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Introduction

The obstructive sleep apnea (OSA) is a chronic, lifelong medical 
condition affecting the sleep, health, and quality of life. The OSA 
is proven as a critical risk factor for cardiovascular disease. It 

leads to increasing the probability of brain stroke and pressure in blood 
vessels, insufficient heart pumping, arterial hypertension, decreasing 
blood flow, irregular heart rhythms, and heart attacks [1].

The OSA severity is based on disturbances of the parasympathetic ner-
vous system (PNS) activity. PNS activity will be obvious in the time 
since eye movements are not rapid. In rapid eye movement sleep, PNS 
activity decreases compared to NREM sleep [2]. This is especially true 
in the stage 2 sleep compared to the REM sleep.
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ABSTRACT
Background: Due the long-time admission of patients in the ICU, it is very expen-
sive. Therefore, solutions, which can increase the quality of care and decrease costs, 
can be helpful.
Objective: Separation of the patients based on the acute conditions can be useful 
in providing appropriate therapy. In this study, we present a classifier to predict the 
OSA based on heart rate variability of patients.
Material and Methods: In this analytical study, we used the recorded ECG 
signals from PhysioNet Database. At first, in the preprocessing stage, the noise from 
the ECG signal was removed, and R spikes were detected to generate the HRV. The 
next stage was related to linear and non–linear features extraction. We used the paired 
sample t-test that is a statistical technique to compare two periods (apnea and non-
apnea). These features were applied as the inputs of two different classifiers, including 
MLP and SVM to find the best method and distinguish patients with higher death risk.
Results: The results showed that the SVM classifier is more capable to separate 
the four periods seperated from each other. The sensitivity for detecting the OSA event 
was 95.46% and the specificity was 97.57% for the non-OSA period. 
Conclusion: Accurate and timely diagnosis of the disease can ensure the health of 
the individual, family, and community. Based on the proposed algorithm, the HRV sig-
nal and novel feature, presented in this study, had the highest specificity and sensitivity 
for the detection of the OSA event of the non-OSA, respectively.
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For the detection of sleep apnea episodes, 

several methods have been presented by the 
researchers using less number of physiologi-
cal signals.

Many methods have been presented in the 
different manuscripts for the classification of 
sleep apnea, using several time-frequency do-
main features from the ECG signal [3]. For 
the apnea detection via the ECG, most of the 
existing algorithms in the literature used the 
features extracted from the HRV signal to dis-
criminate the periods of apnea from the nor-
mal one. 

The most usually used time-domain HRV pa-
rameter is SDNN (the standard deviation of all 
NN intervals). Heart rate variability is strong-
ly inspired via sleep stages, and for some re-
searchers, these changes do not differ notably 
when comparing OSA and non-OSA patients. 
It has been shown that the R-R interval in the 
early morning between sleep and wakeful-
ness is at a maximum possible distance [4,5]. 
Moreover, the R-R intervals have been shown 
to have a continuous increase from wake to 
non-REM sleep, then a decrease during REM 
sleep in healthy subjects. Changes inside the 
variances in R-R intervals have been associ-
ated with the severity of OSA. However, other 
recent researchers have believed that spectral 
analysis of HRV may cause as a better algo-
rithm to specify OSA severity [6,7].

Material and Methods
In this analytical study, we used the data be-

longing to the PhysioNet database, including 
the OSA patients admitted in ICU [8].

The HRV signal was analyzed in the five-
minutes intervals. Linear and nonlinear fea-
tures were used to evaluate the HRV signal 
changes at different time intervals. The HRV 
signal of each patient was divided to two inter-
vals, including 5min before apnea (period 1), 
10-5 min before apnea (period 2), 15-10 min 
before apnea (period 3) and 20-15 min before 
apnea (period 4). The features were extracted 
from these intervals to consider whether any 

change can be seen in the interval close to the 
apnea.

The algorithm comprises of five steps, as 
follows: 

1) Preprocessing (noise cancelation, ECG 
segmentation to five-minutes intervals, R de-
tection, HRV reconstruction) [9].

2) Feature extraction (time-domain, frequen-
cy-domain, nonlinear methods) [3,10].

3) Apply vector mapping of HRV (VMoH) 
[10] of each window and extract the angle be-
tween the vectors.

4) Feature selection (based on principal 
component analysis (PCA) method) [11].

5) Classification of apnea and non-apnea 
periods using Multi-Layer Perceptron (MLP) 
and Support Vector Machines (SVMs) classi-
fiers [12].

6) Evaluation of classification performance 
(sensitivity and specificity, positive productiv-
ity and accuracy). 

Results
This algorithm was performed for 70 patients 

for nearly 8 h continuously (the length of man 
and woman recordings vary from slightly less 
than or equal to 7 h to approximately 10 h) and 
each ECG signal was digitized at 100 samples 
per second, with 16-bit resolution. The num-
ber of male and female patients are the same. 
The volunteers of these recordings were men 
and women between 27 to 60 years old, with 
weights between 53 to 135 kg. The optimum 
window for feature extraction was selected for 
5 min.

The variations of selected features for the 
four mentioned intervals were analyzed. The 
results are presented in Table 1. The time-
domain analysis of the periods did not show 
any significant changes. Based on this table, 
the correlation dimension between the data of 
period 2, period 3 and period 4 is lower than 
the period 1, showing less variation of HRV in 
interval far from the onset of the sleep apnea. 
The ApEn of period 1 is higher than the pe-
riod 2, emphasizing more complexity of HRV 
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time series of period 1 in comparison with the 
period 2. Based on the SD1 and SD2 of each 
period, it can realize that the fluctuations of 
periods 2, 3 and 4 are lower than period 1. 

The results obtained based on SVM and 
MLP classifiers show that the SVM classifier 
is enabled to distinguish high and low-risk pe-
riods with the total classification, sensitivity, 
specificity rate of 95.46%, 97.57%, respec-
tively.

Discussion
Prolonged admission in ICU is associated 

with the high cost for patients and hospital. 
The unpredictable status of the patients admit-
ted in this section requires very high accuracy 
and speed in the delivery of medical services. 
Given the high probability of death in patients 
with this disease, putting them together and 
observing the death scenes of the other pa-
tients can lead to increased stress and irrepa-
rable damage. Therefore, these methods to 
isolate and distinguish between patients who 
are at higher risk can be effective to solve the 
problems raised. 

Although several studies to predict the OSA 
in patients are done, each of them has been 
faced with challenges. Dependency on mul-
tiple parameters to predict the risk of attack is 
one of the most significant problems. In this 
study, we present a method to examine the po-
tential of HRV as a predictor of the OSA risk 
in the patients admitted to ICU. The evaluation 
of HRV in different periods (approximately far 
from and near to the OSA) showed that there 
are significant changes in the dynamic of HRV 

in periods close to apnea. In comparison to 
pathologic parameters used in previous stud-
ies [13], our non-linear features could better 
show the entrance of the patient to the onset of 
the sleep apnea (period1). Moreover, we used 
fewer parameters and computations in our al-
gorithm to predict the OSA risk compared to 
other methods [13,14]. 

One of the reasons leading to prediction with 
the high accuracy of the presented algorithm is 
the implementation of a robust classifier. Feed-
ing the classifier with good feature vectors im-
proved prediction accuracy. This experimental 
result indicates that this proposed algorithm 
can predict the OSA risk using a small set of 
features. Furthermore, the proposed method 
required less computation and time in contrast 
with pervious works. It should be mentioned 
that although the algorithm has good results 
compared with other methods, it could not be 
generalized for a larger population of samples 
due to different types of illness. 

Conclusion
The important finding of our paper is that pa-

tients with the OSA showed a decrease and an 
increase in parasympathetic and sympathetic 
activity, respectively, which can be a marker 
of impaired vagal activity, associated with 
increased cardiovascular risk. The proposed 
method in this paper, based on the HRV signal, 
can help physicians in diagnose of patients 
with obstructive sleep apnea and as a comple-
mentary method, it plays an important role in 
identifying the condition of patients in differ-
ent stages of sleep. Moreover, the final deci-

Features period 1 period 2 period 3 period 4
α 53.12±17.6 36.18±11.1 34.45±10.2 32.17±9.18

CD 6.51±2.3 5.34±1.9 4.47±1.2 4.46±1.1
ApEn 1.98±1.3 1.32±1.07 1.24±0.92 1.24±0.91

SD2 /SD1 1.48±0.37 1.06±0.26 0.78±0.13 0.75±0.23
CD: Correlation Dimension, ApEn: Approximate Entropy, SD: Standard Deviation

Table 1: Features selected from the four periods
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sion about the patient’s condition during the 
various stages of sleep will be more accurate.
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