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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder charac-
terized by memory loss and cognitive dysfunction; it is a com-
mon form of dementia. It is investigated that about 80 million 

people will be afflicted with AD in 2050 [1]. AD is caused due to the 
production and deposition in the brain of β-amyloid peptides that in-
cluded 39 to 42 amino acid residues [2]. Although positron emission 
tomography imaging shows cortical amyloid pathology with cognitive 
criteria [3, 4], early diagnosis of AD stage has still been of great signifi-
cance.

Disease biomarkers are detectable indicators of the disease states, 
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which can be specific molecules, genes, anti-
gens, proteins, cells, or hormones. Detection 
of biomarkers is the new route of the disease 
state and its diagnosis. Along this line, differ-
ent categories of biosensors have been intro-
duced for the biomarker detection, including 
aptasensors [5], genosensors [6, 7], non-enzy-
matic biosensors [8, 9], and immunosensors 
[10]. For fabrication of the biosensors, nano-
materials with special size and shape have 
been applied as transducers [11-13]. Among 
these nanobiosensors, electrochemical trans-
duction is sensitive, simple, robust, low-cost, 
and miniaturizable, and works with small sized 
samples [13]. Nanomaterials, as components 
of the electrochemical nanobiosensors (trans-
ducer or else), make them more sensitive and 
selective due to the unique redox properties, 
chemical stability and tuneability of covering 
the substrates [5, 6, 8, 9, 11-14].

As an indicator of AD, β-amyloid peptides, 
and specially β-amyloid(1-42), are promising 
biomarkers used to diagnose and monitor the 
progression of AD [15]. Up to now, the tech-
niques of ELISA [16], different modes of mass 
spectrometry (MS) [17-22], immunosensors 
[23], scanning tunneling electron microscopy 
[24], magnetic resonance imaging [25], fluo-
rimetry [26], in vivo optical imaging [27, 28], 
positron emission tomography [29, 30] and 
surface plasmon resonance [31] have been re-
ported for detection of β-amyloid for AD di-
agnosis. However, the ELISA method suffers 
from high limits of quantitation, high costs of 
enzyme-linked antibodies and consumption 
time. On the other hand, new modes of MS, 
including time-of-flight secondary ion MS 
[17], on-line immunoaffinity-liquid chroma-
tography-MS [18], hydrogen exchange with 
top-down electron capture dissociation MS 
[19], matrix-assisted laser desorption ioniza-
tion-time-of-flight MS [20], column-switching 
liquid chromatography-tandem MS [21], and 
covalent chiral derivatized ultraperformance 
liquid chromatography-tandem MS [22] have 
the disadvantages of relative insensitivity, 

complexicity, high cost, time-consuming and 
difficulty for β-amyloid determination. The 
immunosensors have disadvantages arising 
from the instability of antibodies. Therefore, 
there is a need to fabricate novel sensing de-
vices for β-amyloid determination.

Molecular imprinting technology is a tailor-
made recognition capability for (template) 
molecules at the molecular level using mo-
lecularly imprinted polymers (MIPs). The 
template molecule can be memorized with a 
high affinity with specific binding sites in the 
cross-linked polymer matrix. Subsequent re-
moval of the template reveals binding sites 
that are complementary in size and shape to 
the original imprinted template molecule [32]. 
Upon rebinding, MIPs recognize the template 
molecule with a high selectivity. In MIPs, a re-
tention mechanism based on molecular recog-
nition is dominated like immunosorbents. As a 
result, MIPs are often named as synthetic anti-
bodies, while they offer better handling, stabil-
ity (toward acids, bases, ions and organic sol-
vents), lower costs, high pressure resistance, 
wide working temperature range and ease of 
preparation [32], compared to antibody-based 
routes making them attractive for numerous 
applications. MIPs have been successfully ap-
plied as an alternative tool over the biologi-
cal entities in several medicinal fields such 
as drug delivery, cell recognition, and protein 
recognition [33-35].

Until now, MIPs-based biosensors have 
been developed for the detection of biomark-
ers such as troponin I [36], troponin T [37], 
prostate-specific antigen [38], myoglobin [39], 
microRNA [40] and neopterin [41]. However, 
β-amyloid detection using MIPs has not been 
approached. In the present study, a MIP-based 
biosensor for determination of β-amyloid was 
prepared to apply for early detection of AD.

Material and Methods
In this experimental study, all chemicals used 

throughout this study were of analytical grade 
from Scharlau (Spain) or Merck (Germany) 
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and employed without further purification. 
Double distilled water was used to prepare all 
aqueous solutions. Lyophilized β-amyloid(1-42) 
peptide was purchased from Sigma (USA). 
Deionized water was used for solutions prepa-
ration.

Electrochemical experiments were carried 
out using a µ-Autolab potentiostat/galva-
nostat (the Netherlands) interfaced to a PC 
with GPES 4.9 software. Screen printed car-
bon electrodes (SPCEs) were purchased from 
DropSens (Spain) and employed for all mea-
surements.

In the optimized preparation conditions of 
the biosensor, an electrochemical pretreat-
ment of SPCEs was firstly done in 100 mmol 
L-1 Tris-HCl buffer, pH= 7.4 (Tris) at 1.2 V for 
60 s, followed by rinsing the electrode surface 
with Tris. Afterward, 30 μL of the polymeriza-
tion solution containing 100 mmol L-1 pyrrole 
monomer and 1.29 μg mL-1 β-amyloid(1-42) (as 
a template) prepared in Tris was placed on the 
pretreated SPCE surface. Electro-polymeriza-
tion was then carried out by cyclic voltamme-
try (CV) in a potential range between -0.1 to 
0.8 V with a potential sweep rate of 50 mV 

s-1 for five consecutive cycles. After electro-
polymerization process, the removal of tem-
plate molecule from the polymeric layer was 
performed by immersing the electrode into 5.0 
mmol L-1 aqueous solution of oxalic acid at 
room temperature for 24 h. The resultant MIP 
film was then washed with Tris and applied as 
the working electrode for all electrochemical 
measurements described below. A NIPE was 
prepared under the same experimental condi-
tions without the presence of β-amyloid(1-42) 
template in the electro-polymerization so-
lution. The stepwise fabrication process of 
the biosensors is schematically presented in  
Figure 1.

CV was employed to investigate the analyti-
cal performance of the biosensor at different 
concentrations of β-amyloid(1-42) in Tris and 
artificial cerebrospinal fluid (CSF). Initially, 
the biosensor was incubated in solutions of 
β-amyloid(1-42) at 37 °C for 20 min. After that, 
the biosensor was washed with Tris to remove 
non-bonded β-amyloid(1-42), and the CV mea-
surements were carried out from -0.35 to 0.35 
V with a potential sweep rate of 50 mV s-1 in 
0.5 mmol L-1 K3[Fe(CN)6]/K4[Fe(CN)6] 1:1 

Figure 1: The stepwise fabrication process of the biosensors.
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mixture prepared in Tris.
An artificial CSF was made with a composi-

tion of NaCl 126 + NaH2PO4 1.24 + NaHCO3 
26 + KCl 2.5 + MgSO4 1.2 + CaCl2 2.0 + D-
glucose 10 mmol L-1, pH=7.35, and with a 
stream of 95% air + 5% CO2 was saturated. 
β-amyloid(1-42) of different concentrations were 
prepared in the artificial CSF, diluted with Tris 
of the final dilution ratio of 1:1, and found by 
the biosensor.

Results
Electro-polymerization of pyrrole was per-

formed in the synthesis solution contain-
ing β-amyloid(1-42) as a molecular template, 
as described in section 2.3. β-amyloid(1-42)
binding into the active sites of the biosen-
sor surface was electrochemically monitored 
through repression of the redox kinetic of the 
K3[Fe(CN)6]/K4[Fe(CN)6] marker. To optimize 
the working conditions of the biosensor, anod-
ic peak currents in cyclic voltammograms of 
the biosensor were measured upon re-binding 
by β-amyloid(1-42) of 3.0 ng mL-1.

Because the thickness of PPy film has a 
significant influence on the biosensing of 
β-amyloid(1-42), it was changed by altera-
tions in the potential cycle number during 
the electro-polymerization. For this purpose, 
PPy was synthesized using different potential 
cycles, and evaluated before and after captur-
ing β-amyloid(1-42) of 3.0 ng mL-1; the results 
are presented in Figure 2A. To judge about the 
best potential cycle number for the synthesis 
of PPy, the anodic peak currents were mea-
sured and their differences before and after 
capturing the target are plotted versus cycle 
number in Figure 2B. Selection of the anodic 
peak was due to the more sharpness of this 
peak, compared to the cathodic counterpart. 
Based on the results, the highest peak currents, 
and more importantly, the highest peak cur-
rent difference before and after β-amyloid(1-42) 
capturing was attained for PPy synthesis 
with five potential cycles. These results in-
dicated that up to five cycles, the MIP layer 

thickened leading to better formation of the  
β-amyloid(1-42)-resembled holes in the bulk of 
the polymer. However, more cycles of poten-
tial lead to formation of a very thick polymeric 
layer and inhibition of the marker accessibility 
to the underlying current collector (vie infra, 
Figure 3). Therefore, the best sensitivity was 
attained with five potential cycles of PPy syn-
thesis, and also employed for further studies.

Another parameter that should be optimized 
for a MIP-base biosensor is the biosensor 
surface-target binding time. The biosensor 
was incubated with β-amyloid(1-42) of 3.0 ng 
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Figure 2: (A) Cyclic voltammograms record-
ed before and after binding of the biosen-
sor with β-amyloid(1-42) for different potential 
cycles of 1, 3, 5, 10 and 15. (B) Dependency 
of the anodic peak current difference (dif-
ference of before β-amyloid(1-42) binding and 
after that) on the cycle numbers of the mo-
lecularly imprinted polymer (MIP) synthesis.
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mL-1 at room temperature for different bind-
ing times of 3, 5, 10, 20, 30 and 40 min; cyclic 
voltammograms were recorded, as shown in  
Figure 4. According to these results, the peak 
current decrement continued upon time pro-
longing up to 20 min and then remained al-
most constant. Therefore, a binding time of 20 
min was selected for β-amyloid(1-42)) targeting.

For the elution of the bond β-amyloid(1-42)
from the biosensor surface after fabrication 
of a new biosensor or after already binding 
for reusing, alkaline and organic compounds-
containing solvents were not suitable because 
the screen-printed electrodes were pulled up in 
these solutions. Our results also showed that 
mineral acids and acetic acid/surfactant mix-
tures could not elute β-amyloid(1-42) from the 
biosensor, while a 5.0 mmol L-1 oxalic acid so-
lution at room temperature overnight success-
fully eluted the target, and this later eluent was 
employed thereafter.

In order to quantitate the β-amyloid(1-42)by 
the biosensor, cyclic voltammograms  were re-
corded after binding with different concentra-
tions of β-amyloid(1-42), and are shown in Fig-
ure 5A. Upon increment in the β-amyloid(1-42) 
concentration, the peak current was lowered 
due to blockage of the pinholes at the MIP 
surface by the target and prevention of ac-

Figure 3: The fabrication processes and signal generation of the biosensor.

Figure 4: (A) Cyclic voltammograms recorded 
using the biosensor before and after captur-
ing β-amyloid(1-42) at different binding times 
of 3, 5, 10, 20, 30 and 40 min. (B) Dependen-
cy of the anodic peak current on the binding 
time of β-amyloid(1-42).
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signal for the marker is recordable. Captur-
ing β-amyloid(1-42) by the biosensor blocks 
the holes and limits the redox marker acces-
sibility to the carbon substrate for electron 
transfer. Therefore, the current depends on the 
β-amyloid(1-42) blocking level of the biosensor. 
The fabrication processes and signal genera-
tion of the biosensor are schematically depict-
ed in Figure 3.

On the basis of the data presented in Figure 
5A, the dependency of the peak currents on 
the β-amyloid(1-42) concentration can be de-
rived, as shown in Figure 5B. The peak cur-
rent dependency was linear in a concentra-
tion range of 0.003-7 ng mL-1, and the trend 
line had a regression equation of y = -(1.39 
± 0.045)x + (26.96 ± 0.062). The use of the 
standard deviation of the anodic peak current 
in the absence of the target (the blank signal), 
and the slope of the calibration curve are pre-
sented in Figure 5B, the limit of detection 
(LOD) of β-amyloid(1-42) by the biosensor was 
calculated.

In order to evaluate the importance of the 
surface imprinting on biosensor function, we 
fabricated a NIPE, and recorded the cyclic 
voltammograms in the presence of different 
concentrations of β-amyloid(1-42), as depicted 
in Figure 6. The data indicated that NIPE did 
not generate significant signals upon varying 
the β-amyloid(1-42) concentration.

An isotherm for estimation of β-amyloid(1-42) 
binding affinity into the biosensor at different 
concentrations can be plotted, using the data 
presented in Figure 5A. The models of Lang-
muir [42], Freundlich [43] and two-type si-
multaneous binging [44] were examined. The 
best fitting for the peak current-β-amyloid(1-42) 
concentration was attained based on the Freun-
dlich adsorption isotherm, using the following 
equation:

(Ipa0 - Ip) / Ipa0 = K × C1/n          (1)
where (Ipa0 - Ip) / Ip0 indicates that the amount 

of β-amyloid(1-42) captured at a concentration 
of C, and Ipa0 is the anodic peak current in the 
absence of β-amyloid(1-42); Ip is the anodic peak 

Figure 5: (A) Cyclic voltammograms recorded 
using the biosensor before and after captur-
ing different concentrations of β-amyloid(1-42). 
(B) The dependency of the peak currents on 
the β-amyloid(1-42) concentration (calibration 
curve).

cessibility of the redox marker for electron 
exchange. At the higher concentrations, there-
fore, a surface saturation happened, and the 
rate of the current decrement was slow. De-
spite the fact that PPy is a conducting polymer, 
it has a limited conductivity in Tris-buffer of 
100 mmol L-1, pH=7.4 (working conditions 
of the biosensor) and represses the kinetics of 
charge transfer of the redox marker. Thus, a 
limited current is passed, which is important 
and appropriate when NIPE is evaluated (see 
below). On the other side, the subsequent elu-
tion of the β-amyloid(1-42) template during the 
biosensor preparation formed lots of pores 
with a protein-resembled shape. This porous 
structure supplies a network for the marker to 
attain the underneath carbon substrate, and a 
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current in the presence of β-amyloid(1-42). In 
addition, K is the Freundlich constant, and n is 
the Freundlich exponent. Figure 7 shows the 
corresponding isotherm based on the Freun-
dlich adsorption isotherm for the biosensor. 

The results indicated that the amount of the 
captured β-amyloid(1-42) gradually decreased 
upon increment in the β-amyloid(1-42) concen-
tration, and then reached an adsorption plateau 
at 5 ng mL-1. The adsorption plateau is the re-

Figure 6: Cyclic voltammogram recorded using the biosensor (voltammogram with the highest 
peak currents), and cyclic voltammograms recorded using Non-molecularly imprinted polymer 
electrode (NIPE) before and after capturing different concentrations of β-amyloid(1-42).

Figure 7: Dependency of (Ipa0 - Ip) / Ipa0 on the concentration of β-amyloid(1-42) and the fitting 
curve based on the Freundlich adsorption isotherm.
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sult of saturation of binding sites at the biosen-
sor surface by β-amyloid(1-42). Using the regres-
sion equation in Figure 7, we obtained K and n 
values as 0.22 ng mL-1 and 10.60, respectively. 
The high value obtained for n confirmed that 
the amount of the bound β-amyloid(1-42) greatly 
increased with a small change in the concen-
tration (at its low concentrations), while more 
imprinted sites were rebounded, and the ad-
sorption intensity weakened and eventually 
remained constant (at its high concentrations); 
later, saturation occurred and the current ratio 
remained constant.

For evaluation of the biosensor capability 
for β-amyloid(1-42) detection in real samples, 
β-amyloid(1-42) of different concentrations was 
supplemented into CSF and cyclic voltammo-
grams  were recorded, as shown in Figure 8A. 
Upon increment in the β-amyloid(1-42) concen-
tration, the peak current was lowered similarly 
as observed for the β-amyloid(1-42)quantitation 
in Tris. A calibration curve was also plotted for 
the data, which shown in Figure 8B. Based on 
this calibration curve, β-amyloid(1-42) could be 
determined in CSF by a sensitivity of 1.09 µA 
mL ng-1 and a LOD of 2.3 pg mL-1.

Discussion
MIPs-based biosensors, as artificial recep-

tors, provide an alternative method for selec-
tive recognition of biomolecules. The process 
of molecular imprinting includes the creation 
of a polymeric film with selective recogni-
tion cavities based on a biomolecular template 
[32]. In the present study, poly-pyrrole (PPy) 
polymer which synthesized in the presence 
of β-amyloid(1-42) template, was employed 
to fabricate the biosensor because it can be 
formed electrochemically and stably at neutral 
(physiological) pHs that are important for the 
biosensor applications in biological sample 
analyses [45]. For removing of template from 
the biosensor surface, it should be mentioned 
that different solvents might be employed. A 
literature review on the solvents employed for 
protein elution from MIPs is summarized in  

Table 1. The reported solvents include min-
eral acids and bases, and organic solutes or 
solvents dissolved in aqueous solutions, ac-
companied with or without employment of 
a surfactant. In this research, the oxalic acid 
solution can successfully eluted β-amyloid(1-42) 
template. The designed biosensor could suc-
cessfully detect β-amyloid(1-42) with a LOD of 
as 1.2 pg mL-1 which is comparable with dif-
ferent methods of amyloid detection (Table 2). 
In order to evaluate the actual performance of 
biosensor, it was applied for β-amyloid(1-42) de-
termination in artificial CSF with high sensi-
tivity and selectivity, confirming the biosensor 
applicability for AD diagnosis.

Figure 8: A) Cyclic voltammograms recorded 
using the biosensor before and after captur-
ing different concentrations of β-amyloid(1-42) 
in artificial cerebrospinal fluid (CSF). (B) The 
dependency of the peak currents on the 
β-amyloid(1-42) concentration (calibration 
curve).
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Protein Eluent Reference
Avidin Chloroform [46]
Ferritin 5 mmol L-1 NaOH [47]

Troponin T Ethanol:water (2:1 V/V) + 0.25 mol L-1 NaOH [48]
Myoglobin Proteinase K [49]

Cytochrome C 1 mol L-1 H2SO4 [50]
Immunoglobulin G 3 mol L-1 NaCl + 0.1% sodium dodecyl sulfate [51]
Bovine hemoglobin 1 mol L-1 oxalic acid [52]
Bovine hemoglobin 10% Acetic acid + 10% sodium dodecyl sulfate [53]

Acetylcholinesterase Glycine-HCl [54]
Bovine serum albumin 5% Acetic acid + 10% sodium dodecyl sulfate [55]
Bovine serum albumin 5% Acetic acid + 10% sodium dodecyl sulfate [56]
Human serum albumin 30% NaOH [57]
Ovarian cancer antigen 1% Acetic acid + 3% sodium dodecyl sulfate [58]

Bovine leukemia virus glycoproteins 1 mol L-1 H2SO4 [59]

Table 1: Different solvents reported for protein elution from molecularly imprinted polymers 
(MIPs).

Conclusion
A synthetic β-amyloid(1-42) receptor was de-

signed using molecular imprinting approach 
to fabricate a biosensor. The biosensor rep-
resented a high affinity and sensitivity. The 
receptor was fabricated by electro-polymer-
ization of pyrrole on carbon screen-printed 
electrodes in the presence of β-amyloid(1-42) as 
a template. Formation of a thin MIP layer was 
critical to improve the signals as well as the 
performance of the biosensor towards the tar-
get β-amyloid(1-42). The resultant β-amyloid(1-42) 
receptor was examined by recording electro-
chemical signals of the ferro/ferricyanide re-
dox probe after the β-amyloid(1-42) binding 
process. At the same time, successful elution 
of β-amyloid(1-42) was achieved from the MIP 
surface. A Freundlich isotherm fitting revealed 
a high affinity of the receptor toward the im-
printed β-amyloid(1-42). β-amyloid(1-42) binding 
onto the biosensor imposed a significant dec-
rement in the peak current of the redox marker 
and provided a calibration curve with a lin-
ear dependency of the peak currents on the 
β-amyloid(1-42) concentration. A very low LOD 

value was attained, compared to other report-
ed techniques, confirming the applicability of 
the biosensor for β-amyloid(1-42) detection at a 
clinically relevant level.
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Amyloid type Method
Detecting ele-
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β-amyloid(1-42) Electrochemistry
Anti mAβ/protein G/

SAM/AuNPs
0.01-100 nmol L-1 0.57 nmol L-1 [60]

β-amyloid(1-40) Electrochemistry
Anti mAβ/pyrenyl 

groups
1-200 µmol L-1 2.04 µmol L-1 [60]

β-amyloid(1-40) Electrochemistry
Anti mAβ/SAM/

AuNPs
1-1000 nmol L-1 2.65 nmol L-1 [60]

β-amyloid(1-40) Electrochemistry Antibody 0.01-100 nmol L-1 10 pmol L-1 [61]
β-amyloid(1-40/1-42) Electrochemistry Antibody 0.2-40 nmol L-1 50 pmol L-1 [62]
β-amyloid(1-42/1-16) Electrochemistry Antibody 0-0.5 nmol L-1 5 pmol L-1 [63]

β-amyloid(1-40) Fluorescence Aptamer 0-70 nmol L-1 3.57 nmol L-1 [64]

β-Amyloid(1-42) Electrochemistry
Biotinylated PrPC 
(95-110) peptide

10-6-1 µmol L-1 0.5 pmol L-1 [65]

β-amyloid(1-42) Fluorescence
Antibody-magnetic 

nanoparticle
10-3000 pg mL-1 20 pg mL-1 [66]

β-amyloid(1-40) Fluorescence
Antibody-magnetic 

nanoparticle
10-4000 pg mL-1 20 pg mL-1 [66]

β-amyloid(1-40) SPR Antibody - 3.3 pmol L-1 [67]
β-amyloid(1-42) SPR Antibody - 3.5 pmol L-1 [67]
β-amyloid(1-42) Electrochemistry Antibody/AuNPs 0.001-10 ng mL-1 1 pg mL-1 [68]

β-amyloid(1-42) ECL Antibody
0.73-3000 pg 

mL-1
1.24 pg mL-1 [69]

β-amyloid(1-40/1-42/1-16) Electrochemistry
Heme β-amyloid(1-16)-

AuNPs/ mAb
0.02-1.50 nmol L-1 10 pmol L-1 [70]

β-amyloid(1-42) LSPR Antibody <10 pmol L-1 <100 fmol L-1 [71]

β-amyloid(1-42) LSPR
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Present 
study

Anti mAβ: Monoclonal amyloid beta antibody, SAM: Self-assembled monolayer, AuNPs: Gold nanoparticles, PrPC: Cellular 
prion protein, ECL: Electrochemiluminescence, mAb: Monoclonal antibody, LSPR: Localized surface plasmon resonance, 
ApoE4: Apolipoprotein E4, MIP: Molecularly imprinted polymer, SPR: Surface plasmon resonance, LOD: Limit of detection

Table 2: Comparison of different methods of amyloid detection.
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