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Introduction

The heart is one of the most important parts of the body that is 
responsible for pumping blood into the coronary arteries. If the 
heart function is out of its normal state (rhythm), blood flow is 

not done well and this can lead to a serious risk for the individual [1]. 
Therefore, the accurate and timely diagnosis of heart arrhythmias is very 
important. The Electrocardiogram (ECG) is an important measure for 
diagnosing the presence or absence of heart arrhythmias [2].

ECG is a simple test and can be used to check the heart’s rhythm and 
electrical activity [3]. The electrical activity of the heart begins in the 
Sinoatrial (SA) node, the primary pacemaker of the heart. A damaged 
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ABSTRACT
Background: The Electrocardiogram (ECG) is an important measure for diagnos-
ing the presence or absence of heart arrhythmias. Premature ventricular contractions 
(PVC) is a relatively large arrhythmia occurring outside the normal tract and being 
triggered outside the Sino atrial (SA) node of heart. 
Objective: This study has focused on tunable Q-factor wavelet transform (TQWT) 
algorithm and statistical methods to detect PVC.
Material and Methods: In this analytical and statistical study, 22 ECGs re-
cords were selected from the MIT/BIH arrhythmia database. In the first stage the noise 
of signal remove and then five sub-bands create by TQWT. In the second stage nine 
features (minimum, maximum, root mean square, mean, interquartile range, standard 
deviation (SD), skewness, and variance) extracted of ECG and then  the best features 
selected by using analysis of variance (ANOVA) test. Finally, the system is evalu-
ated by using the learning machines of support vector machine (SVM), the K-Nearest 
Neighbor (KNN), and artificial neural network (ANN). 
Results: The best results were verified with KNN learning machine: the sensitivity 
Se= 98.23% and accuracy Ac= 97.81%.  
Conclusion: A comparative analysis with the related existing methods shows the 
method proposed in this study is higher than the other method for classification PVC 
and can help physicians to classify normal and PVC heart signals in the screening of 
the patients with coronary artery diseases (CADs).
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or malfunctioning SA node results in the heart 
relying on the secondary pacemaker, the AV 
node, to control the rate of contraction of the 
heart muscle. If the AV node fails, the Purkinje 
fibers will control pacemaking in the heart [3].

The components of ECG are P wave, QRS 
complex, T- wave and U- waves. P-wave rep-
resents atrial depolarization, and QRS com-
plex represents ventricular depolarization, the 
T- wave and eventually the U-wave, which re-
flect ventricular repolarization [3].

Premature ventricular contraction is one of 
the most common abnormalities that seriously 
affects older people (about 17% of people over 
70 years of age) [4]. In addition, it includes 
about 33% of the total heart disease around 
the world [4]. PVCs may be a warning signal, 
alerting people to pay attention to this symp-
tom and cure it early on. Otherwise, PVC can 
progress to serious heart disease that requires 
further medical treatment [5]. In the event of 
PVC arrhythmias, QRS complexes are wider, 
RR intervals increased, and P wave may not 
exist.

Processing of the ECG signals has attracted 
increasing attention in recent years [5]. Re-
searchers have developed many PVC detec-
tion algorithms. Jung and Heeyoung used an 
automated diagnostic method for the PVC dis-
ease. In this paper, the statistical parameters 
of ECG using wavelet function were extracted 
and we tried to diagnose the PVC arrhythmias 
[6]. Zarei et al. extracted morphological fea-
tures of the heart, using the PAT algorithm. 
They put the ECG samples in a row matrix us-
ing a linear analyzer for diagnosing PVC ar-
rhythmias [7]. Zhou FY tried to diagnose the 
PVC arrhythmias using deep neural networks, 
such as lead convolutional neural network 
(LCNN) or long short-term memory (LSTM) 
network, and rules inference [8]. Rameshwari 
et al. suggested a simple and effective algo-
rithm for extraction of the ECG signal char-
acteristics and calculated the sensitivity and 
specificity parameters for this arrhythmia [9].

Lek-uthai et al. used several features of the 

ECG for diagnosing PVC. They used a state 
vector machine (SVM) for classifying the ECG 
signal [10]. Sabarimalai et al. detected PVC 
using the sparse signal decomposition, tempo-
ral features, and decision rules [11]. Cuesta et 
al. used only two QRS features for detection of 
PVC, and their proposed algorithm was tested 
on the MIT-BIH Arrhythmia database [12]. 
Shyu et al. used wavelet transform for feature 
extraction and fuzzy neural network (FNN) 
for classification. The proposed algorithm has 
a gross sensitivity of 97.04% for 7 patients 
from the MIT Arrhythmia Database [13].

Alajlan has proposed the capabilities of the 
hybrid support vector machine (SVM) and 
Gaussian process methods in the diagnosis 
and classification of premature ventricular 
contraction arrhythmias. In this study, vari-
ous specifications of ECG signals, includ-
ing morphology, discrete wavelet transform, 
and S transform have been calculated [14]. 
Gutiérrez-Gnecchi et al. have segmented the 
ECG signal into 6-second pieces. They used 
discrete-wavelet transform for extracting the 
properties of ECG signal and also used the 
probabilistic neural network (PNN) for classi-
fication. The results achieved by their method 
demonstrated an accuracy of 71.04% [15]. 
Other techniques are also used for the clas-
sification of PVC arrhythmias, which include 
symbolic dynamic analysis [16], morphologi-
cal transformation and cross-correlation [17], 
and using linear and nonlinear techniques [18].

As shown, various methods have been pre-
sented for detecting the PVC arrhythmia based 
on the ECG signals, each using different tech-
niques and each algorithm with different be-
havior in the diagnosis of this arrhythmia. 
However, no method has been presented to 
provide a large amount of information with 
high accuracy and sensitivity to identify PVC 
arrhythmias. For instance, in the study con-
ducted by Robert Chen et al. only 15 min of 
data from the MIT-BIH database were utilized 
[5]. Besides, some of the methods proposed 
demonstrate high diagnostic results, while us-
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ing a small amount of data. For example, in 
reference [13], PVCs have been categorized 
with an accuracy of 97.4% using wavelet 
method and fuzzy classification. Meanwhile, 
the above method has been performed on 7 
data of the MIT-BIH database.

To address the aforementioned problems, in 
the present study, a new method has been pre-
sented for the diagnosis of PVC arrhythmias 
based on feature extraction using tunable Q-
factor WT (TQWT). This method is capable 
of processing the 30-min ECG in the MIT-BIH 
database and achieving better results. In recent 
years, TQWT has been used for analyzing and 
processing oscillating signals in various prob-
lems [19]. TQWT can determine the dynamic 
properties of signals with abnormal beats ac-
cording to normal signals. Most wavelet trans-
forms are incapable of tuning their Q-factors 
(the Q parameter is the main factor in the 
signal oscillation), however, the TQWT is ca-
pable of adjusting this parameter and has thus 
been used as a powerful tool for analyzing os-
cillatory signals. In TQWT, the signal can be 
better examined by changing the Q parameter. 
Moreover, in TQWT technique, the signal is 
developed using the ideal structure of the re-
building of filter banks, which will be further 
described in later sections. 

This study presents a nonlinear algorithm 
for classification of PVC arrhythmias. After 
applying the TQWT algorithm to the signal, 
the statistical properties were extracted in each 
sub-band and then three popular classifiers: k-
nearest neighbor (KNN), and support vector 
machine (SVM) and artificial neural network 
(ANN) were employed to evaluate the perfor-
mance of the proposed scheme. This method 
will provide effective assistance to doctors 
when screening for patients with cardiovascu-
lar diseases (CVDs).

The MIT-BIH arrhythmia database was uti-
lized as a database to test the effectiveness of 
the proposed method [20]. This database in-
cludes 48 signals recorded from different indi-
viduals from 32 to 89 years-old. Each record-

ed signal contains 30 min, and two leads have 
been used for ECG recording: a modified body 
lead and one of the modified leads of v1, v2, 
v4 and v5. In this database, the sampling fre-
quency is adjusted at 360 Hz and the data has 
a pass band of 0.1-100 Hz. The signals have a 
resolution of 11 bits in the range of 10 mV. In 
this study, lead 2 has been used. Furthermore, 
in accordance with the AAMI recommended 
practice, records #102, #104, #107 and #217 
were discarded because these beats do not 
have sufficient signal quality for reliable pro-
cessing [21], then 44 records remained. These 
records were divided into two datasets (DS1 
and DS2) with each dataset containing ECG 
data from 22 recordings. We used DS1 dataset 
in this work.

The remainder of this paper is organized as 
follows: The ECG database is discussed in 
Section 2. Section 3 presents our proposed 
PVC classification method, including filter-
ing, TQWT based decomposition, feature ex-
traction, classification method, and evaluation 
parameters. Section 4 presents the results, in-
cluding experiment description, validation of 
the model’s efficacy, and comparisons with 
previously published work. Finally, Section 5 
concludes this paper.

Material and Methods
In this analytical and statistical study, the 

block diagram of proposed PVC detection is 
shown in Figure 1, consisting of four stages, 
namely data preprocessing, feature extraction, 
classification, and PVC arrhythmia detection.

Filtering
The ECG signal is generally composed of 

noises, including interface noise, power line, 
motion artifact due to electrode, skin interface, 
patient breathing, etc. [22]. On the other hand, 
in order to increase the accuracy of detection 
of the PVC arrhythmias, the noise in the ECG 
signal should be eliminated, thus a filtering 
operation is required. From the power spec-
tral analysis of different signal components 
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in the ECG signal, we notice that the maxi-
mum power density of the QRS complex lies 
between 5-20 Hz. Therefore, a finite impulse 
response (FIR) band-pass filter with a band of 
5 to 16 Hz is used for removing noise [23]. 

As the sampling frequency of the ECG sig-
nal is 360 Hz for the MIT database, stop-band 
is 0 to 4 Hz and 17 to 180 Hz. The stop-band of 
band pass filter between 0 and 4 Hz removes 
the baseline wander noise (between 0 and 1 
Hz) and low frequency noises. Moreover, in a 
frequency range between 16 and 180 Hz, the 
stop-band filter eliminates power line inter-
face noise, electromagnet noise, and high fre-
quency noises. In this way, a noise-free signal 
will be achieved applicable to the remainder 
of algorithm process.

TQWT-based decomposition
The TQWT method has been described in 

[24]. This transform depends on three main 
adjustable parameters, including Q-factor (Q), 
redundancy (R), and decomposition level (J). 
In addition, parameters such as Center Fre-
quency (FS), bandwidth and coefficients α 
and β are important in TQWT. Q-factor is the 
oscillation of the ECG signal, R is the redun-
dancy of the wavelet transform, and J is the 
number of steps in which the signal is divided 
into the sub-bands. Moreover, FS and BW in-
dicate the sampling rate of input and the band 
width, respectively [25].

The input signal S [M] with the sampling 
frequency FS passes through a filter bank. 

This filter bank consists of a low-pass filter 
(LP) and a high-pass filter (HP) with αfs and 
βfs sampling frequencies, respectively, where 
α and β are the low pass scaling and high pass 
scaling factors, respectively. 

In order to get the low-pass sub-band, low-
pass filter H0 (W) and low-pass scaling LPS-α 
are required. The high-pass sub-band H is 
obtained using H1 (W) and high-pass scaling 
HPS- β [26]. Figure 2 illustrates the signal de-
composition stages.

The same frequency responses for low-
pass and high-pass sub-bands signal, which 
were obtained from J-stages and shown with  
H0

J (W) and H1
J (W), respectively, are ex-

pressed as Eqs. 1 and 2 [24, 26].
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Figure 1: Block diagram of the proposed premature ventricular contraction (PVC) detection
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In which (1-β)π<ω<απ. It should be taken 
into account that in this relation, θ(ω) is the 
frequency response of the Daubechies filter 
with two vanishing moments. θ(ω) can be ex-
pressed as follows [24]:

( ) ( )( ) ( )0.5 1 cos 2 cos , | |θ ω ω ω ω π= + − ≤ (5)

Moreover, the values of α and β in relation 
3 and 4 with respect to the values of R and Q 
as Q > = 1 and R > 3, are calculated from the 
following equation:

2 ,  1
1Q r

ββ α= = −
+

                                 (6)

Based on TQWT decomposition in J stages, 
J + 1 sub-bands are obtained. These sub-bands 
signal can be given by cell array D as follows 
[24]:

{ }1 2 1, , ,J JD W W W W += …                          (7)

Where, W(J+1) is a sub-band signal having the 
lowest frequency, and W1 to WJ are sub-band 
signals that contain high signal frequencies. 
The number of samples obtained at each stage 
based on the sampling frequency of the sig-
nal and the coefficients α and β with respect to 
J > = 1, is expressed as follows [24]:

1
1  J

SD Fβα −=                                              (8)

In this study, as explained in Section 2, the 
MIT-BIH database was used. Based on the in-
vestigations and application of different Q val-
ues, the best value for analyzing ECG data was 

obtained as Q = 5. Besides, the J decomposi-
tion level was determined for 4 sub- bands. 
Figures 3a and b demonstrate the TQWT 
analysis of the ECG signal from a healthy per-
son and a person with the PVC disease. From 
Figure 3, the difference between normal and 
PVC is seen in each sub-band of the proposed 
method. It means the statistical power is dif-
ferent at each of the sub-bands.

Feature extraction
Feature extraction is one of the most im-

portant sections in heart signal processing, 
as the correct feature extraction can enhance 
the accuracy of diagnosis of arrhythmias. In 
this study, the ECG statistical characteristics 
were extracted for each sub-band obtained by 
TQWT. The statistical method was divided 
into two stages. First, the division technique 
was considered. For this purpose, we used 
PAT algorithm in this paper [27]. The PAT al-
gorithm is divided into four steps, differentia-
tion of the filtered signal is used to distinguish 
the QRS complex from other ECG waves. 
Then, a nonlinear transformation is performed 
through point-to-point squaring of the filtered 
ECG. After that, integration is carried out by a 
moving time window to extract additional fea-
tures, such as the QRS width. Finally, adap-
tive amplitude thresholds are applied to the 
averaged signal to detect R peaks [27]. By ex-
tracting the R peak, 1800 samples of any data 
that were equivalent to 5 s from the ECG were 

Figure 2: Decomposition of the input signal into low pass sub-band and high pass sub-band at 
Jth levels by tunable Q-factor wavelet transform (TQWT)
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considered, and the TQWT was implemented. 
The values of SB1, SB2,…, SB5 sub-bands 
were calculated for these 5 s, and repeated for 
the whole signal that is 30 min for each record.

In the second step, 9 statistical character-
istics were extracted in each step, including 
the minimum, maximum, root mean square, 
mean, interquartile range, standard deviation 
(SD), skewness, and variance [28]. Statistical 
features can provide useful information re-
garding the ECG in order to diagnose the PVC 
arrhythmia. Some of the related mathematical 

relations have been presented below.
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With the value of x(n) = 1, 2,…, n, is a time 
series, N and SM are the number of data points 
and the mean value of the samples, respective-
ly.

Certainly, all of the extracted features are 
not suitable for this research to achieve the 
maximum classification performance in which 
the boundaries of each class are optimally dis-
tinctively defined from others. It is also very 
problematic and time-consuming to examine 
all subsets associated with the extracted fea-
tures because if there are n features extracted 
in the previous step, there will be 2n-1 of non-
empty subsets entirely. One of the most essen-
tial phases during a learning machine problem 
is introducing the best subset of the extracted 
features by a feature selection methodology. 
There are variations of feature selection meth-

Figure 3: Examples of normal and prema-
ture ventricular contraction (PVC) and their 
five sub-brands obtained using the tunable 
Q-factor wavelet transform (TQWT). a) Ex-
ample of PVC (data106 of Massachusetts 
Institute of Technology-Beth Israel Hospital 
(MIT-BIH) database) decomposition, b) Ex-
ample of a normal Electrocardiogram (ECG) 
(# 100 of MIT-BIH) decomposition
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od for selecting the best feature, and in this 
paper, analysis of variance (ANOVA) test is 
used [29]. The ANONA is tested using the one 
way ANOVA, taking one random sample from 
each population under consideration, with sig-
nificance level (α) of 0.05. Using this test, the 
parameters rms, mean, median, std and var 
were selected. In the next step, the desired data 
will be classified.

Classification method
In the current study, three machine learning 

classifiers of SVM, KNN, and ANN were uti-
lized to evaluate the features extracted tech-
nique and finally, the best classifier was con-
sidered for diagnosis. In the following section, 
these machine learning classifiers will be fur-
ther described in detail.
K nearest neighbors (k-NN)
Searching for the nearest neighbor is an op-

timization problem to find the closest points in 
metric spaces. The problem is: the set S con-
taining a number of points in a metric space 
such as M and also a query point q M∈  are 
given, and the objective is to find the closest 
point to q in S. In most cases, the space M is 
measured as a d-dimensional Euclidean space 
and the distance between points is specified by 
Euclidean distance, Manhattan distance, or 
other metric distances [30].

In the KNN method, K returns the neigh-
bor closer to the query point. This method 
is usually exploited in prediction analysis to 
estimate or categorize a point based on the 
consensus of its neighbors. Therefore, choos-
ing the k parameter in the KNN algorithm is 
important and should be performed with accu-
racy. In this study, the k = 1 value was consid-
ered. The elimination of the noise generated in 
the data is one of the advantages of the KNN 
algorithm, increasing the accuracy of the PVC 
detection.
Support Vector Machine (SVM)
In this research, a support vector machine 

(SVM) has been used to classify the data. In 
today’s machine learning applications, SVM 

is considered as one of the most powerful and 
precise methods among other popular algo-
rithms. SVM is used in various applications 
such as biomedical signal classification, image 
classification, text categorization, and bioin-
formatics.

The SVMs can be considered as a linear 
or nonlinear classifier as they have different 
kinds of kernel function. With a linear kernel 
function, the SVM becomes a linear classifier, 
and with a nonlinear kernel function, such as 
a polynomial, and a sigmoid function, it be-
comes a non-linear classifier [31].

In this paper, the non-linear Radial Basis 
Function (RBF) kernel has been used. One of 
the reasons for the use of SVM in this study 
was that the SVM grants a better generaliza-
tion solution if its parameters are well chosen.
Artificial Neural Networks (ANN)
Artificial Neural Networks (ANNs), or more 

simply the neural networks, are modern sys-
tems and computational methods for machine 
learning, presentation of knowledge, and, fi-
nally, the application of knowledge obtained 
to predict the output responses from complex 
systems. The main idea behind such networks 
is some extent inspired by the function of the 
biological nervous system to process data 
and information in order to learn and create 
knowledge [32].

This system consists of a large number of su-
per-integrated processing elements called neu-
rons working together in coordination to solve 
a problem and transmit information through 
synapses (electromagnetic communications). 
In the current study, a back-propagation neu-
ral network was applied to diagnose PVC ar-
rhythmia with the PURLINE output function.

Evaluation parameters
After presenting the desired algorithm, the 

evaluation of effectiveness of this algorithm 
in detecting the PVC arrhythmia should be 
examined. The data in this study have been 
selected from the MIT-BIH database. Table 1 
represents the number of training and testing 
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data for each data set from database used in 
this paper.

To diagnose PVC arrhythmias, four unique 
parameters called True Positive (TP), False 
Negative (FN), False Positive (FP), and True 
Negative (TN) have been used in this paper 
as shown in Table 2 [6]. For example, TN, 
the algorithm presented in this study, detects 
the healthy ECG as normal, and FP detects 
healthy ECG as PVC.

Based on these parameters, to assess the 
practical results obtained in this study and to 
compare them with other studies, two param-
eters have been defined as [6]:

1. Accuracy (AC): the result of dividing of 
the number of correctly detected peaks by the 
total number of peaks;

100%TP TNAC
TP TN FN FP

+
= ×

+ + +
              (18)

2. Sensitivity (SE): The result of dividing 
the number of peaks that correctly detected 
PVC arrhythmias by the total number of PVC 
peaks;

100%TPSE
TP FN

= ×
+

                              (19).

Results

Experiment description
In this paper, the experimental results were 

obtained through the MIT-BIH database. In 
addition, the TQWT method was used to ex-
tract features. In order to extract the TQWT 
sub-bands, first, the peak R was obtained from 
PAT algorithm, and in the second step, the 
signal was converted to small 5-second seg-
ments, and 5 sub-bands were calculated for 
each of them. This was repeated for the whole 
30-min signal. Then, 9 statistical characteris-
tics were extracted for each of the sub-bands. 
The important features were investigated sep-
arately through three SVM, KNN, and ANN 
machine learning classifiers. Finally, a classi-
fier was selected as the preferred classifier for 
the detection of PVC arrhythmias. Experimen-
tal results were obtained using the MATLAB 
software (version 2015) on a computer system 
with the configuration of Intel (R) Core™ i7 
and 4500U CPU and 6 GB of RAM.

Validation of the model’s efficacy
The proposed method was evaluated using 

SIG Total Training Testing
101 1865 1305 560
106 2027 1216 811
108 1774 1241 533
109 2532 1772 760
112 2539 1778 761
114 1879 1315 564
115 1953 1367 586
116 2412 1689 723
118 2288 1601 687
119 1987 1390 597
122 2476 1734 742
124 1619 1133 486
201 2000 1400 600
203 2980 2086 894
205 2656 1859 797
208 2955 2068 887
209 3005 2103 902
215 3363 2345 1018
220 2048 1434 614
223 2605 1823 782
230 2256 1597 659

Table 1: Numbers of the training and testing 
sets used in this study

Classified labels
PVC                                                                                                                                                   
                          Normal

True Normal TN FP
labels PVC FN TP

PVC: Premature ventricular contraction, TN: True Negative, 
FP: False Positive, FN: True Negative, TP: True Positive 

Table 2: Definition of True Positive (TP), False Nega-
tive (FN), False Positive (FP), and True Negative (TN)
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the evaluation parameters. Table 3 demon-
strates the measured parameters of each sub-
band using the SVM, KNN, and ANN classi-
fication algorithms for diagnosis of the PVC 
arrhythmias based on the MIT-BIH database. 
Regarding Table 3, the ECG signal has been 
divided into 5 sub-bands using the TQWT al-
gorithm and different values of signal accura-
cy and sensitivity for MIT-BIH database have 
been obtained with three different methods.

As it is clear based on the classification 
methods, various values are obtained accord-
ing to the TQWT method for each record of 
the MIT-BIH database in each sub-band. For 
instance, the accuracy obtained from record 
124 associated with a 77-yearold man with 
PVC arrhythmia, has been calculated 97.75, 
98.85, and 97.95, respectively, from the SVM, 
KNN, and ANN classification methods in sub-
band 1. Meanwhile, the accuracy obtained in 
sub-band 5 for this record was 99.38, 100, and 
98.59, respectively.

Table 4 indicates the mean values obtained 
from the MIT-BIH data. According to the re-
sults of the Table 4, there were significant dif-
ferences in the accuracy and sensitivity of the 
SVM, KNN, and ANN classification methods 
based on the proposed method. Accordingly, 
the lowest accuracy and sensitivity were as-
sociated with the results of the ANN and SVM 
classification methods with values of 94.52 
and 94.80, respectively.

Moreover, it can be observed from Table 4 
that the KNN algorithm in comparison to the 
SVM and ANN methods has a higher accuracy 
and sensitivity of the proposed method in all 
of its sub-bands as shown in Figure 4.

Figures 4a and b demonstrate a compari-
son between the average values of param-
eters obtained from the feature extraction by 
the TQWT method with the SVM, ANN, and 
KNN classifiers. It is clear that the highest ac-
curacy and sensitivity in the KNN method for 
the SB5 sub-band were obtained as 98.20 and 
100%, respectively. Thus, the combination of 
the TQWT with the KNN algorithm is more ef-

fective in comparison with the ANN and SVM 
methods for diagnosis of the PVC arrhythmia 
(as illustrated in Table 5). Table 5 represents 
the mean values of each sub-band using the 
results obtained from the proposed algorithm 
and based on Table 4. It can be seen that af-
ter KNN, the highest accuracy and sensitivity 
were related to the SVM and ANN algorithms, 
respectively.

Discussion
The present study aims to investigate PVC 

detection arrhythmia using TQWT and statis-
tical features, regarding the accuracy of ECG 
beat classification. In the beat-based training 
scheme, three learning machine (KNN, SVM 
and ANN) are used to classify ECG signal. 
Moreover, ANOVA technique is used to re-
duce the number of features used in the clas-
sification process.

The results of our proposed method were 
compared with 5 published studies which have 
used the MIT-BIH database. Their perfor-
mance results from our approach were com-
pared with the corresponding reported results. 
Table 6 shows the results of the current study 
with other ones in detail. The results show that 
performance of our proposed algorithm com-
pared to other studies is more appropriate to 
detect the PVC arrhythmias using KNN clas-
sifiers.

Robert Chen et al. proposed a PVC classi-
fication method based on wavelet transform 
(WT) and a combination of the sum of trough 
and sum of R peak [5]. They used a test-set of 
5 recordings 5 data from the MIT database to 
determine the performance of their classifier. 
The accuracy parameter was reported 94.73 in 
this study, however, our proposed method was 
evaluated on 22 records of the MIT database 
and the results of ours are higher than this ref-
erence.

As stated in the introduction, Jung Y and Kim 
H. proposed an ECG monitoring procedure for 
the diagnosis of PVC beats. After ECG, sig-
nals were decomposed by discrete wavelet 

PVC Detection System Based on TQWT

69



J Biomed Phys Eng 2022; 12(1)

Mohamad Hadi Mazidi, et al

SIG

SB
1

SB
2

SB
3

SVM
K

N
N

A
N

N
SVM

K
N

N
A

N
N

SVM
K

N
N

A
N

N

A
C

SE
A

C
SE

A
C

SE
A

C
SE

A
C

SE
A

C
SE

A
C

SE
A

C
SE

A
C

SE
101

98.3
98

99.2
98.8

96.07
93.03

98.7
99.1

100
100

95.2
93.2

98.7
99.3

100
100

93.59
94.48

106
97

97.2
98.5

98.7
93.58

91.4
98.23

99.3
99.4

100
93.47

94.74
86.35

90.88
100

98.6
87.3

90.14
108

99.53
99.63

99.02
98.35

98.5
99.21

98.73
98.9

98.7
99.6

99.26
100

99.38
99.44

99.07
100

99.21
100

109
99.60

99.06
100

98.43
98.55

100
99.43

99.19
100

100
98.41

100
98.28

98.66
98.41

100
98.41

100
112

99.8
99.6

100
100

92.77
91.93

100
100

100
100

95.42
95.48

100
100

100
100

97.04
98.09

114
98.6

98.9
100

100
97.52

99.81
96.11

98.19
98.05

99.45
97.87

99.81
97.87

99.63
97.87

100
98.05

100
115

97.7
98.2

99.97
99.95

95.47
98.98

96.39
97.23

98.85
99.85

95.36
93.28

96.02
96.58

98.2
99.25

95.23
92.58

116
98.7

97.74
97.28

96.47
94.27

95.85
92.27

94.58
96.19

98.98
95.27

97.58
96.27

97.58
97.65

98.78
95.19

94.28
118

99.12
99.85

98.54
99.12

99.12
100

99.12
99.85

99.41
99.85

98.44
100

99.83
99.56

99.27
99.7

99.27
99.85

119
95.85

96.09
96.25

96.35
94.89

98.41
93.62

94.87
94.25

96.78
93.46

97.29
98.22

98.09
95.53

97.57
94.57

98.13
122

96.02
97.12

96.23
97.98

95.14
97.55

96.25
97.23

98.87
96.35

95.27
97.23

97.85
95.68

98.23
99

95.28
97.12

124
97.75

100
98.85

100
97.95

99.78
97.13

98.73
97.75

100
97.75

99.36
97.13

98.94
98.15

99.36
98.36

99.37
201

92.62
93.1

94.09
96.55

93.93
97.25

91.47
95.01

95.62
95.09

93.28
97.78

91.63
92.01

93.93
96.37

93.27
98.9

203
87.93

88.6
93.45

92.35
85.96

97.23
87.25

88.98
93.2

91.78
87.23

99.23
87.15

88.01
93.24

92.73
85.49

97.23
205

98.25
99.87

99.87
99.22

98.37
99.48

98.37
99.61

99
100

98.75
99.61

98
99.84

100
100

98.12
99.01

207
92.5

94.46
94.25

94.12
94.59

94.84
92.85

94.25
95.98

94.52
92.28

94.71
93.25

94.12
97.5

97.89
95.89

98.12
208

82.87
83.25

94.23
93.47

76.97
91.58

82.58
81.27

90.88
86.85

72.95
89.43

83.85
87.25

91.2
90.25

70.25
88.22

209
100

100
100

100
99.95

100
99.85

100
100

100
99.98

100
100

99.99
100

100
99.95

100
215

96.95
97.93

99.34
100

97.35
99.47

97.44
98.86

100
100

97.44
99.89

96.85
98.55

98.03
99.25

96.36
98.85

220
97.8

97.65
94.29

97.25
95.76

96.89
95.43

94.24
95.45

95.72
95.97

94.27
94.98

97.47
97.43

97.65
97.85

95.89
223

90.89
91.98

94.47
94.14

92.03
97.98

92.12
95.18

96.38
94.60

87.86
95.30

90.53
94.39

91.26
95.84

91.15
94.66

230
100

100
100

100
99.94

100
100

100
100

100
98.98

99.87
99.87

100
100

100
99.78

100
total

96.26
96.73

97.62
97.78

94.99
97.30

95.60
96.57

97.63
97.70

94.54
97.18

95.54
96.63

97.49
98.28

94.52
97.04

Table 3: Calculation of evaluation param
eters of M

assachusett
s Institute of Technology-Beth Israel Hospital (M

IT-BIH) database base on 
tunable Q

-factor w
avelet transform

 (TQ
W

T)

70



J Biomed Phys Eng 2022; 12(1)

SIG

SB
4

SB
5

SVM
K

N
N

A
N

N
SVM

K
N

N
A

N
N

A
C

SE
A

C
SE

A
C

SE
A

C
SE

A
C

SE
A

C
SE

101
98.5

98.2
98.2

98.89
89.57

90.88
99.6

98.8
99.6

100
96.12

98.12
106

92.45
91.43

100
100

88.8
91

94.8
92.48

99.8
100

91.54
90.4

108
98.35

99.37
99.08

99.63
99.21

99.08
97.8

96.1
100

100
99.63

99.8
109

98.55
99.06

98.55
99.33

98.28
99.86

94.5
93.7

98.9
100

98.28
99.86

112
98.8

99.6
100

99.8
97.73

97.44
100

100
100

100
95.16

95.66
114

96.99
98.91

97.7
99.09

97.7
100

95.58
96.38

98.81
100

97.52
99.63

115
98.23

97.02
96.87

98.23
96.23

98.23
94.98

95.23
98.85

100
97.58

98.5
116

98.32
97.23

96.27
97.14

97.14
97.89

95.89
97.25

98.89
100

98.26
99.52

118
99.12

99.85
99.12

99.56
98.98

99.85
97.09

97.66
98.98

100
99.41

100
119

96.16
95.48

100
98.7

94.93
98.13

88.78
87.93

98.25
100

90.35
96.54

122
97.23

97.12
98.87

96.89
97.25

97.78
95.14

95.21
98.81

100
96.87

99.25
124

99.47
99.15

97.34
98.73

98.33
100

99.38
98.52

100
100

98.59
100

201
93.27

94.37
96.11

95.64
94.59

99.46
87.04

89.47
95.68

100
91.96

99.82
203

87.43
83.33

89.55
87.84

86.77
99.49

86.38
80.8

96.23
100

96.23
99.75

205
98.25

99.74
98.52

100
97.50

98.58
97.87

99.22
98.58

100
97.5

98.97
207

94.89
95.12

95.23
98.21

95.78
97.59

94.89
95.28

97.23
100

94.23
95.28

208
89.16

88.68
89.98

90.25
85.25

96.25
83.28

89.25
94.3

100
96.23

99.5
209

99.98
100

100
100

99.97
99.89

100
100

100
100

99.89
100

215
96.26

98.65
97.54

100
98.33

99.89
97.23

98.14
98.66

100
97.25

99.69
220

97.27
97.28

98.38
98.47

97.12
97.25

95.12
95.14

99.23
100

100
98.28

223
91.02

91.52
95.56

95.37
90.89

96.24
90.64

91.87
96.91

100
89.88

95.09
230

100
100

100
100

99.89
100

99.78
99.52

99.79
100

99.69
100

total
96.35

96.41
97.40

97.80
95.46

97.94
94.80

94.90
98.52

100
96.46

98.34

SB
: Sub-band, SV

M
: Support vector m

achine, K
N

N
: K

-nearest neighbors, A
N

N
: A

rtificial neural netw
ork, A

C
: A

ccuracy, 
SE: Sensitivity

SB PRF SVM KNN ANN

SB1
AC 96.26 97.62 94.99
SE 96.73 97.78 97.30

SB2
AC 95.60 97.63 94.54
SE 96.57 97.70 97.18

SB3
AC 95.54 97.49 94.52
SE 96.63 98.28 97.04

SB4
AC 96.35 97.80 95.46
SE 96.41 97.40 97.94

SB5
AC 94.80 98.52 96.46
SE 94.90 100 98.34

SB: Sub-band, PRF: Performance, SVM: Support vector ma-
chine, KNN: K-nearest neighbors, ANN: Artificial neural net-
work, AC: Accuracy, SE: Sensitivity

Table 4: Mean values of Massachusetts Institute 
of Technology-Beth Israel Hospital (MIT-BIH) 
data evaluation using tunable Q-factor wavelet 
transform (TQWT) method

transforms, significant wavelet coefficients 
were extracted for constructing a monitoring 
statistic based on Hotelling’s T2 statistics [6]. 
The accuracy of this study was approximately 
the same as the proposed method, however, 
the sensitivity obtained in the proposed meth-
od of the present paper is significantly differ-
ent from this reference.

Roozbeh Zarei et al. [7] performed extrac-
tion of the ECG features and diagnosis of the 
PVC arrhythmia based on the replacement 
method and the PAT algorithm [27]. The sen-
sitivity of the method proposed in the current 
study, which is an important parameter in the 
evaluation of studies, is better than the method 
offered in [7]. Furthermore, the method sug-
gested in [7] can only detect PVC arrhythmias, 
whereas the scheme proposed in the present 
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paper is capable of detecting other cardiac ar-
rhythmias.

F Zhou et al. [8] proposed the algorithm that 
combined deep neural networks and rules in-
ference for PVC detection. The accuracy and 

the sensitivity of this study on the MIT-BIH 
database were 99.41%, 97.59%, respective-
ly. LCNN and LSTM are both deep learning 
models, that they used in their work and their 
architectures are more complex than our archi-
tectures KNN. Additionally, the experimental 
results of our research showed that our method 
had obtained high sensitivity [8].

A premature ventricular contraction (PVC) 
detection method based on the sparse signal 
decomposition, temporal features, and deci-
sion rules is proposed by Sabarimalai et al, 
[11]. This method classifies PVC beats by 
combining ten generalized temporal features 
with decision-rule- detection algorithm. Com-
paring this study with the current investiga-
tion, the sensitivity of the proposed method is 
considerably higher, besides, the accuracy has 
not been declared in the former study. Based 
on the results of Table 6, we can conclude that 
our work, using TQWT and the KNN learning 
machine, has offered some improvement com-

Reference Rec.No. Technique AC SE

Robert Chen-Hao Chang [5] 5 wavelet transform+combines the sum of trough and sum of 
R_peak 94.73 -

Jung Y and Kim [6] 9 Wavelet+SPC 99 94.3
Roozbeh Zarei [7] 22 “Replacing” strategy+PCA 98.77 96.12

Zhou FY [8] 22 deep neural networks+ rules inference 99.41 97.59

Manikandan MS [11] 47 signal decomposition+temporal features combined with decision-
rule - 89.69

This paper 22 TQWT+ statistical features +KNN 97.81 98.23
AC: Accuracy, SE: Sensitivity, SPC: Statistical process control, PCA: Principal component analysis, TQWT: Tunable Q-factor 
wavelet transform, KNN: K-nearest neighbors

Table 6: Comparison of the results with previously-studied articles

Figure 4: Comparison of performance of the 
three classifiers of support vector machine 
(SVM), K-nearest neighbors (KNN), and artifi-
cial neural network (ANN) based on the pro-
posed feature extraction method in terms 
of: a) accuracy, b) sensitivity

Mohamad Hadi Mazidi, et al

PRF SVM KNN ANN
AC 95.71 97.81 95.19
SE 96.30 98.23 97.56

PRF: Performance, SVM: Support vector machine, KNN: K-nearest 
neighbors, ANN: Artificial neural network, AC: Accuracy, SE: Sen-
sitivity

Table 5: Comparison of mean parameters of the 
proposed method measured with support vector 
machine (SVM), K-nearest neighbors (KNN), and 
artificial neural network (ANN)
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pared to other works.
A limitation of the current study is that the 

proposed method has limited performance 
with the processing tools in real time due to 
the complexity of mathematical computations 
in the TQWT algorithm. Nevertheless, detect-
ing other CVDs in addition to PVC diagnosis 
is one of the strengths of the method proposed 
in this study, hence it is an appropriate method 
to be used in cardiac clinics to diagnose CVDs. 
Moreover, the main advantage of the TQWT-
based feature extraction is that this technique 
divides the large volume of ECG data into 
smaller sets, thus it is capable of processing a 
large amount of data at a lower cost relative to 
other methods.

Conclusion
In this study, detection of the PVC arrhyth-

mia was proposed according to the TQWT 
method based on MIT-BIH database. The ECG 
signal passed through the filter and after find-
ing the R peak divided into 5 sub-bands using 
the TQWT method based on its parameters, 
Q, R, and J level. After signal decomposition, 
nine statistical features were used to segment 
the sub-bands and the most important features 
were extracted. These features were put in one 
set for each sub-band and then the signal was 
analyzed using three machine learning classi-
fiers SVM, KNN, and ANN. The experimental 
results reveal that the combination of the pro-
posed TQWT method with the KNN classifier 
has better performance compared to the SVM 
and ANN methods. For detection of PVC, our 
algorithm achieves an accuracy of 97.81% and 
sensitivity of 98.23% for 30 min of each MIT-
BIH recording. In the future, we will imple-
ment the proposed method for wearable tools 
using FPGA.
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