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Introduction

Functional Magnetic Resonance Imaging (fMRI) has been recently 
become more popular in brain function studies. During the fMRI 
examination, the low-frequency fluctuations called Blood Oxy-

gen Level Dependent (BOLD) signal that shows the oxygen consump-
tion of the brain regions, has been recorded [1]. In brain research, there 

Original

ABSTRACT
Background: Functional Magnetic Resonance Imaging (fMRI) is a non-invasive 
neuroimaging tool, used in brain function research and is also a low-frequency signal, 
showing brain activation by means of Oxygen consumption. 
Objective: One of the reliable methods in brain functional connectivity analysis 
is the correlation method. In correlation analysis, the relationship between two time-
series has been investigated. In fMRI analysis, the Pearson correlation is used while 
there are other methods. This study aims to investigate the different correlation meth-
ods in functional connectivity analysis.
Material and Methods: In this analytical research, based on fMRI signals of 
Alzheimer’s Disease (AD) and healthy individuals from the ADNI database, brain 
functional networks were generated using correlation techniques, including Pearson, 
Kendall, and Spearman. Then, the global and nodal measures were calculated in the 
whole brain and in the most important resting-state network called Default Mode  
Network (DMN). The statistical analysis was performed using non-parametric permu-
tation test. 
Results: Results show that although in nodal analysis, the performance of cor-
relation methods was almost similar, in global features, the Spearman and Kendall 
were better in distinguishing AD subjects. Note that, nodal analysis reveals that the 
functional connectivity of the posterior areas in the brain was more damaged because 
of AD in comparison to frontal areas. Moreover, the functional connectivity of the 
dominant hemisphere was disrupted more.  
Conclusion: Although the Pearson method has limitations in capturing non-linear 
relationships, it is the most prevalent method. To have a comprehensive analysis, in-
vestigating non-linear methods such as distance correlation is recommended.
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are three types of brain connectivity called 
structural, functional, and effective. The tem-
poral correlation of fMRI signals shows 
the functional connectivity in the brain that 
could be among all voxels (that is very time-
consuming) or Regions of Interest (ROI) [2]. 
Several functional connectivity studies based 
on fMRI signals show that different patho-
logical or physiological conditions affect the 
brain functional connectivity [3-5]. There are 
several methods to calculate the correlation 
between time-series, including Pearson Corre-
lation Coefficient (PCC), Kendall, and Spear-
man. All the methods are popular in literature 
but the PCC is the most common method used 
in fMRI functional connectivity analysis [6]. 

Alzheimer’s Disease (AD) that is the most 
common type of dementia, is a neurodegen-
erative illness, disrupting the performance of 
the brain and the normal life of the patient in 
the final stages of the disease. Official deaths 
authentications recorded 122,019 deaths from 
AD in 2018, making Alzheimer’s the 6th and 5th 
main reason for death in the United States and 
among Americans age 65 and older, respec-
tively [7]. Accordingly, using fMRI signals to 
study AD is very popular and also helpful for 
all the people involved in this issue directly or 
indirectly [8]. 

Studies on AD shows that the functional 
connectivity of the brain and especially main 
brain networks such as Default Mode Network 
(DMN) has decreased [9, 10]. Classification 
AD patients from the healthy individuals is 
another popular topic that has been performed 
using different features and dimension reduc-
tion algorithms, and a wide range of classifi-
ers, including K-Nearest Neighbors, Artificial 
Neural Networks (ANN) and Support Vector 
Machine (SVM) [11-13]. There are also sev-
eral studies on the early stage of the disease 
called Mild Cognitive Impairment (MCI) 
[14, 15]. Besides, using additional informa-
tion such as MRI, structural images has been 
investigated [16]. In functional connectivity 
analysis, non-linear methods such as mutual 

information have been used as well [17]. The 
study of the functional connectivity using 
coherence analysis [18] or comparing the ef-
fect of AD and normal aging in the functional 
connectivity was done before [19]. Moreover, 
some studies especially focused on white mat-
ter functional connectivity [20] or some brain 
networks or ROIs [21].

As mentioned above the functional connec-
tivity analysis is very common and popular 
among researchers. Although there are many 
ways to compute the functional connectivity, 
the most common method for analyzing func-
tional connectivity is Pearson Correlation Co-
efficient (PCC). PCC is conducted using the 
linear correlation; however, in non-linear rela-
tionships, this method is weak. Besides, there 
a not enough studies that compare the result 
of the different correlation methods to PCC. 
In this study, functional connectivity matrices 
are generated using different correlation meth-
ods, including PCC, Spearman, and Kendall, 
to explore the performance of these methods 
in brain functional connectivity analysis in 
AD subjects. 

In the materials and methods section, the 
database is introduced. Then the preprocess-
ing step is explained and different correlation 
methods and their formulas are presented. Af-
ter that, graph theory and feature extraction 
are proposed. In the result section, the statis-
tical outcomes and different analysis findings 
are presented. Finally, the results are going to 
discuss in the last section. This study aims to 
investigate the different correlation methods 
in functional connectivity analysis.

Material and Methods
In this analytical research, the data and the 

tools used in this study are presented and ex-
plained completely. The flowchart of the study 
is shown in Figure 1.

Database
The fMRI data has been collected from the 

Alzheimer’s Disease Neuroimaging Initiative 
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(ADNI) phase 2 [22, 23]. The data consists of 
28 individuals for the AD group and 34 indi-
viduals for the control group. All the scans, in-
cluding structural and functional images have 
been done by a 3 Tesla Philips MRI machine. 
The Repetition Time (TR) and Echo Time 
(TE) are 3000 msec and 30 msec, respectively. 

The flip angle was 80 and 3.3125 mm was the 
thickness of each slice [24]. The demographic 
information is depicted in Table 1.

Preprocessing
The preprocessing was done using the Data 

Processing Assistant for fMRI (DPARSF) 
toolbox in Matlab software [25]. The prepro-
cessing consists of realignment that performed 
by a six parameter rigid body transformation. 
BY the last slice, the slice timings were cor-
rected. Then the Montreal Neurological In-
stitute (MNI) atlas has been used for data 
normalization. Data were passed through a 
bandpass filter (0.01-0.08 Hz) and smoothed 
by a Gaussian filter (FWHM=4 mm). Finally, 
to obtain the time-series, the Automated Ana-
tomical Labeling (AAL) atlas, reliable in this 
field, has been employed. Based on AAL atlas, 
the brain parcellates into 116 distinct regions 
[26].

Correlations
After extracting fMRI signals based on AAL 

atlas, the correlations among time-series were 
computed to obtain brain functional connec-
tivity. PCC is one of the main methods to 
calculate the correlation [27]. The formula of 
PCC is as follows:

( )
.

cov .
x y

x y

x y
ρ

σ σ
=                    (1)

Where σx and σy correspond to the standard 
deviation of signal x and y, respectively. The 
PCC computes the linear correlation and the 
magnitude is between -1 to 1. The sign shows 

Figure 1: The flowchart of the study.

Group No. (Male/Female) Age Head Motion (mm) MMSE Score CDR Score
AD (14/14) 74.9±4.9 0.32±0.09 20.35±0.54 1.03±0.54
CN (14/20) 74.1±4.3 0.22±0.14 29.11±1.24 0.16±0.05

MMSE: Mini-Mental State Examination, CDR: Clinical Dementia Rating, AD: Alzheimer’s Disease, CN: Control

Table 1: The information of the data. Mini-Mental State Examination (MMSE) and Clinical 
Dementia Rating (CDR) are two clinical exams performed for analysis the mental health in  
Alzheimer’s Disease (AD).
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the direction and the magnitude corresponds 
to the correlation power. 

The Spearman correlation is another meth-
od, which is a nonparametric rank correla-
tion between two variables, showing that how 
well the connection between two factors can 
be portrayed using a monotonic function [28]. 
For computation the Spearman correlation, 
the variables are firstly converted to rank vari-
ables and then the PCC formula (Equation 1) 
is performed. 

Kendall coefficient is a non-parametric 
popular method for computing the correlation 
between two variables, quantifing the ordi-
nal association between variables [29]. As-
sume that (xi, yi) and (xj, yj) are two coordintes 
with condition that if xi>xj and yi>yj, they are  
concordant and if xi<xj and yi<yj they are dis-
cordant. Accordingly, the formula of the Ken-
dall coefficient is as follows:

( )1
2

c dn n
n n

τ −
=

−                         (2)

Where nc and nd correspond to the number 
of concordant and number of discordant pairs, 
respectively. Besides, n is the number of pairs.

Brain Networks and Graph Theory
In functional connectivity analysis, the 

brain is modeled as an undirected graph. In 
this graph, the brain ROIs correspond to the 
graph nodes and the functional connectivi-
ties between nodes were modeled as network 
edges. The edges of the graph demonstrates 
the functional connectivity (correlation) [30]. 
In mathematics, G=(V, E) is a graph that E is 
the representatives of links and V corresponds 
to vertices. Besides, some studies sparsed the 
graphs by thresholding to remove weak links 
and noises. As this paper aims to compare the 
effect of different correlation methods, sparsi-
fication is not obliged. As this study focused 
on functional connectivity, the absolute value 
of negative correlations was considered for 
further analysis [31]. After generating weight-

ed undirected graphs based on different cor-
relation methods, graph global features were 
computed. The formula of graph measures is 
shown in Table 2.

In Table 2, n and dG(x.y) show the number of 
nodes and the distance between the x and y, 
respectively. The GIdeal is the representative of 
a fully connected network. The l is the number 
of links and Ax.y shows the connectivity matrix. 
δx.y is 0 if the x and y are from the same com-
munity. Cr and Lr correspond to an equivalent 
random graph. The average efficiency formula 
is ( ) ( ) ( )

1 1
1 .x y G

G
n n p x y≠ ∈

=
− ∑ , where p(x.y) 

corresponds to the shortest path length be-
tween x and y. 

Some measures are computed over a single 
node. These types of features demonstrate 
the performance of a single node in the net-
work specifically. Betweenness measures the 
centrality in a network based on the shortest 
paths, and is the ratio of the shortest path (that 
crosses through a hub to the total number of 
shortest paths). Closeness is the inverse of the 
path length of a hub [33]. Participation esti-
mates the connection between the number of 
edges associating a hub outside its locale and 
all of its outnumber of edges. The participa-
tion formula is:

2

1 is
i

s i

K
P

K
 

= −  
 

∑                         (3)

where si and Ki are the all outnumber of links 
of vertice i and 

isK  is the number of edges as-
sociating the vertice i inside Module (neigh-
borhood).

Results
After generating weighted undirected func-

tional brain networks and extracting graph 
features, statistical analysis was performed. 
Since there is no assumption about the distri-
bution of the data, the non-parametric permu-
tation test was implemented. The results of the 
statistical test are shown in Table 3 in terms of 
P-values. The bold numbers in Table 3 corre-
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spond to the P-values<0.05.
According to Table 3, the Pearson correla-

tion shows significant changes in strength, 
characteristic path length, global efficiency, 
local efficiency, clustering, and transitivity 
features. In addition to the mentioned features, 
Spearman and Kendall correlations show sig-
nificant changes in the modularity feature as 
well. Regardless of the features that show sig-

nificant differences, generally, the P-values 
obtained from Kendall and Spearman were 
smaller in comparison to the Pearson method. 
It can be concluded that Kendall and Spear-
man are more powerful in the discrimination 
of Alzheimer’s disease from the control group 
in terms of functional connectivity and graph 
measures.

The diameter and radius were computed 

Graph Measure Formula
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Eccentricity ( ){ }max .GEcc d x y=
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V

Str E
υ

υ
∈
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Table 2: The formula of graph global measures [32].
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based on the eccentricity feature, capturing 
the maximal distance between two nodes. 
Moreover, they did not show any significant 
changes. It can be interpreted that although Al-
zheimer’s affects the brain function, the paths 
between ROIs that flowing information still 
exists. Accordingly, none of the brain ROIs is 

isolated from the rest of the brain. The small 
worldness architecture of the brain remains in 
this database. Since there was no sparsifica-
tion step, it was expected that the degree fea-
ture indicates no significant differences. 

The performance of different correlations 
methods has been analyzed through global 
graph measures. Since other studies [21, 34] 
reported functional connectivity changes in 
DMN to analyze more comprehensively, the 
measures in DMN were investigated. Fur-
thermore, most of the global measures can 
be computed for a single node. On the other 
hand, some features, including small world-
ness related to the whole graph cannot be 
calculated for a node. First of all, the global 
measures that are available in the nodal analy-
sis were extracted for every node of the DMN 
network. Consequently, there were ten charts 
for ten ROIs of the DMN. For example, Table 
4 is for frontal superior medial left ROI. The 
boldface P-values in Table 4 shows a statisti-
cally significant difference.

In comparison among different correlation 
methods, based on the number of features dis-
playing significant changes, Pearson, Spear-
man, and Kendall show a significant differ-
ence in 27, 32, and 33 features, respectively 
out of 70 features (7 different features in 10 

P-Values
Features 

Correlation 
Pearson Spearman Kendall Rank (In all ROI)

Strength 0.4324 0.3710 0.3881 4th

Eccentricity 0.1155 0.3318 0.2591 7th

Path Length 0.0012 0.0611 0.0014 3rd

Global Efficiency 0.1462 0.2702 0.2444 5th

Local Efficiency 0.0792 0.0924 0.0799 2nd

Clustering 0.0545 0.0605 0.0515 1st

Within Modularity 0.0626 0.1414 0.0625 6th

ROI: Regions of Interest

Table 4: P-values of the global features extracted for the node number 23 in the Automated 
Anatomical Labeling (AAL) atlas. The last column ranks the features in all Default Mode Network 
Regions of Interests (DMN ROIS) based on the number of significant changes.

P-Values
Features 

Correlation 
Pearson Spearman Kendall

Degree 1 0.1586 0.1641
Strength 0.0026 0.0036 0.0023
Radius 0.2009 0.1689 0.2282

Diameter 0.4882 0.4483 0.4819
Eccentricity 0.3295 0.4118 0.4251

Characteristic 
Path Length

0.0112 0.0132 0.011

Global Efficiency 0.0018 0.0035 0.0031
Local Efficiency 0.0018 0.0223 0.0021

Clustering 0.006 0.0035 0.0028
Transitivity 0.0074 0.0031 0.0034
Modularity 0.057 0.0443 0.0395

Small Worldness 0.6274 0.2615 0.1484

Table 3: P-values of the global features  
statistical test.
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ROIs). These results were similar to the global 
measures in the whole network (Table 3) and 
the Spearman and Kendall were more power-
ful in comparison to Pearson correlation.

The eccentricity feature like the whole-brain 
analysis has no significant difference in nei-
ther the ROIs nor correlation methods. On the 
other hand, clustering, local efficiency, and 
path length were the features, demonstrating 
the most significant differences respectively. 
Besides, the last column of Table 4 displays 
the ranks of the features based on their number 
of significant differences in all DMN ROIs.

Among the ROIs of the DMN network, the 
angular area (left and right) and cingulum 
posterior area (left and right) seemed to be 
more affected by the AD because more fea-
tures showed significant difference and these 
results are in consistent with previous studies  
[35, 36]. Besides, the measures in the left hemi-
sphere of the brain demonstrate more signifi-
cant changes. Since all the subjects were right-
handed, it can be concluded that the dominant 
hemisphere was affected more by the AD.  
Figure 2 exhibits the axial dorsal view of DMN 
ROIs, sorted based on their affection by AD.

As shown in Figure 2, it can be interpreted 
that the AD disrupts functional connectivity 
in posteriors ROI’s of DMN network more in 
comparison to frontal ROI’s. 

Besides the global measures, there are some 
nodal measures computed only over a single 
node and do not define in the whole graph. 
These features were calculated in ROI’s of 
DMN network separately and Table 5 illus-
trates the P-values for frontal superior medial 
left ROI. The boldface P-values in Table 5 ex-
hibits a statistically significant difference. 

All three correlation methods show signifi-
cant difference in 18 features out of 40 (4 nod-
al measures on every 10 DMN ROIs); thus, 
regardless of the correlation method the per-
formances of nodal measures extracted from 
graphs are the same.

Among four nodal measures, the triangles 
and closeness feature exhibits more significant 

Figure 2: Default Mode Network Regions of 
Interests (DMN ROIS) and their rank according 
to significant differences in a statistical test.
(SFGmed: Frontal Superior Medial, ACG: Cin-
gulum Anterior, PCG: Cingulum Posterior, 
ANG: Angular, PCUN: Precuneus) 

P-Values

Features 

Correlation 
Pearson Spearman Kendall

Triangles 0.0881 0.1149 0.1021

Betweenness 0.4382 0.3613 0.3333

Closeness 0.0730 0.0926 0.0746

Participation 0.0128 0.0121 0.0137

Table 5: P-values of the nodal features ex-
tracted for the node number 23 in the Auto-
mated Anatomical Labeling (AAL) atlas.
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changes and the betweenness demonstrates the 
least significant difference. It is worthwhile to 
mention that the ranks of ROIs based on nodal 
measures were as same as global measures 
(Figure 2). 

Discussion
This paper aims to investigate and compare 

the different prevalent correlation methods in 
generating brain functional graphs. Firstly, the 
fMRI data of AD patients and control groups 
were preprocessed and time series were ex-
tracted based on AAL atlas. Secondly, the cor-
relation between signals of different ROIs was 
computed in every subject by 3 different cor-
relation methods. Then, the graph global mea-
sures were extracted in the whole brain graph. 
In another analysis, the global measures were 
extracted in the DMN network. Moreover, 
nodal measures in the DMN network were 
also calculated. In the whole-brain analysis 
based on global measures, Spearman and Ken-
dall correlations were stronger in discrimina-
tion between AD subjects and healthy ones in 
comparison to the Pearson correlation. Since 
Spearman and Kendall present more signifi-
cant difference in global measures in compari-
son to Pearson, these methods are superior in 
brain functional connectivity analysis in AD.

It is worthwhile to mention that some fea-
tures, including eccentricity, radius, and di-
ameter (that calculated based on eccentricity) 
show no significant changes regardless of the 
correlation method. On the other hand, some 
features, showing brain functional integration 
and segregation such as efficiencies, charac-
teristic path length, clustering, and transitivity 
show significant changes in all three different 
correlation methods. 

In DMN network analysis employing global 
measures, again the Spearman and Kendall 
were more powerful and show more signifi-
cant difference. Also, the eccentricity feature 
shows no significant changes in neither the 
correlation methods nor DMN ROIs. The 
most disrupted functional connectivity among 

DMN ROIs was the posterior, including angu-
lar, cingulum posterior, and precuneus ROIs, 
respectively. On the other hand, the frontal 
ROI’s had less functional connectivity dis-
ruption. Overall, the left hemisphere shows 
more significant changes. Since the individu-
als were right-handed, it can be concluded that 
the functional connectivity of the dominant 
hemisphere is disrupted more from AD. In the 
nodal analysis of DMN ROIs, the triangle and 
closeness features had the most better perfor-
mance in distinguishing AD cases from the 
normal group respectively. Also, the perfor-
mance of different correlation methods were 
the same approximately. Besides, the func-
tional connectivity disruption in DMN ROIs 
based on nodal measures was similar to global 
measures.

Conclusion
In this study, different correlation methods 

have been evaluated for brain functional net-
work generation. Although there is no gold 
standard, the most common method is the 
Pearson correlation coefficient that has limita-
tions in capturing non-linear dependencies. In 
the used database, the Spearman and Kendall 
correlation was more powerful. Accordingly, 
the weakness of Pearson was demonstrated. 
For further studies, assessing other methods, 
especially non linear methods such as distance 
correlation or mutual information, is highly 
recommended. Furthermore, the investiga-
tion of other databases and different types of  
binary graphs are suggested as well.
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