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Introduction

Diabetes is a type of disorder in the body. In this disorder, the 
ability of the body to consume and metabolize whole sugars 
decreases in the body, thereby leading to an increase in blood 

glucose in the body [1]. 
The prevalence of diabetes in the world is increasing in recent years. 

In 2007, the American Diabetes Organization stated that about 17.5 mil-
lion people in the United States suffer from diabetes [2] that is 45% 
more than 2002. About 5% to 10% of these patients suffer from type 1 
diabetes. In addition, according to the financial statistics on diabetes, 
the economic burden of diabetic patients increased from $132 billion in 
2002 to $174 billion in 2007 [3].
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ABSTRACT
Background: Due to the increased prevalence of diabetes and the irreparable com-
plications of this disease, it is important to measure and monitor the blood glucose 
levels of diabetic patients. The only way to treat type 1 diabetes is monitoring insulin, 
and in this type of diabetes, insulin should be injected into the body in order to reduce 
the patient’s blood glucose as prescribed by the physician at certain times. In addition, 
the only way to treat type 2 diabetes is through diet and exercise daily. 
Objective: We aim to use an ordinary differential equation model with two-delays 
to control the rate of changes in blood glucose levels throughout the day, based on the 
amount of food that the person consumes.
Material and Methods: In this analytical study, we extended an ODE model 
which is parameterized by data collected in this study to capture dynamics of glucose 
and insulin. We used global sensitivity analysis method to assess model robustness 
with respect to parameter perturbations. 
Results: Our results have shown that utilizing the dynamics of changes in blood 
glucose levels throughout the day can be used to prevent hypoglycemia and hypergly-
cemic in the diabetic patients.  
Conclusion: Dynamic modeling can help us to prevent hypoglycemia and hyper-
glycemia in the diabetic patients.
Citation: Vosoughi R, Sadeghi Goghari Z, Jafari AH. Modelling System of Two Insulin-Glucose Delays to Achieve the Dynamics of Glucose 
Changes. J Biomed Phys Eng. 2022;12(2):189-204. doi: 10.31661/jbpe.v0i0.1207.
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According to studies, in 2011, there were 

more than 6 million diabetic patients in Iran, 
and the prevalence of diabetes was 8-11%; the 
highest prevalence of diabetes was reported in 
Yazd province in Iran [4-5]. According to the 
International congress on diabetes, by 2040, 
the number of diabetic people will reach 72 
million and 643 million in the Middle East and 
the world, respectively [5]. 

β-cells of the pancreas accelerates blood 
flow to tissues by secreting insulin [6-8]. Dia-
betes is the result of partial malfunction in 
the insulin secretion system by the pancreas 
(type 1 diabetes), and malfunction of the in-
sulin receptor cells to absorb insulin (type 2 
diabetes) [7, 9]. Long-term effects of diabetes 
are generally due to increased blood glucose 
levels. These effects may result in loss of vi-
sion, cardiovascular diseases, kidney diseases 
and sexual dysfunction [10]. 

Anticoagulant effects of diabetes often occur 
because of a decrease in blood glucose levels. 
These effects may lead to dizziness, numbness 
or death [6]. 

Activities and rest everyday have a great in-
fluence on insulin sensitivity [11]. In a normal 
person, the amount of insulin injection is well 
proportional to produced glucose from the 
liver and the amount of glucose needed for a 
person’s vital balance [12]. 

Insulin sensitivity is very high and effective 
in healthy people, while it is less susceptible 
to diabetic patients. The human body needs a 
blood glucose level of 70 to 109 mg/dL [13]. 

In 2002, Ahren and Taborsky found that plas-
ma insulin levels for a healthy person ranged 
from 5 to 10 μU/ml. In 2002, Simon and Bran-
denberger stated that it could be in the range 
of 10-40 μU/ml at a constant feeding time. 

The first simple models are presented by 
Boolean [14] and Ackerman [15]. In this mod-
el, only two components of insulin and blood 
glucose were examined and had a linear struc-
ture. Later, in 1979, Bergman [16] and his 
first-generation colleagues presented the low-
est Bergman model, which was performed on 

9 dogs based on venous glucose test [17]. In 
1991, Sturgis and colleagues [18] presented an 
ODE model [19-20]. The purpose of this mod-
el was to find the origin of ultradian oscilla-
tions and show that insulin secretion from the 
pancreas was oscillating and these oscillations 
were at three fast rates, including a period of 
about 10 seconds, a sharp period of 5 to 15 
minutes and a slow period of 50 to 150 min-
utes. These slow fluctuations may be known 
as ultradian fluctuations based on two negative 
feedbacks, which is related to the effect of in-
sulin on glucose consumption and the glucose 
effect on insulin secretion [21]. 

In 1995, Drozdov and his colleagues intro-
duced a model for describing fluctuations of 
insulin production in humans [22]. Parker and 
colleagues first used a precursor controller 
to control blood glucose levels in type 1 dia-
betic patients [23]. They used the Soren Sen 
model as a diabetic patient’s body simulator 
[24]. They applied a rich signal to the patient’s 
body and identified the appropriate baromet-
ric reading for use in the pre-controller [21]. 
Eren-orukl et al. used two GPC2 and LQC1 
techniques to control blood glucose in type 
1 diabetic patients. In 2006, the two-point 
model was expressed by Li and Kuang [21], 
which considered two delays in this model as 
follows: a delay since glucose concentration 
increases until insulin is transmitted to inter-
cellular space and another delay, since insulin 
is produced until changes in the production of 
liver glucose [4]. 

Generally, due to type 1 diabetes, the insulin 
injection system fails. Its treatment involves 
insulin injections and constant blood glucose 
control [3]. Therefore, in these patients, insulin 
is injected three to four times manually. Blood 
glucose levels in type 1 diabetic patients vary 
widely, which can lead to hyperglycemia (G 
(t)> 120 mg/dl) or hypoglycemia (G (t) <65 
mg / dl) [25]. 

Type 1 diabetes is an insulin-dependent dia-
betes, because in this type of diabetes, the body 
cann’t produce the insulin needed to reduce 
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the patient’s blood glucose. Therefore, insu-
lin should be injected into the patient’s body 
to reduce blood glucose levels [1, 13]. Type 2 
diabetes is an insulin dependent diabetes, be-
cause you have enough insulin in this type of 
diabetes, but there are few insulin-receptors in 
the body [1, 13].

Generally, the task of insulin in your body is 
to collect sugar from the body and store it in 
the liver as glycogen, which reduces the blood 
glucose in the individual [9].

Material and Methods
In this section we aim to construct and ana-

lytical ODE based model to predict dynamics 
of blood glucose and insulin in body, there-
fore, as shown in Figure 1, we determined the 
sources of sugar production in the blood as 
well as the use of sugars. 

Glucose changes = input sugar + glucose released 
from the liver – insulin independent glucose - insulin 
dependent glucose

   (1)

Block diagram (Figure 1) shows the changes 
in blood glucose. 

Since people with type 1 diabetes do not pro-
duce almost any type of insulin, in this model, 
insulin changes should be considered as fol-
lows: 

Insulin changes = injected insulin - consumed insulin   (2)

Body model
To model the body, we must have a formula 

for production and consumption in different 

parts of the body. The empirical formulas ex-
tracted for different parts are: 

1. Glucose used by insulin-independent 
cells Nervous cells and a number of endocrine 
cells without insulin can absorb glucose in the 
blood. Consequently, equation 3 should be 
used. According to equation 3, it can be said 
that the insulin-independent of glucose level 
can be varied by the three parameters, includ-
ing Ub, C2, and Vg.
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2. Glucose used by insulin-dependent cells. 
Muscle cells and fatty acids need insulin to 

remove glucose from the blood. Without insu-
lin, almost no glucose is removed from these 
cells. This is as follows: this formula has two 
parts and the insulin passage section is another 
part of the sugar import. According to equa-
tion 4, the number of glucose consumed by 
insulin-dependent cells can be varied with the 
two parameters C3 and Vg.
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Figure 1: Block diagram below showing the changes in blood glucose.
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Regarding equations 3 and 4, due to the use in 
both the equations, Vg can be a candidate for 
constant assumption because it is independent 
of glucose used by insulin-independent cells 
and glucose used by insulin-dependent cells; 
consequently, the process causes coefficients 
to be chosen easier. However, these two parts 
cannot be explicitly considered independently. 
Therefore, the changes in insulin-independent 
consumption remain the two coefficients of Ub 
and C2. The constant assumption of C2 and the 
variable coefficient assumption of Ub is very 
convenient because the formula is linear with 
the Ub coefficient. 
In equation 6, which has two parts, the part f3 
is related to the number of changes in glucose 
consumption based on sugar change and the 
part f4 is related to the number of changes in 
glucose consumption based on insulin. In the 
first section, with the constant assuming Vg, 
only the C3 remains; thus, C3 can be consid-
ered as one of the variable coefficients. In the 
second part, the number of coefficients is high. 
The formula for the coefficients U0 and Um is 
linear and the coefficients β, C4, Vi, E, and ti 
are nonlinear. 
3. Glucose released from the liver with insulin 
control 
When glucose in the plasma decreases, the 
liver releases the glycogen stored within itself 
as glucose in the blood. This reaction is con-
trolled by insulin and decreases by increasing 
insulin secretion. The relationship is as fol-
lows.
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Given the equations 1, 3, 6 and 7, we have:
( ) ( )( ) ( )( ) ( )( ) ( )2 3 4 5 2( )in

dG t G f G t f G t f I t f I t
dt

τ= − − × + −  (8)

In the case of equation 7, the formula with co-
efficient Rg is linear and with other coefficients 
is nonlinear. Therefore, Rg is a variation coeffi-
cient and α is nonlinear coefficients also it has 
more effect on nonlinear coefficients.

This model covers almost all the blood glu-
cose interactions of a healthy person. 
In different people, according to the physical 
and mental conditions, and even in a person in 
different conditions, the amount of intake and 
production of sugar in blood is different. 
Insulin-dependent sugar consumption is more 
in neurons and brain cells, resulting in insulin-
dependent glucose consumption to increase in 
people with brain activity compared to insu-
lin-dependent glucose consumption in muscle 
cells and non-brain cells. In people who have 
a lot of physical activity or exercise, most glu-
cose used by insulin-dependent cells. 
Therefore, in present study, we tried to change 
the coefficients according to the conditions of 
each person in the formulas related to different 
parts of the model and to make a special model 
for each person. The coefficients that must be 
changed to determine each specific person’s 
model are as follows: 
1. Independent glucose consumption of insu-
lin: 
As previously mentioned, cells that use glu-
cose no need for insulin are mostly neurons 
and brain cells. According to equation 3, the 
amount of independent glucose of insulin by 
three parameters Ub, C2 and Vg can be changed. 
2. Insulin-dependent glucose consumption: 
This type of consumption is in all cells of the 
body, except neurons and brain cells, and it 
is calculated from equation 6. According to 
equation 6, thus the amount of Insulin-depen-
dent glucose consumption by parameters Ub, 
C3, Uo, Um, β, C4, Vi and E can change. 
3. The consumption of released glucose from 
the liver with insulin control: 
The released glucose from the liver with in-
sulin control is different for every person. To 
calculate it, equation 7 is used. According to 
equation 7, the amount of released glucose 
from the liver with insulin control is changing 
by the parameters Rg, α, Vi, and C5. 
4. Consumption insulin: 
The body of each person needs a different 
amount of insulin. Therefore, it should be for 
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each individual to consider the coefficients, in 
order to determining the insulin changes in the 
body using equation 9:

( ) ( )( )1 1 ( )in i
dI t f G t KI d I t
Dt

τ= − + −            (9)

5. Insulin production:
The amount of insulin secretion in reaction to 
increment of blood glucose in the individual 
is proportional to equation 10. According to 
equation 7, the amount of released glucose 
from the liver with insulin control is changing 
by the parameters Rm, C1, Vg and a1.
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Two-delay model
In the body, during normal state, changes in   

glucose and insulin are accomplished with two 
delays:

1. Delay in the production of insulin after in-
creasing blood glucose.

2. Delay in the effect of insulin on inhibition 
of blood glucose.

In the natural body model, insulin with an 
effect on the liver inhibits the amount of re-
lease glucose and increasing the consumption 
of glucose in the cells. In the proposed model, 
there is a second delay, such as the normal 
body, because the delay is related to the struc-
ture of the liver and the cells of the body and 
in patients with diabetes, the liver and other 
cells have normal activity. However, the first 

delay is different from the natural body model 
since it does not produce insulin in the body 
and should be injected into the body at certain 
times.

In this model, considering that insulin grad-
ually enters the bloodstream after injection, 
the delay in producing insulin in a person is 
equal to the needed time for insulin to reach its 
maximum of 5%.

As a result, we summarize all the coeffi-
cients in Table 1, which are independent or 
dependent coefficients.

The third column of the Table 1 represents 
the variable coefficients used to estimate the 
genetic algorithm so that optimal parameters 
are estimated, so that the dynamics of the mod-
el for these parameters with the data obtained 
during the invasive data processing with the 
glucometer are compatible. In fact, the differ-
ence between the output of the model and the 
data obtained is considered as the cost of the 
genetic algorithm.

In this paper, considering that the subjects 
under study were healthy people and had no 
illness, the parameter k should be removed 
from equation 9 since it is the amount of insu-
lin injected into the body. In addition, di is the 
amount of insulin secreted by pancreatic cells 
to reduce the blood glucose of an individual in 
the case of abnormal glucose levels.

In this paper, constant parameters are con-
sidered in accordance with Table 2.

The simulated model in MATLAB software 
is shown in Figure 2.

Constant coefficients Variable coefficients
C2, Vg Ub Independent glucose consumption of Insulin

C4, U0, Vg, ti, E, Vi Um, C3, β Insulin-dependent glucose consumption

C5, Vi Rg, α
The consumption of glucose released from the liver with

insulin control
Rm, C1, α1, Vg - Insulin production

k di Insulin independent glucose Consumption

Table 1: Determination of constant and variable coefficients
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Results
In this paper, a two-delay model has been 

used to model blood glucose changes and in-
sulin changes, which is described in detail in 
the previous section. 

As shown in the relationships of previous 
section, there are many parameters that can-
not be considered as variables because of the 
complexity of the subject. With the imple-
mentation of the insulin-glucose model for the 
constant and variable parameters mentioned in 
Table 1, results that are presented below. 

The research model was implemented in 
MATLAB software simulation and the dy-
namics of blood glucose and insulin was ob-
tained according to the above-mentioned rela-
tionships in the previous sections. 

Parameters Assumed value Unit
C1 2000 mgl-1

α1 300 mgl-1

Rm 210 mU min-1

Vg 10 l
C2 144 mgl-1

C4 80 mUl-1

U0 940 mg min-1

ti 100 min
E 0.2 lmin-1

Vi 11 l
C5 26 mUl-1

K 0 -

Table 2: Parameters of constant values

Figure 2: Model implemented using MATLAB software.

With the implementation of equation 3, we 
have obtained the following graph according 
to the values of Table 2. 

As shown in Figure 3, these cells can’t have 
an effect on glucose, so glucose levels is very 
high and can’t be reduced insulin levels. 

With the implementation of equation 4, we 
have obtained the following graph according 
to the values of Table 2. 

According to Figure 4, muscle cells and fat 
cells require with insulin to remove glucose 
from the blood. Without insulin, almost no 
glucose is removed by these cells. As you can 
see, in these cells, insulin are secreted propor-
tional to the amount of glucose and insulin 
prevents blood glucose from rising.

Figure 3: The rate of independent glucose 
consumption of insulin
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According to Figure 5, when blood glucose 
of body increases, body cells release insulin 
to lower blood glucose, but when so increase 
blood glucose, insulin secretion can’t con-
trol blood glucose levels. As a result, insulin 
should be injected into the body. 

With the implementation of equation 5, we 
have obtained the following graph according 
to the values of Table 2. 

With the implementation of equation 7, we 
have obtained the following graph according 
to the values of Table 2.

When glucose in the plasma decreases, gly-
cogen stored in the liver as glucose is released 
in the blood. This reaction is controlled by in-
sulin and decreases glucose by increasing in-
sulin secretion. According to Figure 6, when 
the body needs with sugar and doesn’t enter 
the body from the outside, the liver begins to 
produce glucose, and according to Figure 7 at 
this time insulin secretion controls the process 
of producing glucose by the liver to prevent 
high of glucose production. 

In order to obtain the dynamics of blood glu-

Figure 7: The amount of released glucose 
consumption with insulin control by the liver

Figure 6: Absorption of glucose by cells with 
the presence of insulin

Figure 5: The rate of insulin secretion in re-
sponse to increased blood glucose

Figure 4: Absorption of glucose by insulin 
dependent cells
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cose according to the biological reality and its 
use in control systems, need to obtain human 
data that was done with the following descrip-
tion. To determine the amount of glucose from 
the food to the blood, the amount of glucose 
in each meal must first be determined. The 
amount of glucose in the food (usually ab-
sorbed in the healthy gastrointestinal tract) can 
be obtained from a site linked to the American 
Food and Drug Administration [5]. 

The subjects tested the amount of food con-
sumed per meal in grams, enters the amount 
of material on the site, the amount of glucose 
enters into the body through eating the food, 
they are given as inputs to the model. 

Clearly, the amount of glucose in the food 
doesn’t enter into the bloodstream pulp be-
cause the digestive process is time consuming. 
Blood glucose consider as pulse because the 
body needs enough time to produce insulin. 
This balance exists in the absorption of glu-
cose by the digestive system and the produc-
tion of insulin by the body. 

After eating, food start digesting in the stom-
ach. When digestion starts, glucose begins to 
be absorbed in the body. By increasing diges-
tion in the stomach, the process of absorption 
of food in the body increases. Finally, by re-
ducing the amount of glucose in the food, the 
process of absorption is reduced of course the 
type of data is collected from healthy individ-
ual. To model the food intake, used a pattern 
according to Figure 8. 

The parameters in Figure 8 are explained be-

low:
t1: The initial delay is the time to begin ab-

sorbing food glucose.
t2: It is the time when most food is digested 

and glucose is absorbed to its maximum.
t3: It is when almost all food glucose are ab-

sorbed in the stomach and intestines.
G: The maximum absorbance value is calcu-

lated from the following equation 11.

3 1

    

2

G hTotal sugar in t e food
t t

=
− 

 
 

                   (11)

Finally, the amount of glucose entered from 
food through the blood, which was calculated 
through the site, is in accordance with Table 3, 

First subject Second subject Third subject

Time Input glucose (mg) Time Input glucose (mg) Time Input glucose (mg)

11:45 16000 09:50 18000 10:45 13500

14:30 16400 13:30 16000 13:00 17000

18 10000 19:00 10000 17:00 14000
21:45 164000 23:00 10600 20:30 20000

Table 3: The amount of glucose intake from food to blood

Figure 8: Modelling the intake of glucose 
from food to blood
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which is used in the model of this study. 
Given that the genetic algorithm has been 

used to estimate the 7-parameter value, each 
chromosome contains 7 genes. The number 
of chromosomes is 200, the percentage of 
crossover is 80% and the percentage of muta-
tion is 50%. The selection of the parents for 
the crossover was based on the suitability or 
fitness of the chromosomes. The cost func-
tion of the genetic algorithm is the square of 
the difference between the levels of blood 
glucose obtained from the individual model 
with the human datacollected with a glucom-
eter. Therefore, the genetic algorithm seeks 
to achieve the highest matching between the 
output of the individual’s blood glucose level 
and the level of glucose obtained from the in-

dividual’s mathematical model, so that in 6 or 
7 blood glucose records (for three individuals 
involved in the process of data analysis, reg-
istration blood glucose was different). During 
the time of data acquisition, it would have a 
high adaptation to the dynamics of the model. 

Using the MATLAB software, for estimat-
ing the variable parameters using the genetic 
algorithm, the constant parameters were con-
sidered according to Table 2 and the results 
were obtained according to Table 4. 

The inputs of this model are the invasive 
measurements of blood glucose at specified 
times (usually 30 minutes after eating) by the 
glucometer, as shown in Table 5. 

Now, according to Table 4, the variable pa-
rameters estimated by the genetic algorithm 

Glucose-Insulin ODE model

Variable parameters First subject Second subject Third subject Unit

Rg 128.2 72.9 230.1 μUmin−1

α 0.3 0.1 0.08 lμU−1

β 0.29 0.96 0.85 -

Um 520.8 319.8 152.9 mgmin−1

Ub 10.09 22.9 46.6 mgmin−1

C3 509.5 311.4 120.9 mgl−1

di 0.1 0.63 0.68 μU

Table 4: Estimation of variable parameters by genetic algorithm

First subject Second subject Third subject

Time
Blood glucose 

(mg.dl-1)
Time

Blood glucose 
(mg.dl-1)

Time
Blood glucose 

(mg.dl-1)
07:33 100 09:10 100 11:00 96

12:08 122 12:23 120 13:20 116

14:47 117 15:32 119 16:30 112
15:05 114 17:14 110 20:30 105
18:54 108 20:20 130 23:00 116
22:20 107 23:20 120 - -

Table 5: The measured blood glucose levels of the subjects tested using a glucometer device
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are analysed in the model application and per-
formance of the model. 

• Implementing the model for the first sub-
ject Figure 9. 

As shown in Figure 9, the model has been 
able to track almost all points measured with a 
glow (red star). There are four peak in the glu-

cose chart that if pay attention to these course 
in the insulin chart, you will find that glucose 
in the blood (peak area) of the insulin is se-
creted with a delayed time, and thus causes a 
decrease in blood glucose levels. 

• Implementing the model for the second 
subject Figure 10.

Reza Vosoughi, et al

Figure 9: Output diagram of the two-delayed glucose-insulin model with the measured value 
through the glucometer for the first subject

Figure 10: Output diagram of the two-delayed glucose-insulin model with the measured value 
through the glucometer for the second subject
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As shown in Figure 10, the model has been 
able to track almost all points measured with 
a glow (red star). There are four peak in the 
glucose chart. It is observed that glucose in the 
blood after the rise (insulin) is secreted with a 
delayed glucose, resulting in a decrease in the 
amount of blood glucose in a person’s body. 
It should only be noted that the last peak that 
occurred for the glucometer did not appear on 
the insulin chart, because the duration of this 
model was 1000 minutes, while we know that 
after the peak occurred in the glucose chart, 
peak in the insulin chart appears with a delay 
that occurs after 1000 minutes and therefore 
the model has failed to show it. 

• Implementing the model for the third sub-
ject Figure 11. 

As observed in Figure 11, the model has 
been able to follow almost all points measured 
with a glow (red star). There are four peak 
in the glucose chart, and peaks in the insulin 
chart denoting that glucose is secreted with 
a delay after increasing blood glucose (peak 
order), thereby reducing the amount of blood 
glucose. The advantage of this model is that 
insulin is proportional to the level of glucose 

in your body. This can be clearly deduced in 
the third quarter of this chart. 

Now, for the sensitivity of each of these 
parameters to be measured in the model, it 
should be done as follows: 

First, have to run the model for a long time, 
so that the dynamics of insulin and glucose 
reach their steady state, in which time a long 
time of 5000 seconds was considered and the 
model was implemented. 

Also, the parameters that were estimated by 
the genetic algorithm should be considered in 
order to analyze the dynamic sensitivity of the 
model, consider the model with parameters 
0.01 × Parameter up to 100 × Parameter and 
divide this interval into 500 parts and execute 
the model for each of the parameter values 
(each 500 times) to target constant glucose 
and insulin measurement. 

Therefore, the sensitivity of the model to the 
parameters estimated by the genetic algorithm 
should be obtained. Of course, the sensitivity 
results are given only for the first person in 
this study. 

• Calculate the sensitivity of the model to the 
first subject Figure 12.

Figure 11: Output diagram of the two-delayed glucose-insulin model with the measured value 
through the glucometer for the third subject

Glucose-Insulin ODE model
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Sensitivity analysis of the model parameters 
is shown in Figure 12: 

Rg: As shown in Figure 12, for Rg < 8000, the 
glucose state is nearly zero, which means that 
for the values given, the parameters Rg (val-
ues of other parameters (6 parameters) are the 
same as those estimated by the algorithm. The 
amount of glucose converges to zero, that is, 
for these values the glucose is not stable to this 
parameter, but for Rg> 8000 the steady state is 
changing rapidly, indicating that, for Rg> 8000 
the system is very sensitive to this parameter. 

α: As shown in Figure 12, the behavior of 
the system haven’t got any sensitive to α pa-
rameter. Because of the different values of α 
parameter, the glucose-stable state remains al-
most constant. 

β: As shown in Figure 12, the system be-
havior have sensitive to the parameter β. Be-
cause changes in the parameter β is high in the 
glucose-stable state of the system, for β values 
greater than 15, the system does not show a 
sensitivity to β. 

Um: As shown in Figure 12, for Um ≈ 5, the 
model shows a high sensitivity to the Um pa-
rameter, and the amount of glucose is rap-
idly reduced in the range, but for Um> 5, the 
steady-state glucose level is almost constant. 

It remains and does not show a sensitivity to 
Um> 5. 

Ub: As shown in Figure 12, the glucose-sta-
ble state of glucose is reduced as a function of 
the change in the parameters of Ub. 

C3: As shown in Figure 12, the behavior of 
the system is highly sensitive to the parameter 
C3. Because a change in parameter C3 causes 
a lot of changes in the system’s glucose, so 
it can never be indifferent to this parameter, 
since with the slightest change in this param-
eter, the amount of glucose remaining in the 
state changes a lot. 

di: As shown in Figure 12, glucose stays in 
glare appears to increase as a result of chang-
ing the parameter di. 

Sensitivity analysis of the model parameters 
shown in Figure 13. 

Rg: As shown in Figure 13, for Rg <3000 sta-
ble insulin states are highly sensitive to this 
parameter; for these values, the parameters Rg 
(values of other parameters (6 parameters) are 
the same as those estimated by the algorithm. 
The amount of glucose varies greatly, but does 
not change for Rg> 3000 insulin-stable states. 
This means that for these values, the insulin-
resistant state is not sensitive to this parameter. 

α: As shown in Figure 13, the behavior of 

Figure 12: Sensitivity of model parameters to glucose output for the first subject
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the system doesn’t have a high sensitivity to α 
parameter. Because of the different values of 
the parameter α, the steady-state insulin state 
remains almost constant. 

β: As shown in Figure 13, the behavior of the 
system have highly sensitive to the parameter 
β. Because changes in the parameter β result 
in large changes in the systemic stability of the 
system, which does not show a sensitivity to β 
for values of β> 10. 

Um: As shown in Figure 13, for Um ≈ 5 val-
ues, the model shows a high sensitivity to the 
Um parameter and the steady state insulin rate 
decreases rapidly in the range, but for Um> 
5, the steady-state insulin content is approxi-
mated. It stays constant and does not show a 
sensitivity to Um> 5. 

Ub: As shown in Figure 13, the steady-state 
insulin condition decreases as an exponential 
change in the parameters of Ub. 

C3: As shown in Figure 13, the system be-
havior have a high sensitivity to the C3 pa-
rameter. Because the change in parameter C3 
causes a lot of changes in the system’s insulin 
state, it can never be indifferent to this param-
eter, since with the smallest change in this pa-
rameter, the amount of insulin-resistant state is 
significant. But in excess of 450,000 the sen-

sitivity of the system remains constant rela-
tive to this parameter, meaning that a change 
in this parameter doesn’t affect the sustained 
state of insulin. 

di: As shown in Figure 13, it does not change 
the insulin stable state of the di parameter. 

• Dynamic glucose sensitivity analysis at 
specified times compared to model parameters 
with p value for the first subject 

Since the data number is low due to the in-
vasive of the data collection, the statistical test 
isn’t suitable and the PRCC (partial rank cor-
relation coefficient) analysis was used. 

PRCC is a sensitivity analysis that statisti-
cally evaluates the correlation between dy-
namics and model parameters. 

Glucose dynamic sensitivity analysis at 
specified times is shown in Figure 14 relative 
to the model parameters with p value.

Discussion
In this study [26], the mathematical model 

of an insulin-glucose system in a fuzzy and 
non-fuzzy (crisp) environment has been in-
vestigated. 

In fact, first, ordinary differential equations 
[27], which have not been considered for two 
consecutive glucose-insulin regulatory dy-

Figure 13: Sensitivity of model parameters to insulin output for the first subject
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namics were considered, and to consider the 
uncertainty in the system, using derivative 
concepts of Hukuhara [28], the phase response 
of the model was proven. 

Therefore, the benefit of this research in the 
study of the glucose-insulin system is the cre-
ation of an uncertainty region in the model’s 
dynamics, which has not been considered in 
the model developed in the research and has 
examined a definite model. However, our re-
search model is more accurate and closer to 
biological reality than considering the delay in 
glucose-insulin system dynamics. 

This close proximity to the dynamics of the 
biologic reality model is ensured by consider-
ing the variable parameters for a precise model 
and their estimation using human data. 

The research [21] describes the two-delayed 
glucose-insulin system model, which is based 
on this model, with the difference that some of 
the variable parameters described in the paper 
have been added. These variable parameters 
are used to calibrate the developed two-de-
layed model of this research with human data 
obtained using genetic algorithm to estimate 
these parameters. Therefore, the developed 
model of this study, given that the actual hu-
man data in the article is used to estimate its 

parameters is also able to obtain the dynamics 
of blood glucose in real conditions. Therefore, 
this model can be used in blood glucose con-
trol systems. 

In this study, an accessible two-stage model 
of the insulin-glucose system was developed. 
As mentioned, some of the variable param-
eters of this model were estimated using data 
recorded by individuals. The data refers to the 
blood glucose levels of three individuals over-
night, which were measured invasively, and 
the parameter estimation tool was also a ge-
netic algorithm. The developed model, as vali-
dated with real data, can achieve the dynamics 
of the level of glucose in real conditions. Fi-
nally, we concluded that the two-delay mod-
el is a very good model for estimating blood 
sugar levels throughout the day, and can fol-
low the pattern of blood glucose changes. The 
MSE (Mean Square Error) method was used to 
calculate the accuracy of the two-stroke model 
and the error rate and accuracy are given in 
Table 6.

Conclusion
In present study we extended an available 

ODE model of insulin-glucose system and 
parameterized it with obtained experimental 

Figure 14: Glucose dynamic sensitivity analysis at specified times relative to model parameters 
with p value for the first subject

Reza Vosoughi, et al

202



J Biomed Phys Eng 2022; 12(2)

data. The calibrated model of this study can 
help us to predict dynamics of blood glucose 
daily to prevent occurrence of hypoglycemia 
and hyperglycemic in the patients. In the fu-
ture, the two-delay model for making an in-
sulin pump (a pump that automatically injects 
the amount of insulin needed to reduce the 
individual blood sugar and keep it within the 
normal range to the individual) can be used, 
since the amount of insulin injected by the in-
sulin pump is injected into the body.
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