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Introduction

Acute graft-versus-host disease (aGvHD) is a complex and of-
ten multisystem disease that causes morbidity and mortality in 
35%-50% of patients receiving allogeneic hematopoietic stem 

cell transplantation (AHSCT) [1]. On the first 100 days after transplan-
tation, donor T cells invade the host tissue and lead to dysfunction of 
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ABSTRACT
Background: Acute graft-versus-host disease (aGvHD) is a complex and often 
multisystem disease that causes morbidity and mortality in 35% of patients receiving 
allogeneic hematopoietic stem cell transplantation (AHSCT). 
Objective: This study aimed to implement a Clinical Decision Support System 
(CDSS) for predicting aGvHD following AHSCT on the transplantation day.
Material and Methods: In this developmental study, the data of 182 pa-
tients with 31 attributes, which referred to Taleghani Hospital Tehran, Iran during 
2009–2017, were analyzed by machine learning (ML) algorithms which included 
XGBClassifier, HistGradientBoostingClassifier, AdaBoostClassifier, and Random-
ForestClassifier. The criteria measurement used to evaluate these algorithms included 
accuracy, sensitivity, and specificity. Using the machine learning developed model, 
a CDSS was implemented. The performance of the CDSS was evaluated by Cohen’s 
Kappa coefficient. 
Results: Of the 31 included variables, albumin, uric acid, C-reactive protein, do-
nor age, platelet, lactate Dehydrogenase, and Hemoglobin were identified as the most 
important predictors. The two algorithms XGBClassifier and HistGradientBoosting-
Classifier with an average accuracy of 90.70%, sensitivity of 92.5%, and specificity 
of 89.13% were selected as the most appropriate ML models for predicting aGvHD. 
The agreement between CDSS prediction and patient outcome was 92%.  
Conclusion: ML methods can reliably predict the likelihood of aGvHD at the 
time of transplantation. These methods can help us to limit the number of risk factors 
to those that have significant effects on the outcome. However, their performance is 
heavily dependent on selecting the appropriate methods and algorithms. The next 
generations of CDSS may use more and more machine learning approaches.
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the skin, gastrointestinal tract, and liver [1-4]. 
Given that it occurs at the stage of severe tis-
sue damage, its diagnosis is late [5].

In recent years, biomarkers related to 
aGvHD have been considered as a tool in pre-
dicting the occurrence [5]. But the multiplic-
ity of these biomarkers and the complexity of 
the various factors, contributing to the disease 
have made an accurate quick decision diffi-
cult. Besides, in previous studies [6-8]. The 
analyses performed on these biomarkers was 
univariate using classical statistical methods 
[9-11].

Since the 1960s, medical informatics ex-
perts have become interested in using clinical 
decision support systems (CDSS) to classify 
patient outcomes, reduce health-care costs, 
and alert physicians about the potential for 
dangerous medication interactions, resulting 
in the improvement of physicians’ diagnostic 
process, and provide diagnostic suggestions, 
and also increase safety and quality of patient 
care [12-15].

CDSS is defined as “a computer system de-
signed to impact clinician decision-making 
about individual patients at the point in time 
that these decisions are made” [13]. CDSSs 
are divided into two categories of knowledge-
based and non-knowledge-based [13, 14]. In 
the knowledge-based type, the goal is to build 
a system that can simulate human thinking. 
These types of CDSSs use the knowledge as 
a rule or set of if-then rules in which they are 
specifically coded in clinical practice guide-
lines (CPG). Whereas, non-knowledge-based 
CDSSs use machine learning (ML) algorithms 
to extract knowledge [13].

Machine learning (ML) is a subset of artifi-
cial intelligence (AI) in which the algorithms, 
executing the prediction process extract the 
necessary knowledge from past experiences 
and/or find patterns in data [16-18]. ML is any 
process in which an algorithm is improved or 
“trained” by performing repetition on a train-
ing dataset to perform a task, usually a classi-
fication or identification [16, 19]. The trained 

algorithms can then be evaluated by measur-
ing its performance based on the test dataset 
[17, 19, 20].

There are several learning methods in ML, 
one of the most widely used and the popular 
of which is supervised learning. The goal of 
a supervised learning algorithm is to use the 
dataset to produce a model, taking a feature 
vector x as an input and outputting informa-
tion, resulting in deduction if the label for this 
feature vector [20]. 

The two major types of supervised learning 
are classification and regression. Examples of 
classification are ensemble methods, K-near-
est neighbors, support vector machine, deci-
sion trees, random forest, neural networks and 
so on. Regression examples are linear regres-
sion and logistic regression [17, 19-21].

The ensemble is an ML concept in which 
the idea is to train multiple models using the 
same learning algorithm [22]. Ensemble algo-
rithms are divided into two main types, includ-
ing boosting and bagging. Ensemble methods 
include algorithms such as eXtreme Gradient 
Boosting classifier (XGBClassifier), Ada-
Boost classifier (AdaBoostClassifier), Histo-
gram-based Gradient Boosting Classification 
Tree (HistGradientBoostingClassifier), and 
Random Forest classifier [20].

The XGBClassifier is a highly adaptable 
algorithm, working in most classifications. 
Boosting is a method, seeking to create a 
strong classifier based on weak classifiers. 
Weak and strong classification models men-
tion to the correlation of outputs and actual 
class. By appending classifiers on top of each 
other iteratively, the next classifier can modify 
the errors of the previous one. This process is 
recurred until the training data set is accurate-
ly predicted [23].

The HistGradientBoostingClassifier has sup-
port for missing values. During training, the 
tree grower learns at each split point whether 
samples with missing values should go to the 
left or right child, based on the potential gain 
[19].
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An AdaBoost classifier (AdaBoostClassi-

fier) is one of the most popular algorithms for 
building robust classifiers with linear combi-
nations of member classifiers. The member 
classifiers are chosen to minimize the errors in 
each iteration during the training process [24].

RandomForestClassifier synthesizes several 
randomized decision trees and gathers their 
predictions by averaging. In settings where 
the number of variables is much greater than 
the number of observations, this method has 
shown excellent performance [25].

Pre-occurrence prediction by these algo-
rithms helps physicians to identify high-risk 
patients and reduce health care costs by per-
forming time-consuming treatment interven-
tions [26].

Previous studies have shown that neural 
network algorithms, support vector machine, 
naive bayes, K-nearest neighbors, regression, 
decision trees, and ensemble methods have 
been used to predict aGvHD [27]. Although in 
recent years the decision trees and ensemble 
methods have been given more attention for 
predicting aGvHD, there is no evidence that 
these algorithms are successfully used in the 
clinical setting [28-30]. Therefore, this study 
aimed to design, implement, and validate a 
clinical decision support system using ensem-
ble methods to predict aGvHD following AH-
SCT on transplant day.

Material and Methods

Data Source, Study Roadmap, and 
Tools

In a developmental study, 31 variables [27] 
(which were classified into two groups: base-
line and biomarker), which could potentially 
affect the transplantation outcome, were gath-
ered on the day of transplantation from 190 pa-
tients who received AHSCT in Taleghani Hos-
pital, Tehran, Iran, from 2009 to 2017. Then 
the CDSS was designed and implemented 
using Python programming language in four 
stages as pre-processing, learning, evaluation, 
and CDSS implementation as is shown in the 
below roadmap diagram (Figure 1).

Pre-processing
Imputing missing value 
In this phase, the raw data were imputed us-

ing the following two processes:
1- Records and variables with missing val-

ues (greater than 50%) were excluded from 
the dataset.

2- The missing values of continuous and dis-
crete variables were replaced separately with 
mean and mode in each class, respectively.
Under-sampling
Under-sampling methods normalize the dis-

tribution of all classes by decreasing the num-
ber of majority class records in the imbalanced 

Figure 1: Roadmap for building clinical decision support systems based on machine learning.
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dataset [31]. An imbalanced class distribution 
will have one or more classes with few samples 
(the minority classes) and one or more classes 
with many samples (the majority classes). In 
this study, the RandomUnderSampler method 
was used to decrease the number of majority 
class records [32]. RandomUnderSampler is a 
fast and simple method to balance the patient’s 
dataset by randomly choosing a subset of data 
for the targeted classes.
Data Splitting
In this phase, patients’ datasets were divided 

into training and testing sets with a ratio of 
70% and 30%, respectively.
Feature Scaling
In this phase, the training and test data sets 

were scaled separately using the normalizing 
method (Equation 1) [32]. The numerical val-
ues of the data set are between zero and one.

1)      Xnormalized = (X-Xmin)/(Xmax-Xmin) 
Feature Selection
In this phase, the Boruta algorithm, which 

is a type of wrapper method feature selection, 
was used to select the most important predic-
tors of aGvHD prediction. This method, using 
RandomForestClassifier algorithm, identifies 
important features of the dataset as unbiased 
and stable [33].

Learning
Hyperparameters are parameters, governing 

the learning process, but they are not the part 
of the learning process. Besides, they have a 
great impact on the performance and results 
of modeling ML algorithms [34]. Adjustment 
of these hyperparameters is considered as an 
optimization problem and their search is usu-
ally done manually using methods such as 
randomized parameter optimization with k-
fold cross-validation method (Randomized-
SearchCV) [19, 35]. In the present study, the 
RandomizedSearchCV method was used to 
optimize the hyperparameters of four ML al-
gorithms, including XGBClassifier, HistGra-
dientBoostingClassifier, AdaBoostClassifier, 
and RandomForestClassifier.

Evaluation
After modeling the ML algorithms, their per-

formance was evaluated using the accuracy, 
sensitivity, specificity, F-measure, and AUC 
(area under the curve) criteria (Equations 2 to 
5) [36].

2)        TP TNAccuracy
TP TN FP FN

+
=

+ + +
 

3)       ( )  TPSensitivity TPR
TP FN

=
+

4)       ( )   TNSpecificity TNR
TN FP

=
+

5)       2 
2

TPF measure
TP FP FN

×
− =

× + +

A ROC chart is defined by false positive rate 
(FPR) and true positive rate (TPR) as x and y 
axes, respectively, depicting relative trade-offs 
between true positive (TP) and false-positive 
(FP) [36].

Where TP is the number of actual patients, 
predicted correctly to have aGvHD. TN is the 
number of non-patients, predicted correctly 
not to have aGvHD. False-positive (FP) is the 
number of non-patients, predicted incorrectly 
to have aGvHD, and false-negative (FN) is the 
number of patients, predicted incorrectly not 
to have aGvHD [36].

CDSS
After selecting the most appropriate ML 

models, a CDSS was designed and imple-
mented using Python programming language 
and MySQL database management system 
(Figure 1 Part D). 

Then performance of CDSS was evaluated 
by calculating the agreement between CDSS 
prediction and the actual patient outcome af-
ter 100 days of transplantation, using Cohen’s 
Kappa coefficient and transplant data 30 pa-
tients, receiving AHSCT in 2018 [37].

Results

a. Patient Characteristics
Table 1 presents the most significant vari-

ables for predicting aGvHD.
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Type Row Variable Description Role

ba
se

-li
ne

 

1 Patient Gender Input
2 Donor Gender Input

3 Donor-Patient Gender Input
4 Patient Blood group Input

5 Donor Blood group Input

6 Delivery The process of giving birth for Donor. Input
7 Marital Status Input
8 Smoking Input

9 Blood group Compatibility Donor and recipient have the same blood group antigens and plasma 
antibodies. Input

10 Donor recipient relationship The relation between donor and patient gender including Related and 
Sibling. Input

11 Patient Age Input
12 Donor Age Input

bi
om

ar
ke

r

1 Prophylaxis Regimen Regimen use for the prevention of a specific disease. Input

2 Chemotherapy Regimen
Regimen 1-3: Myeloablative is an intensive conditioning regimen to destroy 

the bone marrow cells. Regimen 4: Reduced intensity conditioning that 
uses less chemotherapy and radiation than the Regimen 1-3.

Input

3 Diagnosis Input

4 Complete Remission Including: tests, physical exams, and scans show that all signs of cancer 
are gone. Input

5 Radiothrapypre Bone Marrow 
Transplantation The treatment of disease with ionizing radiation. Input

6 White Blood Cells Input
7 Platelet count Input
8 lactate dehydrogenase (LDH) Input

9 cluster of differentiation 3 
(CD3) Input

10 cluster of differentiation 34 
(CD34) The CD34 antigen identifies on a myeloid leukemia cell line. Input

11 mononuclear cell (MNC) Input

12 Diagnosis to Transplantation The time between disease diagnosis and hematopoietic stem cell trans-
plantation Input

13 Patient Body mass index Input
14 Donor Body mass index Input
15 Hemoglobin Input
16 Creatinine Input
17 Uric Acid Input
18 Albumin Input
19 C-Reactive Protein (CRP) Input

Acute graft-versus-host 
disease (aGvHD) Target

Table 1: The dataset variables and their descriptions. 
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b. Pre-processing
After discarding incomplete patient records, 

the patient dataset was reduced to 182 patients 
(71 case-patients diagnosed with aGvHD vs. 
111 control patients who did not experience 
aGvHD). As a result of under-sampling, the 
final number of scaled (normalized) patient 
records was 142 patients (71 cases vs. 71 con-
trols), of which 70% (99 patients) were select-
ed for the training dataset and 30% (43 cases) 
for the testing dataset.

The results of feature selection showed that 
of the 31 included variables, albumin, uric 
acid, C-Reactive Protein, donor age, plate-
let, Lactate Dehydrogenase, and Hemoglobin 
were identified as the seven most important 
predictors of aGvHD (Table 2) of which, albu-
min had the highest importance.

c. Predictive performance
The results of tuning the hyperparameters of 

ML algorithms are presented in Table 3.
The evaluation results of ML models based 

on the test data set are shown in Figure 2 and 
Table 4. Based on the evaluation criteria in-
cluding, accuracy, sensitivity, specificity, F-
measure, and area under the curve (AUC), the 
two algorithms XGBClassifier (eXtreme Gra-
dient Boosting Classifier) and HistGradient-
BoostingClassifier had the best performance. 
According to the mean of evaluation criteria, 
the XGBClassifier algorithm with 90.82 and 
the lowest number of false negative and false 

positive had the best performance (Table 4).

d. CDSS
Using the machine learning developed the 

model, a CDSS was designed and imple-
mented, which is accessible via the https://ag-
prcdss.ir/ (Figure 3). The agreement between 

Feature Importance 
Albumin 0.409
Uric Acid 0.151

C-Reactive Protein 0.148
Donor age 0.085

Platelet 0.081
Lactate Dehydrogenase 0.071

Hemoglobin 0.055

Table 2: The most important predictors of 
acute graft-versus-host disease

Classifier
Best F-measure 

%
*XGBClassifier 94

HistGradientBoosting-
Classifier

90

AdaBoostClassifier 90
RandomForestClassifier 95

*eXtreme Gradient Boosting classifier

Table 3: Results of optimized hyperparam-
eters of machine learning algorithms

Figure 2: Results of classification report and 
Area under the curve (AUC) curve of ma-
chine learning models.
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CDSS prediction and the actual outcome that 
occurred within 100 days after AHSCT was 
92%.

Discussion
In this study, we designed and implemented 

the AGPRC (Acute GvHD Prediction Trans-
plant Day CDSS) for predicting the likelihood 
of aGvHD on transplantation day. Considering 
the most important aGvHD predictors and ML 
classification models, in the following lines, 
we have discussed some important aspects of 
this study.

I. The most important predictors 
for aGvHD

Biomarkers play a key role in predicting 

aGvHD as they help oncologists to identify 
patients who are at higher risk for aGvHD, and 
to select appropriate pre and post transplanta-
tion care plans for them. In this study, seven 
variables were identified as the most important 
factors associated with aGvHD on the trans-
plantation day. These variables included albu-
min, uric acid, CRP, donor age, platelet, LDH, 
and hemoglobin. 

In our study, the relative importance of al-
bumin in predicting aGvHD was about 41%. 
Similarly, previous studies have also empha-
sized on the importance of the albumin lev-
el for predicting aGvHD [38-40], and low 
amounts of albumin alone and without depen-
dence on other predictors affect overall mor-
tality of aGvHD patients [41].

Row Classifier Accuracy Sensitivity Specificity F-measure AUC Mean
1 XGBClassifier 90.70 95.00 86.96 90.48 90.98 90.82

2
HistGradientBoost-

ingClassifier
90.70 90.00 91.30 90.00 90.65 90.53

- Average 1 and 2 90.70 92.50 89.13 90.24 90.82 -
3 AdaBoostClassifier 86.05 75.00 95.65 83.33 85.33 85.07

4
RandomForest-

Classifier
83.72 80.00 86.96 82.05 83.48 83.24

AUC: Area under the curve, XGBClassifier: eXtreme Gradient Boosting classifier

Table 4: Results of performance evaluation of machine learning models

Figure 3: Graphical user interface of the clinical decision support system.
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The second predictor for aGvHD is uric acid 
with the importance of 15.1%. In previous 
studies, this variable has been cited as a strong 
immunological risk signal. Low levels of this 
predictor, especially on the day of transplan-
tation, increase the likelihood of aGvHD [42, 
43].

The third predictor for predicting aGvHD 
is CRP with the importance of 14.8%. High 
levels of this predictor in patients increase the 
risk of aGvHD, especially grade II to IV, as-
ymptomatic death, and decreased overall sur-
vival [44-48].

The fourth predictor for aGvHD is the donor 
age with the importance of 8.5%. In studies 
related to AHSCT, donor age is considered as 
an important predictor [49], and one of the ap-
propriate predictors that can be achieved eas-
ily and without cost.

The fifth predictor for aGvHD is platelets 
with the importance of 8.1%. Previous studies 
have emphasized that to prevent the likelihood 
of aGvHD in AHSCT patients, it is essential 
to maintain platelet counts above 10,000 mm3 

[50].
The sixth predictor for aGvHD is LDH with 

the importance of 7.1%. Studies have shown 
that low levels of LDH and high levels of 
serum cyclosporine reduce the likelihood of 
aGvHD [51]. In some previous studies, this 
variable has been presented as one of the im-
portant predictors [10, 52].

The seventh predictor for predicting aGvHD 
is hemoglobin with the importance of 5.5%. 
Previous studies have emphasized that to pre-
vent the likelihood of aGvHD in AHSCT pa-
tients, maintaining a hemoglobin level above 
8 to 9 g/dL is essential. Therefore, red blood 
cells and platelets are injected continuously in 
these patients [50].

According to the literature review, each one 
of previous studies has focused on the impor-
tance of a marker based on the diagnosis of 
aGvHD. Thus, the impact of the combination 
of these significant factors on aGvHD detec-
tion is reported for the first time in this study.

II. Selected machine learning mod-
els

After identifying the most important pre-
dictors, the algorithm modeling process was 
performed using the optimization of their hy-
perparameters. Based on the evaluation crite-
ria of accuracy, sensitivity, specificity, AUC, 
F-measure, and the average of these criteria, 
XGBClassifier model and HistGradientBoost-
ingClassifier had the best performance.

In previous studies, ML algorithms have 
been mainly used in laboratory settings, not in 
clinical practice. In the present study, the se-
lected and tuned ML models were used as the 
inference engine of a CDSS to predict aGvHD 
in the transplantation unit of the target hospi-
tal. 

In 2015, a study by Cocho et al, [53] aimed 
at using different ML algorithms to diagnose 
aGvHD by gene expression data, used support 
vector machine (SVM), shrinkage discrimi-
nant analysis (SDA), K-nearest neighbors 
(KNN) algorithms without tuning their hyper-
parameters. The reported sensitivity, specific-
ity and AUC were 100%, 92.9% and 99.5% 
for SVM, 92.9%, 92.9% and 95.9% for SDA 
and 92.9%, 92.9% and 92.9% for KNN, re-
spectively. The ML models presented in this 
study had very good performance evaluation 
criteria, but there are three main criticisms for 
this study as follows: 1) this study aimed to 
diagnose aGvHD only based on gene expres-
sion data. 2) These ML models have not been 
tested in a clinical setting, and 3) the system 
cannot predict aGvHD before the patient goes 
through transplantation because the study was 
designed in such way, measured after trans-
plantation.

In 2018, Arai et al, [28] conducted a study 
entitled “Predicting aGvHD following AH-
SCT using an ML algorithm” using the 
ADTree without the hyper-parameter optimi-
zation method. The reported AUC for grades 
2-4 aGvHD was 61.6% and for grades 3-4 
was 62.3%. This study aimed to develop ML 
models to accurately predict grades 2 to 4 of 
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aGvHD, However, the performance of their 
models was poor. In contract, in our study, 
all performance measures of the selected ML 
models had values over 90%, which demon-
strates a much better overall performance than 
Arai et al, study.

In 2018, Lee et al, [29] conducted a study 
entitled as “Predicting the absolute risk of 
aGvHD following AHSCT” using the en-
semble method without optimizing the hyper-
parameters of the employed algorithms. The 
reported AUC was in the range of 61.3% to 
64% for these ensemble models. Despite the 
fact that in the present study, the models are 
also of the ensemble type, because of the hy-
perparameter tuning, the performance was 
much better compared to the study conducted 
by Lee et al.

In 2020, Tang et al, [54] conducted a study 
entitled “Predicting aGvHD using Machine 
Learning and Longitudinal Vital Signs Data 
from Electronic Health Records” using lo-
gistic regression without hyper-parameters 
optimization methods. The reported AUC for 
grades 2-4 aGvHD was 65.9%. This study, 
like a few other studies [28, 29, 53], was per-
formed to diagnose aGvHD after transplanta-
tion. Compared to the ML models of the pres-
ent study, the model proposed in the study of 
Tang et al, has a lower performance, and has 
not been used in a clinical setting.

Comparing the performance evaluation 
criteria of XGBClassifier and HistGradient-
BoostingClassifier with ML model presented 
in previous studies [28, 29, 53, 54], it seems 
that the use of these ML models in CDSS to 
predict aGvHD in the process of modifying 
the care plan of patients who received AHSCT 
can be useful and effective. Thus, we designed 
and developed a CDSS and applied it in the 
transplantation unit of the target hospital to 
predict aGvHD on the day of transplantation.

III. CDSS performance evaluation
In terms of developing aGvHD, there was 

92% agreement between the CDSS predic-

tion outcome and the actual patient outcome 
that was measured 100 days after the AHSCT 
transplantation.

Given that the criteria of the average evalua-
tion of the ML models used in this CDSS were 
91%, it seems that this CDSS had acceptable 
performance.

Conclusion
According to the current results and pre-

vious research, it is obvious that training a 
model based on the aggregation of the most 
significant features achieves the better perfor-
mance in comparison with generating a model 
concerning each important feature, separately.

In this study, seven variables were identified 
as the most important factors associated with 
aGvHD on the transplantation day. These vari-
ables included albumin, uric acid, CRP, donor 
age, platelet, LDH, and hemoglobin. Ensem-
bled Machine learning methods can reliably 
predict the likelihood of aGvHD at the time 
of transplantation. These methods can help us 
to limit the number of risk factors to those that 
have the significant effects on the outcome. 
However, their performance is heavily depen-
dent on selecting the appropriate methods and 
algorithms. Future studies should focus on 
determining the most appropriate aGvHD pre-
dictive models.
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