different conditions of the task 
[14, 15].

We have applied a sliding window to region-
al fMRI time-series, acquired during a cue in-
ducing craving task, and implementing DCM 
in each window; 5 different effective connec-
tivity networks were quantified. We hypoth-
esized that the network  would change during 
the whole duration of the task which will not 
be the same in 5 time-points.

Material and Methods

Participants
Thirteen formal drug abusers, treated with 

MMT method, were scanned during a cue in-
ducing craving task. The procedure was fully 
described for each subject before scanning, 
and the written informed consent was ob-
tained. The study protocol and consent form 
were approved by the Ethics Committee of 
Tehran University of Medical Sciences. De-
mographic data can be found in Table 1.

fMRI Acquisition
Functional images were acquired on Aven-

to 1.5 T scanner (Siemens, Germany) using 
echo-planar imaging with a T2*-weighted 

gradient-echo multi-slice sequence (TR = 
3000 ms, TE = 50 ms, flip angle = 90 degrees, 
voxel size 3 × 3 × 3 mm3, matrix 64 × 64). 
T1 3-dimensional–weighted images were ob-
tained (MPRAGE, TE = 3.55 ms, TR = 1910 
ms, voxel size 1 × 1 × 1 mm3, flip angle = 30 
degrees).

fMRI Task
The fMRI cognitive task had a block de-

sign with 6 runs; each run consisted 4 blocks 
with the length of 24 seconds for each block. 
The first and third blocks  were a rest block in 
which a cross was shown to the subject, in the 
second block 4 neutral images similar to drug 
abusing situations were shown to the subject 
each for 6 seconds, and in the fourth block 4 
images directly related to drug abusing were 
shown. The task structure is depicted in Figure 
1.

Analysis
FSL5 FLIRT [16] was used to correct  EPI 

images for the head motion. Slice timing cor-
rection was done using interleaved order, high-
pass temporal filtering was done with the size 
of 96s to remove the signal trend, a Gaussian 
kernel with the size of 5 mm FWHM was used 
to smooth  functional images, and for group 
comparison the intensity normalization was 
done as the last part of the preprocessing step. 

The FEAT tool [17] from  FMRIB’s package 
was used to model the data and find the acti-
vations in the brain. Canonical hemodynamic 
response with its derivative was used to model 
the regressors for the condition of interest; 
craving> neutral. Next, an ROI-based analysis 
was carried out using  FLAME2 [18] tool of 
the FSL5 package, as the group level analysis 
for the contrast “craving > neutral”.

Dynamic Causal Modelling
A model space with 9 models were defined 

which included models with different connec-
tions. After estimating models for single sub-
jects, we divided model space into two fami-

Age 34.7 ± 2.52
Gender (male) 13

Education (Year) 11.2 ± 1.7
Abstinence Duration (month) 16.4 ± 3.82

Opium abusers 13
Heroin abusers 13
Alcohol abusers 10
Tabaco Users 13

Table 1: Demographic Data of  Participants.
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lies regarding the link from craving input to the 
amygdala region; one family included models 
in which craving was not directly linked to the 
amygdala and the other models in the second 
family all have link from input to amygdala. 
Using Bayesian Model Selection (BMS) and 
Bayesian Model Averaging (BMA), the final 
DCM model for the group was quantified. This 
single model was used in the time-variability 
check. For time-variability, a sliding window 
method was used. The length of  window was 
selected to be in the length of 2 runs (for the 
sake of convergence) and the step size was 
selected as one run. Having 6 runs in total, 5 
time-points were drawn from each time-series. 
The single DCM network which was resulted 
from the last step was estimated again for each 
part of the time-series of all subjects. Using 
BMA on these DCM networks, the final 5 
DCM networks were concluded.

Results

Activations
The results of GLM analysis for the whole 

group can be seen in Table 2.

Effective Connectivity
The families of models with craving input 

to the amygdala were the winning family 
from BMS results and implementing BMA, 
concluded in the network depicted in Figure 
2 (Left). The sliding window method result-
ed in an exponential change in craving input 
strength. Figure 2 (Right) depicts these chang-
es schematically. 

We have to mention that the changes in oth-
er links were not statistically significant. The 
maximum variance of the input link strength 
was 0.03.

Discussion
Implementing DCM, we reached an effec-

tive connectivity network between two regions 
of interest, VMPFC and the amygdala and the 
task based external input. Further considering 
sliding window, 5 different DCMs with the 
same structure, were estimated among these 
three nodes.

The result of classic DCM showed that there 
were  reciprocal links between selected ROIs 
and the input has a direct effect on the amyg-
dala, only. These are in compliance with previ-
ous studies on brain inhibitory behavioral con-

Figure 1: fMRI Task Structure. R stands for rest, N stands for neutral, and C stands for craving.
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trol mechanism [1] and studies considering the 
roles of the regions in this inhibitory system 
[2, 19, 20]. 

The result of sliding window revealed that 
the reciprocal connections between regions 
and also the self-inhibitory connections of 
each region, do not change during the task (the 
change was not statistically significant), and 
the brain intrinsic network is constant. How-

ever, the strength of the task based craving in-
put link changed exponentially and increased 
in value from near zero to some considerable 
amount. This proved our hypothesis about the 
network change during the task.

Our study may be considered as a proxy 
craving measurement method, as it is quantify-
ing the craving input during the task, and that 
it is not based on subjective reports [21]. Of 

Anatomical Regions Cluster Size Z-values Local Maximums Co-ordinates
Visual Cortex

1426

3.8 20 -64 14
Lingual Gyrus 3.6 0 -80 22
Lingual Gyrus 3.56 2 -80 26

Cuneus 3.45 22 -64 2
retrosplenial cortex 3.42 -10 -78 14

Cuneus 3.42 -16 -70 0
Insula

718

3.65 -48 -20 2
Inferior parietal lobule 3.57 -60 -38 20
Inferior parietal lobule 3.53 -50 -36 14
Inferior parietal lobule 3.43 -54 -34 12
Inferior parietal lobule 3.23 -60 -36 10

Insula 3.17 -38 -30 8
Primay somatosensory cortex

454

3.43 16 -46 56
Primay somatosensory cortex 3.4 18 -46 60

Superior parietal lobule 3.23 16 -46 52
Superior parietal lobule 3.23 24 -46 68
Superior parietal lobule 3.13 12 -50 68

Postcentral Gyrus 3.06 12 -46 68
Secondary somatosensory cortex

263

3.44 50 -10 24
Secondary somatosensory cortex 3.25 58 -2 12

Primay somatosensory cortex 3.21 56 -6 22
Secondary somatosensory cortex 3.08 60 0 4
Secondary somatosensory cortex 2.87 58 -12 12
Secondary somatosensory cortex 2.85 64 -14 10

 Heschl's Gyrus

262

3.3 56 -28 14
Inferior parietal lobule 3.19 56 -38 12
Inferior parietal lobule 3.18 58 -48 10

Heschl's Gyrus 3.12 60 -28 16
Superior temporal Gyrus 2.96 60 -36 6

Inferior parietal lobule 2.91 46 -42 12

Table 2: Group Results for Contrast Craving > Neutral
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course, the advantage of the method is not be-
ing subjective and so not be biased  under dif-
ferent conditions [22], but the validity of using 
it as a craving measurement can be questioned 
and studied further. However, our results dem-
onstrated an exponential growth of craving in-
put during the task;  this is in compliance with 
the idea of the fMRI task design which was 
targeted to do this biologically [23].
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