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Introduction

Brain Computer Interface (BCI) is a modern technology providing 
a communication between the brain and external environment. 
BCIs have been used for severely paralyzed patients as a com-

munication option, an augmentative tool for rehabilitation and assistive 
technology [1, 2]. These systems offer effective assistance not only for 
those with motor disabilities, but also for healthy users such as computer 
game control [3] and mobile robots [4]. For practical applications in 
BCIs, electroencephalogram (EEG) is well accepted due to high tem-
poral resolution information, and a noninvasive, inexpensive, portable 
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ABSTRACT
Background: Motor Imagery (MI) Brain Computer Interface (BCI) directly links 
central nervous system to a computer or a device. Most MI-BCI structures rely on fea-
tures of a single channel of Electroencephalogram (EEG). However, to provide more 
valuable features, the relationships among EEG channels in the form of effective brain 
connectivity analysis must be considered. 
Objective: This study aims to identify a set of robust and discriminative effective 
connectivity features from EEG signals and to develop a hierarchical machine learning 
structure for discrimination of left and right hand MI task effectively.
Material and Methods: In this analytical study, we estimated effective con-
nectivity using Granger Causality (GC) methods namely, Generalized Partial Directed 
Coherence (GPDC), Directed Transfer Function (DTF) and direct Directed Transfer 
Function (dDTF). These measures determine the transient causal relation between dif-
ferent brain areas. Then a feature subset selection method based on Kruskal–Wallis test 
was performed to choose most significant directed causal connection between chan-
nels. Moreover, the minimal-redundancy-maximal-relevance feature selection method 
is applied to discard non-significance features. Finally, support vector machine method 
is used for classification. 
Results: The maximum value of the classification accuracies using GC methods 
over different frequency bands in 29 subjects in 60 trial is approximately 84% in Mu 
(8−12 Hz) - Beta1 (12 − 15 Hz) frequency band using GPDC method.  
Conclusion: This new hierarchical automated BCI system could be applied for 
discrimination of left and right hand MI tasks from EEG signal, effectively.
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method. A type of BCI known as motor imag-
ery (MI) refers to the act of imagining a par-
ticular action without actual execution. 

In the last decade, several signal processing 
techniques from the one-channel EEG have 
been proposed for developing BCIs [5-7] and 
specially MI-BCIs, namely, power spectral 
density using Fourier transform [8, 9], dis-
crete wavelet transform [10], calculation of 
the autoregressive model coefficients [11], 
common spatial pattern [12, 13], sparse rep-
resentation [14, 15], Hilbert–Huang transform 
[16], empirical mode decomposition [17, 18], 
and Hjorth parameters [19, 20]. Despite of sig-
nificant achievements of the aforementioned 
methods, none of them have been proved to be 
adequately reliable in the practical settings be-
cause of using EEG features from individual 
channels and ignoring valuable information 
inherent between channels. Moreover, since 
EEG signals are non-stationary and very sen-
sitive to noises, a single channel can hardly 
achieve a good accuracy and the extracted 
EEG patterns, based on multi-channel, must 
be considered to detect the dynamic character-
istics of the EEG signals. MI task causes com-
plicated neurophysiological changes and con-
sequently, it is expected that for solving the 
aforementioned limitations in MI of different 
limbs, we consider the relationships among 
brain regions with different connectivity pat-
terns.

The brain connectivity analysis has three 
general subdivisions, as follows [21]: (1) the 
structural connectivity (2), the functional 
connectivity, and (3) the effective connectiv-
ity. Among these fields, effective connectivity 
is a significant tool for the EEG analysis. A 
popular method for estimating effective con-
nectivity is Granger Causality (GC) which is a 
data-driven approach [22]. Theoretically, GC 
characterizes the directed causal interaction 
among neural time-series as strong as causal 
mechanistic couplings. Actually, this method 
is used for analysis and visualization of time 
and frequency of multivariate dependent di-

rected information flow and causality between 
localized EEG channels.

After the EEG feature extraction, the EEG 
signal is classified using machine learning 
methods. In the last decade, a wide variety of 
machine learning, including feature selection 
and classification methods have been used 
to EEG for developing MI-BCIs, such as, 
principal component analysis [23, 24], inde-
pendent component analysis [25], sequential 
floating forward search [26], an evolutionary 
algorithm [27] and relative entropy criteria 
for feature selection [28], linear discriminant 
analysis [29, 30], multilayer perceptron net-
work [31], radial basis function network [32], 
Support Vector Machine (SVM) [33-36], least 
squares classifier [37], Bayesian classifier 
[38], adaptive neuro-fuzzy classifier [39, 40], 
extreme learning machine [41], Naive bayes 
[42], sparse bayesian extreme learning ma-
chine [43], sparse group representation model 
[44] and deep learning approaches [45-47]. 
Despite the different machine learning algo-
rithms, there hasn’t been a universally supe-
rior one for this application. 

The aim of this study is to find a set of dis-
criminative effective connectivity features 
from EEG signals and to design a hierarchical 
feature selection and classification methods 
for discrimination of left and right hand MI 
task. The ability of this novel system is evalu-
ated with 29 subjects.

Material and Methods

A. Subjects and Data Acquisition 
In this analytical study, 29 healthy subjects 

with no reported brain-related diseases partici-
pated [48]. EEG data was recorded at 1000 Hz 
sampling rate with thirty electrodes according 
to the international 10-5 system with Fz as the 
ground electrode. The subjects sat on an arm-
chair in front of a 50-inch white screen with 
distance of 1.6 m and without any movement 
of the body. 

The experiment included three sessions of 
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left and right hand MI. Each session com-
prised a 1 min pre and post-experiment resting 
period, and 20 repetitions of the given task (10 
trials for each left and right hand MI). The task 
started with 2 s of a visual introduction of the 
task, followed by 10 s of a task period and 15 to 

17 s resting period randomly. Figure 1 shows 
the diagram of the experimental paradigm. In 
the task period, subjects imagine the opening 
and closing their hands with a speed of 1 Hz. 
Therefore, for each subject in the whole three 
sessions with 30 trials for left and also 30 trials 

Figure 1: Schematic diagram of the data acquisition (Figure reproduced from Shin J, et al. IEEE 
Trans Neural Syst Rehabil Eng. 2017;25(10):1735-45. [48])

for right hand MI were performed.

B. Effective connectivity 
Effective connectivity is an important aspect 

of modern neuroscience due to its potential to 
describe interactions between brain areas and 
in other words representation of the direction 
and strength of the information flow between 
different brain areas [49]. A popular statistical 
method for estimating effective connectivity is 
Granger causality (GC) which is a data-driven 
approach [50]. 

GC in the frequency domain results in the 
analysis of EEG frequencies bands [51]. This 
method is based on estimation of parameters 
of Multi-Variable Auto-Regressive (MVAR) 
model for an individual signal data. Quantita-
tive spectral measures are: Generalized Partial 
Directed Coherence (GPDC) [52, 53], Direct-
ed Transfer Function (DTF) [54], and Direct 
DTF (dDTF) [55]. These techniques charac-
terize the direction and spectral properties 
between any pair of channels in EEG signals 
simultaneously. By these measures, it’s pos-
sible to quantify the value of each possible 
electrode combination per specific frequency 
range. We extract each frequency range for 
each measure by averaging theta (4 − 7 Hz), 

alpha or mu (8 − 12 Hz), beta1 (12 − 15 Hz), 
beta2 (15 − 22 Hz), beta3 (22 − 30 Hz) and 
gamma (30 − 45 Hz). All calculations were 
done using MATLAB (The Mathworks, Inc., 
Natick, MA, USA) via the open-source SIFT 
toolbox [56].

C. Statistical Analysis
Due to the limited dataset, k-fold cross vali-

dation was used. This method partitions the 
dataset into k equal sized subsamples (in this 
paper, k is set to 10). In each trial, the clas-
sification structure is constructed with 90 per-
cent of data and evaluated with the remaining 
data as testing data. The process is repeated 
10 times, each subsample used exactly once as 
the testing data, until all the dataset has been 
used for testing. Evaluation performance is re-
ported by averaging the 10 results from each 
subsample. Moreover, the 10-fold cross vali-
dation is done for 100 consecutive runs and 
the average of the results is calculated. The 
advantage of this method compared with re-
peated random sub-sampling is the use of all 
dataset for both training and testing.

D. Preprocessing
First, the EEG data was re-referenced to 
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common average reference, then a fourth or-
der of Chebyshev type II with a passband of 
2 - 45 Hz was applied to the signal. Finally, 
electrooculogram (EOG) artifact was rejected 
using independent component analysis (ICA) 
method via the automatic artifact rejection 
toolbox in EEGLAB [57].

E. Feature selection method
The significance of the extracted features 

from effective connectivity methods between 
right and left hand MI groups is tested by 
the Kruskal-Wallis method [58]. Then, the 
non-significant features with p > 0.01 are dis-
carded. After that, the Minimum Redundancy 
Maximum Relevance (mRMR) method [59, 
60] is used to select the best features. In this 
method, features can be selected far away 
from each other while still having the highest 
relevance to the target classes. This selection 
method is more powerful than the only maxi-
mum relevance selection methods.

F. SVM classification
SVM is one of the powerful tools for classi-

fication issues. In this method, the parameters 
of the separator function should be designed 
so that the margin between the hyperplane be-
comes maximum [61]. SVM maps the input 
space to a higher dimension in order to unfold 
the complexity existing in the dataset using a 
proper kernel function and after that, a linear 
decision surface is designed to identify the 
labels with fewer complications. Appropriate 
function is Radial Basis Function (RBF) and 
the parameters are determined in the optimiza-
tion process.

Results
Several measures of effective connectivity 

using GC methods (GPDC, DTF, dDTF) and 
parameters of calculated MVAR model were 
estimated based on each signal frequency band 
ranges [theta (4 − 7 Hz), alpha or mu (8 − 12 
Hz), beta1 (12 − 15 Hz), beta2 (15 − 22 Hz), 
beta3 (22 − 30 Hz) and gamma (30 − 45 Hz)] 

in 29 subjects (30 left hand MI and 30 right 
MI task for each subject). Best parameters for 
MVAR model fitting were selected according 
to autocorrelation function and portmanteau 
tests. The optimized parameters are: 5 s of 
window length, and model order of 60. Having 
30-channel EEG, 900 (30×30) directed causal 
connection between channels as effective con-
nectivity features are extracted for each GC 
method in each frequency band range that 
make computation complex. As a result, a fea-
ture subset selection based on Kruskal-Wallis 
statistical test is done to choose most signifi-
cant features for discrimination of right and 
left hand MI tasks. Using this test, the nonsig-
nificant features, which result in p > 0.01, are 
discarded. Then, using the mRMR algorithm 
via 5-fold cross validation, the best features 
remained after the Kruskal-Wallis test are se-
lected. This method chooses the features with 
the minimum redundancy among the selected 
features and the highest relevance to the target 
classes. Finally, the best selected features are 
fed to SVM classification structure. The clas-
sification procedure aims to accurately clas-
sify EEG data into left and right hand MI tasks 
in 29 subjects. A 10-fold cross-validation was 
performed to evaluate the classification perfor-
mance. RBF is selected as the kernel function 
of SVM with the optimal sigma value (σ) of 
0.90 by try and error methodology. The sche-
matic diagram of the proposed MI-BCI system 
is shown in Figure 2.

All data processing were calculated sepa-
rately over segments of 5 s. The classification 
accuracies obtained from the proposed method 
using GC (GPDC, DTF, dDTF) connectivity 
measures over all subjects for 0-5 s and 5-10 
s for each frequency band range are given in 
Table 1, separately. As seen, GPDC yields the 
best results with high accuracy in classifying 
right and left hand MI task within Mu (83.87) 
and beta1 (83.05) frequency bands of EEG 
for 0-5 s. However, other GC methods (DTF, 
dDTF) and other frequency bands of EEG 
(theta, beta2, beta3, and gamma) are not able 
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to categorize right and left hand MI tasks with 
significant accuracy. It should be noted that at 
a time interval of 0 - 5s due to its inherent fast 
responses of brain electrical activity, the EEG 
is the best separable.

Raw 900 (30×30) connectivity features for 
the best results of GC method with high ac-

curacy (GPDC) for Mu, and Beta1 frequency 
band over all subjects in 0-5 s for left and right 
hand MI task are shown in Figure 3. A high-
er absolute value of connectivity feature is 
shown in warm colors. Moreover, the scalp to-
pographies of the averages of normalized log 
(p-value) obtained from the best selected of 

Figure 2: The process of the proposed Motor Imagery (MI)-Brain Computer Interface (BCI)sys-
tem (a) Raw Electroencephalogram (EEG) data (b) Preprocessing (c) Construction of effective 
connectivity matrix (d) The statistical significance of the extracted connectivity features be-
tween right and left hand Motor Imagery (MI) groups using the Kruskal-Wallis test (e) Feature 
selection using Minimum Redundancy Maximum Relevance (mRMR) (f) Classification using 
Support Vector Machine (SVM) (g) Discriminative connectivity maps.

Classification accuracy in frequency band
Theta band Mu band Beta1 band Beta2 band Beta3 band gamma band
[0 5] [5 10] [0 5] [5 10] [0 5] [5 10] [0 5] [5 10] [0 5] [5 10] [0 5] [5 10]

GC methods
DTF 57.79 57.29 56.84 61.58 59.14 56.74 61.85 62.35 56.11 59.54 56.60 56.00

dDTF 65.47 69.63 68.60 67.18 73.66 65.42 69.17 69.57 65.37 66.43 67.92 57.95
GPDC 76.72 76.91 83.87 79.20 83.05 75.045 78.37 74.35 69.88 74.06 66.37 57.95

GC: Granger Causality, DTF: Directed Transfer Function, dDTF: direct Directed Transfer Function, GPDC: General-
ized Partial Directed Coherence

Table 1: Classification accuracy obtained from effective connectivity using Granger Causality 
(GC) methods (Generalized Partial Directed Coherence (GPDC), Directed Transfer Function (DTF) 
and direct Directed Transfer Function (dDTF)) for Theta, Mu, Beta1, Beta2, Beta3, and gamma 
frequency band over all subjects for 0-5 and 5-10 seconds using feature selection methods and 
Support Vector Machine (SVM) classification structure.
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GPDC connectivity features (68 connectivity) 
in feature selection procedure for 0-5 s in Mu 
and Beta1 frequency band over all subjects are 
shown in Figure 4. A higher absolute value 
of log (p-value) is shown in warm colors i.e. 
a better separability with higher significance 
between left and right hand MI task. As seen, 
during the MI task, EEG generally show good 
separation around the motor cortex and high 
separation around frontal and parietal areas 
(Figure 4).

Discussion
In this paper, we proposed a new automated 

algorithm for discrimination of left and right 
hand MI tasks from EEG signal, based on a 
set of discriminative features using GPDC 
method and two hierarchical feature selection 
methods and finally SVM classification struc-

ture. This algorithm could classify the EEG 
data in 29 subjects in 60 trials with an overall 
accuracy of 84% during Mu-Beta1 frequency 
band, effectively.

Results of directional connectivity metrics 
(GPDC features) in multichannel EEG in the 
present study infer that information flow from 
different parts of the brain to the others with 
different direct paths plays an important role 
in differentiation of right and left hand MI 
tasks. As results shown in Figure 4, differen-
tial patterns of connectivity in GPDC method 
is around the motor areas and frontal and pari-
etal areas. Moreover, the accuracies achieved 
with our approach (84%) is higher than other 
method that uses EEG features from individ-
ual channels (70%) [48] in the same database.

Previous studies have shown that when a 
person is performing imagining the left or right 

Figure 3: Raw 900 (30×30) Generalized Partial Directed Coherence (GPDC) connectivity features 
for Mu, and Beta1 frequency band over all subjects for 0-5 seconds for left and right hand Mo-
tor Imagery (MI) task. A higher absolute value of connectivity feature shows with warm colors. 
Thirty electrodes are as follow: F7, AFF5h, F3, AFp1, AFp2, AFF6h, F4, F8, AFF1h, AFF2h, Cz, 
Pz, FCC5h, FCC3h, CCP5h, CCP3h, T7, P7, P3, PPO1h, POO1, POO2, PPO2h, P4, FCC4h, FCC6h, 
CCP4h, CCP6h, P8, T8. 

166



J Biomed Phys Eng 2022; 12(2)

 Connectivity Based Motor Imagery Classification

hand movements, the mu and beta1 rhythms 
of EEG signals as a neural oscillation of brain 
electrophysiological activity at the sensorimo-
tor area are (de)synchronized [8-10, 13, 48, 
62, 63]. Thus, this study on MI hand move-
ment pattern discrimination is in accordance 
with previous results.

To mention a limitation of our study, we be-
lieve that the performance of a multi-modal 
BCI system based on EEG and near-infrared 
spectroscopy (NIRS) might improve accu-
racy. Complementary, information measured 

by these methods is capable to improve the 
performance of either method and finally the 
performance of the system of discrimination 
of right and left hand MI tasks might be im-
proving.

Conclusion
This study addresses a new method based on 

effective connectivity quantified with GPDC 
method and a hierarchical machine learning 
structure methods for discrimination of left 
and right hand MI tasks from EEG signals. Re-
sults indicate that exploring causal dependen-
cies between brain regions of subjects using 
directed information flow plays an important 
role and has potential discriminative value. 
This new system could reach the accuracy of 
84% on the MI EEG data of 29 subjects within 
Mu-beta1 frequency band.
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