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Introduction

In medical image analysis, image registration plays an important role 
in medical physics and radiation therapy applications. This tech-
nique has been extensively studied for external beam radiotherapy 

to deliver a therapeutic dose more efficiently to the target volume that 
moved with patient respiration [1]. In this regard, deformable image 
registration (DIR) applications are widely used to account for anatomi-
cal deformations in the field of intensity-modulated radiation therapy 
or volumetric modulated arc therapy [1-4]. In these methods, online  
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ABSTRACT
Background: During X-ray imaging, pulmonary movements can cause many im-
age artifacts. To tackle this issue, several studies, including mathematical algorithms 
and 2D-3D image registration methods, have been presented. Recently, the applica-
tion of deep artificial neural networks has been considered for image generation and 
prediction. 
Objective: In this study, a convolutional long short-term memory (ConvLSTM) 
neural network is used to predict spatiotemporal 4DCT images.
Material and Methods: In this analytical analysis study, two ConvLSTM 
structures, consisting of stacked ConvLSTM models along with the hyperparameter 
optimizer algorithm and a new design of the ConvLSTM model are proposed. The hy-
perparameter optimizer algorithm in the conventional ConvLSTM includes the num-
ber of layers, number of filters, kernel size, epoch number, optimizer, and learning rate. 
The two ConvLSTM structures were also evaluated through six experiments based on 
Root Mean Square Error (RMSE) and structural similarity index (SSIM). 
Results: Comparing the two networks demonstrates that the new design of the 
ConvLSTM network is faster, more accurate, and more reliable in comparison to the 
tuned-stacked ConvLSTM model. For all patients, the estimated RMSE and SSIM 
were 3.17 and 0.988, respectively, and a significant improvement can be observed in 
comparison to the previous studies.  
Conclusion: Overall, the results of the new design of the ConvLSTM network 
show excellent performances in terms of RMSE and SSIM. Also, the generated CT 
images with the new design of the ConvLSTM model show a good consistency with 
the corresponding references regarding registration accuracy and robustness.
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imaging techniques, such as Computed tomog-
raphy (CT) on the rail, cone beam computer-
ized tomography (CBCT), integrated magnetic 
resonance imaging (MRI), and four-dimen-
sional computed tomography (4DCT), have 
been used to account for anatomical deforma-
tions. Therefore, the number of data acquired 
using the X-ray imaging system has signifi-
cantly increased in advanced radiotherapy in 
contrast to conformal radiotherapy. However, 
the patient’s breathing as a significant impact 
might result in degrading the spatiotemporal 
resolution [5-7]. In this relation, the image reg-
istration algorithms, including intensity-based 
or feature-based methods can be used to ad-
dress this issue [8-10]. In recent years, several 
approaches have been presented for the im-
age processing of CT images throughout the 
breathing cycle. However, there are still some 
limitations, such as time-consuming, degrad-
ed spatiotemporal resolution, and error-prone, 
which required more consideration. To tackle 
this issue, deep convolutional neural networks 
have shown great success in image reconstruc-
tion and prediction of pulmonary movements 
in CT images [11-14].

Kai et al. performed a study to use the ad-
vantage of recurrent neural networks (RNN) 
for lung motion estimation. The RMSE value 
reported by the proposed approach was less 
than 1 mm in 3D space, which showed a better 
performance and result compared to the clas-
sical neural networks [11]. Nabavi et al. used 
the PredNet network, which is a type of CNN-
LSTM model, to predict and generate pulmo-
nary movements in CT images. The evaluation 
results by the proposed model in 4DCT images 
of six patients show a 0.943 structural similar-
ity index [12]. A recent report from Yabo Fu 
et al. conducted a study to use a deep learn-
ing method, namely LungRegNet, to develop 
an accurate and unsupervised DIR method for 
predicting large lung motion 4DCT images. 
The LungRegNet model also comprises two 
subnetworks: CoarseNet and FineNet. Where-
as the CoarseNet is used to predict large lung 

motion, the FineNet predicts the local lung 
motion. The mean value and standard devia-
tion of target registration error were 1.00±0.53 
mm for ten 4DCT datasets and 1.59±1.58 mm 
for ten DIRLAB datasets [14]. It should be 
noted that the state of the art deep learning 
techniques was recently used in different stud-
ies, such as predicting future frames in stock 
market prediction [15], traffic accident predic-
tion [16], text recognition [17, 18], precipita-
tion prediction [19], weather forecasting [20], 
ocean temperature [21], medical imaging [13, 
14, 22], direction of slip detection [23], and 
travel demand prediction [24].

Essentially, the review of prior studies in 
medical physics and radiation therapy shows 
that the convolutional long short-term memo-
ry (ConvLSTM) network as a powerful model 
can be used for image reconstruction, next 
frame prediction, and prediction of pulmonary 
movements in CT images. However, there are 
some challenges faced by researchers, includ-
ing inaccurate results, high target registration 
error, insufficient sample size, and using default 
network parameters [11-14]. In this study, two 
networks, including the stacked ConvLSTM 
model along with the hyperparameter opti-
mizer algorithm and a new design of the Con-
vLSTM network, were initially proposed. The 
hyperparameters for the stacked ConvLSTM 
network also included the number of layers, 
number of filters, kernel size, epoch number, 
optimizer, and learning rate. The new design 
of the ConvLSTM network, on the other hand, 
is equipped with multi kernels in input images 
accompanied with different filters. To propose 
a reliable and accurate model, a comparison 
between two networks was considered. To 
evaluate the model performance, 4DCT of six 
lung patients, which each dataset consisting of 
ten 3DCT frames along with the breathing cy-
cle, was also used. Moreover, the Root Mean 
Square Error (RMSE) and structural similar-
ity index measure (SSIM) are considered to 
evaluate the obtained results. Overall, the gen-
erated CT images with the new design of the 
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ConvLSTM model show a good consistency 
with the corresponding references in terms of 
registration accuracy and robustness.

Material and Methods

Database properties and pre- 
processing 

In this analytical analysis study, six 4DCT 
images with pulmonary tumors acquired 
from Brilliance CT Big Bore (Philips with a 
16 Slice) were used [25]. Also, each dataset 
consists of ten 3DCT frames along with the 
breathing cycle. More information about the 
patient’s number, label, image dimensions, 
pixel spacing, and slice thickness is shown in 
Table 1. In a preprocessing step, all images 
were resized to 256×256, and then the pixel 
values were normalized to grayscale pixels 
by dividing each pixel value by the maximum 
pixel value. After fitting the network and pre-
dicting the test dataset, the predicted images 
are transformed into 0 to 255 to calculate 
RMSE and SSIM.

ConvLSTM Theory and Structure
ConvLSTM, which is an extension of the 

LSTM neural network, consists of two struc-
tures, convolutional and LSTM networks. 
Convolutional Neural Networks (CNNs) 
are used to transfer image data to an output  

variable, which are sufficient for prediction 
problems involving image data as an input. On 
the other hand, the Long Short Term Memory 
(LSTM) network, which is a type of recurrent 
neural network, is used to learn time-series 
data from temporal patterns, such as sequential 
data. The structure of the conventional Conv-
LSTM network is shown in Figure 1. Overall, 
the ConvLSTM is designed for 3-D input data, 
which is suitable for spatial sequence data, 
while the LSTM is used for one-dimensional 
input data. Note that the feed-forward meth-
od of the LSTM is changed from Hadamard 
product to convolution in the ConvLSTM to 
capture underlying spatial features by con-
volution operations in multiple-dimensional 
data. More information about the structure of 
the ConvLSTM models is described in detail 
elsewhere [26]. 

In this study, two ConvLSTM networks 
were proposed for image generation and pre-
diction; a stacked ConvLSTM network ac-
companied with the hyperparameter optimiza-
tion algorithm and a new structure based on 
the ConvLSTM network. The stacked Conv-
LSTM network structure, which is shown in  
Figure 2a, consists of a couple of the Conv-
LSTM layers along with each other, usually 
followed by a Conv3d layer as the output. 
BatchNormalization and Dropout layers can 
be used between consecutive ConvLSTM  

Patient Number Label
Image Dimensions 

(Coronal×Sagittal×Axial)
Pixel Spacing (mm)

Slice 
Thickness 

(mm)
Patient 1 4DCT (512, 512, 141) [0.9765625, 0.9765625] 2.00
Patient 2 4DCT (512, 512, 169) [0.9765625, 0.9765625] 2.00 
Patient 3 4DCT (512, 512, 170) [0.87890625, 0.87890625] 2.00 
Patient 4 4DCT (512, 512, 187) [0.78125, 0.78125] 2.00 
Patient 5 4DCT (512, 512, 139) [1.171875, 1.171875] 2.00 
Patient 6 4DCT (512, 512, 161) [1.171875, 1.171875] 2.00 

4DCT: Four-Dimensional Computed Tomography

Table 1: Patient’s number, label, image dimensions, pixel spacing, and slice thickness.
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layers to train speedup and prevent overfitting, 
respectively. In this study, the stacked ConvL-
STM model has used the Relu activation func-
tion in the middle layers, while the Conv3D 
layer, which is the output layer, consisted of a 
single filter with kernel size (1×1×1) followed 
by a sigmoid activation function. In addition, 
MSE was used as the loss function. The op-
timization of the hyperparameters, in the 
stacked ConvLSTM network, which includes 
the number of layers, the number of filters, the 
kernel size, the epoch number, the optimizer, 
and the learning rate, is described in section 
2.3. It should be noted that, in structures with 
more than one ConvLSTM layer, the number 
of filters and the kernel size were chosen to be 

the same in every layer.
The new design of the ConvLSTM base 

model, presented in Figure 2b, consists of four 
parallelized ConvLSTM layers with different 
filters and kernel sizes that receive a sequence 
of images during the respiratory cycle of the 
same patient. Note that in this study, a dif-
ferent kernel was used for each ConvLSTM 
layer. Overall, the kernel size revolves around 
the input data to extract features. In this series, 
different ranges of kernel size can be used; 
however, a common choice is to keep the ker-
nel size at (3×3) or (5×5). In this study, four 
different kernel sizes, including (1×1), (3×3), 
(5×5), and (7×7), as shown in Figure 2b, were 
used. Then each of the kernels was connected 

Figure 2: The simplified structure of the stacked convolutional long short-term memory  
(ConvLSTM) structure (upper image) and new design ConvLSTM model (lower image) for image 
reconstruction and prediction pulmonary movements in four-dimensional computed tomography 
(4DCT) images. For each ConvLSTM network, different high, width, depth, and kernel size are used.

Figure 1: Inner structure of convolutional long short-term memory (ConvLSTM) model.
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to different filters. Since the kernel size (3×3) 
or (5×5) are common and can extract more 
features, the number of filters along with these 
kernels is considered to be twice that of the 
other kernels. Finally, four ConvLSTM lay-
ers were concatenated and connected to the 
next ConvLSTM layer, which consisted of 32  
filters with a kernel size (3×3). Finally, the last 
ConvLSTM layer, which included a single  
filter with a kernel size (3×3), was considered 
for image generation and prediction spatio-
temporal datasets. Note that this configuration 
was obtained through trial and error based on 
preliminary experiments. For the optimiza-
tion process, Adam’s optimization algorithm 
with a learning rate of 0.005 was considered. 
Relu was selected as the activation function in 
the middle layers, while, in the last layer, the 
sigmoid activation function was used. In the 
presented model, ModelCheckpoint callback 
was also used to save the best-observed model 
during training, based on validation loss. The 
evaluations were performed for 200 epochs, 
selected based on the preliminary experiments 
on the EarlyStopping callback. In the prelimi-
nary experiments, EarlyStopping callback was 
specified to monitor the performance of the 
validation loss by setting the patience argu-
ment. Since the number of patience arguments 
depends on the variability of the dataset, the 
optimal number of patience was examined in 
the range of 1 to 20. The optimum number of 
patience was selected to be 10. Overall, the 
new structure led to better and more reliable 
results through increasing the SSIM, decreas-
ing the number of epochs as well as the model 
runtime.

Hyperparameter Optimizer
Hyperparameter optimization (HPO) is a 

process to choose a set of optimal hyperparam-
eters to achieve maximum accuracy, optimal 
training speed, and the best model configura-
tion [27]. In machine learning, a hyperparam-
eter is defined as a parameter, which has a di-
rect and strong impact on network accuracy. 

In this study, the following parameters were 
examined for the stack ConvLSTM network.

1. Number of layers: the number of layers, 
determining the depth of the model, is defined 
as the number of hidden layers in the network 
structure.

2. Number of filters: the number of filters, 
which is a hyperparameter, refers to the num-
ber of neurons performing a different convo-
lution to extract a suitable number of features 
from the input image. Also, there is a link be-
tween the number of features and the number 
of filters. The more wanted features lead to a 
higher number of required filters.

3. Kernel size: the kernel size refers to the 
filter size, revolving around the input im-
age. In this study, the different kernel sizes 
(width×height) are considered as the feature 
extractors. 

4. Number of epochs: the epoch number 
refers to the total processing times of the en-
tire training dataset to update the internal pa-
rameters and minimize the network’s error,  
properly.

5- Optimizer: optimizers are algorithms or 
methods responsible for minimizing the ob-
jective function by changing neural network 
attributes such as weights and learning rate to 
reduce losses.

6- Learning rate: the learning rate con-
trols how quickly the model is adapted to 
the problem. It is usually in the range of 0.0 
and 1.0. Setting a too low learning rate will 
result in very slow training, while setting a 
high a learning rate may result in undesirable  
divergent behavior.

Results
All experiments, including training, evalu-

ation, and testing, were implemented in the 
Python (version 3.7) environment by using 
the high-level neural networks functional 
API Keras (version 2.4) and backend engine 
TensorFlow (version 2.4). To quantify the 
model performance, the root mean square  
error (RMSE) and structural similarity index 
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measure (SSIM) are considered. Whereas the 
RMSE is used to assess the metric perfor-
mance of the model, the SSIM is considered 
to represent the rate of similarity or difference 
between the reference and predicted images. 
Moreover, the SSIM is a well-suited approach 
to quantify the differences perceptually in 
the human body. A detailed explanation of 
the SSIM analysis can be found in [28]. The 
mathematical expressions for these values are 
given in Equations 1 and 2, respectively.
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2 , ,ˆ , , , , , Y YY Y YY CY Y µ µ σ σ σ  represent 
the original image, the predicted image, the 
average of the original image, the average of 

the predicted image, the variance of the origi-
nal image, the variance of the predicted image, 
the covariance of the original and predicted 
images, and two variables to stabilize the divi-
sion with weak denominator, respectively.

In this study, the HPO method was used to 
find the optimal configurations for the stack 
ConvLSTM model. In the stack ConvLSTM 
model, the hyperparameter optimization algo-
rithm includes the number of layers, the num-
ber of filters, the kernel size, the number of 
epochs, the optimizer, and the learning rate. 
The interaction of these parameters is also de-
picted in the box and whisker plot in Figure 
3 to provide better concepts about the RMSE 
and SSIM values. It should be noted that the 
box and whisker plot is an effective graphical 
method for displaying variations in a set of 
data. It provides additional detail while allow-
ing multiple sets of data to be displayed on the 
same graph.

Figure 3: Impacts of different hyperparameters on the Root Mean Square Error (RMSE) and  
structural similarity index measure (SSIM) values.
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A comparison between two proposed Con-

vLSTM models was considered in terms of 
RMSE, SSIM, and epoch numbers for all 
patients. In this relation, Table 2 represents 
that the new structure of the ConvLSTM 
base model is faster, more accurate, and more  
reliable compared to the stacked ConvLSTM 

model. Based on Table 2, the new ConvLSTM 
method also shows good consistency with the 
corresponding references in terms of registra-
tion accuracy, robustness, and model runtime. 
In other words, the new ConvLSTM model 
with fewer trainable parameters and epochs 
(lower runtime) can provide better results 
compared to the stacked ConvLSTM model. 
Note that we repeated each trial ten times and 
reported the mean value of the trials for all pa-
tients and variables.

The obtained results from the new design of 
the ConvLSTM network in each of the six ex-
periments throughout the respiratory cycle in 
terms of the RMSE and SSIM are presented in 
Table 3. Also, less RMSE represents an excel-
lent performance in terms of prediction accu-
racy and robustness. Note that the SSIM value 
is ranged from −1 to 1, which the superior  

RMSE SSIM Epoch
Stacked ConvLSTM 4.7678 0.9594 500

Proposed ConvLSTM 
structure

3.17 0.988 200

RMSE: Root Mean Square Error, SSIM: Structural Similarity 
Index Measure

Table 2: A comparison between two  
proposed convolutional long short-term 
memory (ConvLSTM) models; Stacked Conv-
LSTM and proposed ConvLSTM structure.

Patient 
Number

View
Phase20 Phase 40 Phase 60 Phase 80 All Phases

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

Patient 1
Sagittal 1.8354 0.9954 1.5193 0.9956 2.0348 0.9905 2.1207 0.9893 2.3509 0.9919
Coronal 1.5279 0.9964 1.1561 0.9978 1.1561 0.9982 1.1561 0.9981 2.1297 0.9962

Axial 2.391 0.955 1.4228 0.9973 1.5894 0.9966 1.5289 0.9968 2.3232 0.994

Patient 2
Sagittal 2.6531 0.9858 2.2707 0.9861 2.0377 0.9888 2.2086 0.9882 3.3176 0.984
Coronal 2.6145 0.9879 1.9974 0.9916 1.7559 0.9932 1.9379 0.9923 4.417 0.9842

Axial 2.9563 0.9684 2.5875 0.9821 3.0332 0.974 3.2543 0.9729 4.4297 0.9743

Patient 3
Sagittal 2.5586 0.9814 1.758 0.9935 1.5641 0.9938 1.5822 0.9934 2.4434 0.9918
Coronal 2.242 0.9922 1.6559 0.9948 1.3477 0.9965 1.4973 0.9959 2.7708 0.9924

Axial 4.2566 0.9323 4.3586 0.9787 3.5988 0.9816 4.9469 0.9709 5.0797 0.9745

Patient 4
Sagittal 3.5906 0.972 2.9012 0.9846 2.741 0.9858 2.9059 0.9852 3.763 0.9823
Coronal 2.3395 0.9891 1.8863 0.9912 1.6815 0.9933 1.7385 0.9929 2.9959 0.9881

Axial 3.2867 0.962 3.1984 0.9731 2.9051 0.9789 2.7945 0.982 3.7308 0.9743

Patient 5
Sagittal 2.4922 0.9668 1.7447 0.9925 1.7477 0.9913 1.9797 0.9901 2.5762 0.9889
Coronal 1.885 0.9942 1.4018 0.9966 1.1486 0.9977 1.2346 0.9975 2.6695 0.9943

Axial 2.9789 0.9744 2.0227 0.9925 1.5752 0.9938 1.6192 0.9936 2.7721 0.9918

Patient 6
Sagittal 2.1951 0.9927 1.7065 0.9932 1.4621 0.9951 1.5299 0.9946 2.6019 0.9925
Coronal 1.7111 0.9938 1.209 0.9971 1.0728 0.9974 1.1124 0.9974 2.7464 0.9936

Axial 2.8102 0.9605 1.8461 0.9923 1.6344 0.994 1.6684 0.994 3.2081 0.9896

RMSE: Root Mean Square Error, SSIM: Structural Similarity Index Measure

Table 3: Quantitative evaluation of the proposed new design of the convolutional long  
short-term memory (ConvLSTM) network in terms of the Root Mean Square Error (RMSE) and 
Structural Similarity Index Measure (SSIM) through different phases.
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values indicate significant similarity between 
the actual output image and the predicted im-
age. In this study, the k‑fold cross‑validation 
method was used to evaluate the prediction 
models. Overall, in this method, the dataset 
was divided into M subsets, and M−1 subsets 
were used for training and validation, while 
one of the subsets was used to perform the test 
of the model. An elaborate description is in 
[29].

The results of predicted pulmonary motion 
during the respiratory cycle by the new design 
of the ConvLSTM network are presented in 
Figure 4 including the predicted image, the 
difference between the input image and actual 
output image, and the difference between ac-
tual output image and predicted image, in all 
three directions. The results of the proposed 
model show excellent performances in terms 
of registration accuracy, robustness, and simi-
larity. The predicted image through the new 
design of the ConvLSTM model provides the 
ability to generate the desired frames when the 
4DCT image suffers from image artifacts.

Discussion
Most radiation therapy techniques are 

planned to use a 3DCT scan; however, organ 
motion due to patient respiration would result 
in under/overdosage in the junction region. 
Therefore, a 4DCT system is required in ra-
diation therapy planning to achieve a three-
dimensional (3D) uniform dose delivery [30]. 
Also, the 4DCT aims to provide an ability to 
visualize the temporal dynamics with a suffi-
cient spatiotemporal resolution. In this regard, 
the review of earlier literature shows that some 
4DCT images suffer from image artifacts, 
such as streaks, rings, metal artifacts, blurring, 
incomplete structure, duplicated structure, and 
overlapping structure [5-7]. To tackle this is-
sue, several methods have been proposed; in 
this study, the state‑of‑the‑art ConvLSTM 
network was considered to develop a predic-
tion model for image reconstruction or gen-
eration of the next slice (time frame). In this 
series, two ConvLSTM structures consisting 
of stacked ConvLSTM models accompanied 
with the hyperparameter optimization algo-
rithm and a new design of the ConvLSTM 
model were proposed. To find the best con-
figurations for the stacked ConvLSTM net-
work, the HPO algorithm was proposed to im-
prove training speed and prediction accuracy.  

Figure 4: The predicted pulmonary motion of patient two, including the predicted image, the 
difference between the input image and actual output image, and difference between actual 
output image and predicted image, during the respiratory cycle in all three directions.
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Moreover, the hyperparameters include the 
number of layers, number of filters, kernel 
size, epoch number, optimizer, and learning 
rate. The obtained results from the proposed 
HPO method are reported in Figure 3 and dis-
cussed in detail in the following.

1. Number of layers: in this study, the impact 
of different layers, including one, two, and 
three layers, on the performance and accuracy 
of the model was investigated. The obtained 
results indicate that increasing the number of 
layers improves the performance of the model, 
while it might result in increasing model run-
time as well as the probability of overfitting. 
Therefore, a compromise is required between 
the number of layers and model runtime. Based 
on Figure 3, there is also a relation between 
the number of filters and the number of lay-
ers. The deeper nets, the higher the number of 
filters. Note that, in each layer, increasing the 
filter number beyond a particular number has 
a minor impact on accuracy and performance.

2. Number of filters: filter is a suitable ap-
proach to extract different features from the 
image. In this study, different ranges of the 
filter size, such as 20, 30, 40, 50, 60, 70, 
and 80, were considered to extract a suitable 
number of features from the input image. 
From Figure 3, the kernel size is an important  
hyperparameter to the filter size.

3. Kernel size: in this study, different ker-
nel sizes, including (1×1), (3×3), (5×5), and 
(7×7), were proposed. The obtained results in 
Figure 3 represent that increasing the kernel 
size through a larger filter size would improve 
the accuracy and performance of the model. 
Also, the kernel (1×1), known as feature pool-
ing, is used for dimensionality reduction and 
reduces the number of features. Note that the 
deeper models required the optimal kernel 
size, sufficient number of filters, and number 
of layers. It should be noted that, for each 
layer and kernel size, increasing the number 
of filters beyond a certain number has no or 
minor impact on the accuracy of the network, 
while model runtime increases.

4. Number of epochs: different epoch num-
bers, including 50, 100, 200, 300, 400, and 500, 
were investigated in this study. The obtained 
results indicate that increasing the number of 
epochs results in increasing the similarity and 
reducing the RMSE value. However, increas-
ing the epoch number results in increasing the 
model runtime. As seen in Figure 3, there is no 
role in determining the numbers of epochs and 
filters used to construct stacked ConvLSTM 
models. It should be noted that training the 
network with low or large numbers of epochs 
would result in overfitting or underfitting.

5. Optimizer: in this study, we evaluated dif-
ferent optimizers, including stochastic gradi-
ent descent (SGD), RMSprop, Adam, Adamax, 
Nadam, Adagrad, and Adadelta for different 
learning rates. The performance of different 
optimizers is represented in the box and whis-
ker plot in Figure 3. Based on Figure 3, RM-
Sprop, Adam, Adamax, and Nadam optimizers 
show good performances with learning rates 
between 0.01 and 0.0005, while SGD, Adag-
rad, and Adadelta had a much higher variance 
and RMSE.

6. Learning rate: as mentioned in the opti-
mizer part, different learning rates, including 
0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001, 
were studied for different optimizers. Also, 
several epochs for different learning rates in 
the Adam optimizer were investigated, and re-
sults were presented in Figure 3. Figure 3 also 
reveals that using the optimal learning rate 
leads to faster convergence, smaller variance, 
and better performance.

A comparison between the two proposed net-
works was also considered in terms of RMSE, 
SSIM, and epoch number. Based on Table 2, 
the new ConvLSTM network was more reli-
able and accurate regarding RMSE, SSIM, and 
runtime for image generation and prediction. 
Therefore, the state‑of‑the‑art of this study is 
to propose a new ConvLSTM structure net-
work to predict and generate future frames 
in CT images during the breathing cycle. In 
this relation, the RMSE and SSIM values for 
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different patients are reported in Table 3. The 
obtained results demonstrate a promising ac-
curacy and excessive similarity through the 
previous studies [12, 31]. Samadi et al. used 
standard 2D and 3D interpolation methods to 
generate future CT images during the breath-
ing cycle. They report 5.49, 5.54, 5.63, 5.59, 
and 7.23 RMSE for 2D nearest, 2D linear, 2D 
spline, 2D cubic, and 3D DIRART software, 
respectively [31]. For the same input image 
data, Nabavi et al. recently used the PredNet 
model for the generation of a sequence of CT 
images throughout the respiratory cycle. They 
report 0.943 estimated SSIM for all patients, 
respectively [12]. Our estimated RMSE (3.17) 
and SSIM (0.988) show a significant improve-
ment for all patients compared to the cited 
studies.

It is interesting to note that the patient’s res-
piration, which consists of inhaling and exhal-
ing, affects the accuracy of the model in differ-
ent phases. Based on Table 3, the accuracy of 
the model was degraded when the air entered 
the lungs and the diaphragm moved, while the 
predicted results improve during exhalation. 
Figure 4 provides details about the results of 
pulmonary motion prediction based on the 
new design of the ConvLSTM model. The 
predicted image, the difference between the 
input image and target image, and the differ-
ence between the target image and predicted 
image in all three directions during the breath-
ing cycle were shown in Figure 4. As shown in 
Figure 4, the ConvLSTM network can predict 
pulmonary motion in a specific area (deformed 
region) with significant accuracy and similar-
ity in all three views. Overall, the new design 
of the ConvLSTM network can be used in 
different radiation therapy applications as fol-
lows: 1) the proposed network used for 4DCT 
images suffer from rings, metals, streaks, and 
blurring artifacts; therefore, the patient has 
kept away from re-scanning and radiation de-
livery, 2) the generated sequence of CT im-
ages throughout the respiratory cycle can be 
used for margin delineation in radiotherapy  

treatment planning, and 3) the proposed meth-
od can be used for real-time tumor tracking 
along with surrogate signals.

Conclusion
In recent years, several studies have reported 

a sequence of CT images during the respira-
tory cycle based on deep artificial neural net-
work architectures. In this study, the advantage 
of the ConvLSTM network is used to predict 
and generate CT images during the patient’s 
breathing cycle. In this relation, two structures 
consisting of stacked ConvLSTM models as-
sociated with the hyperparameter optimizer 
algorithm and a new design of the ConvLSTM 
model were proposed. The stacked ConvL-
STM model constructed with three layers, in-
cluding 60 filters with (5×5) kernel size shows 
superior performance compared to other 
stacked ConvLSTM structures investigated in 
this study. The new design of the ConvLSTM 
model, on the other hand, was a combination 
of four parallelized ConvLSTM layers with 
a different number of filters and kernel sizes, 
concatenated together and associated with the 
ConvLSTM layer, including 32 filters with 
kernel size (3×3). The ConvLSTM network 
was also evaluated on a dataset that included 
all three views. The obtained results of the 
suggested ConvLSTM structure demonstrate 
an improvement of about 34% in the term of 
RMSE in comparison to the best stacked Con-
vLSTM model while using 5.2 times fewer 
parameters. Suggested ConvLSTM structure 
demonstrates that the generated CT images are 
more consistent with the corresponding refer-
ences. As a further study, other deep learning 
networks, such as Bidirectional LSTM or Bi-
directional ConvLSTM networks, would be 
presented to provide a comparative study.
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