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Introduction

The most prevalent site for bone metastases is the spine. Spinal 
metastases, mainly arising from prostate, breast, and lung pri-
mary cancers, cause vertebral body (VB) fracture, spinal cord 

(SC) compression, neurological deficit, paraplegia, and death [1-3]. In 
addition to surgery, radiotherapy has an essential role in the treatment of 
spinal metastases. Stereotactic radiosurgery, intensity-modulated radio-
therapy, stereotactic body radiotherapy, and brachytherapy have been 
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ABSTRACT
Background: Percutaneous vertebroplasty employs bone cement for injecting into 
the fractured vertebral body (VB) caused by spinal metastases. Radioactive bone ce-
ment and also brachytherapy seeds have been utilized to suppress the tumor growth 
in the VB. 
Objective: This study aims to investigate the dose distributions of low-energy 
brachytherapy seeds, and to compare them to those of radioactive bone cement, by 
Monte Carlo simulation.
Material and Methods: In this simulation study, nine CT scan images were 
imported in Geant4. For the simulation of brachytherapy, I-125, Cs-131, or Pd-103 
seeds were positioned in the VB, and for the simulation of vertebroplasty, the VB was 
filled by a radioactive cement loaded by P-32, Ho-166, Y-90, or Sm-153 radioisotopes. 
The dose-volume histograms of the VB, and the spinal cord (SC) were obtained after 
segmentation, considering that the reference dose is the minimum dose covered 95% 
of the VB. 
Results: The SC sparing was improved by using beta-emitting cement because of 
their steep gradient dose distribution. I-125 seeds and Y-90 radioisotope showed better 
VB coverage for brachytherapy and vertebroplasty techniques, respectively. Pd-103 
seeds and P-32 radioisotope showed better SC sparing for brachytherapy and verte-
broplasty, respectively. The minimum mean doses that covered 100% of the VB were 
62.0%, 56.5%, and 45.0% for I-125, Cs-131, and Pd-103 seeds, and 28.3%, 28.6%, 
32.9%, and 17.7%, for P-32, Ho-166, Y-90, and Sm-153 sources, respectively.  
Conclusion: I-125 and Cs-131 seeds may be useful for large tumors filling the 
entire VB, and also for the extended tumors invading multiple vertebrae. Beta-emitting 
bone cement is recommended for tumors located near the SC.
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used for the treatment of spinal lesions with 
desirable clinical outcomes [4-8]. The allow-
able dose delivered to the VB is limited in ex-
ternal beam radiotherapy, due to the radiation 
tolerance of the SC. Brachytherapy has the 
advantage of sparing nearby tissues especially 
the SC by implanting tiny radioactive seeds or 
beta-emitting plaques near the tumor [9].

In the case of spinal fracture and deformity, 
percutaneous vertebroplasty is performed in 
which the bone cement (PMMA or polymeth-
ylmethacrylate) is injected into the collapsed 
VB through a needle to maintain spine stability 
and relieve the pain [10, 11]. The radioactive 
bone cement loaded by a uniformly distributed 
beta-emitting radioisotope (as an added com-
ponent) was presented to suppress the tumor 
progression in the VB [12, 13]. Recently, com-
bining vertebroplasty and brachytherapy was 
considered as a minimally invasive method to 
overcome the spine instability and the tumor 
growth, simultaneously [14]. Several stud-
ies investigated the feasibility and efficacy of 
combining vertebroplasty and brachytherapy 
with clinically acceptable results [15-20]. 

Dosimetric analysis of radioactive bone ce-
ment is essential as a pre-clinical investiga-
tion. Hirsch et al. performed a Monte Carlo 
dosimetric study of radioactive bone cement 
mixed with 32P, 166Ho, 90Y, 125I, 18F, and 99mTc 
radioisotopes in a cortical bone phantom [13], 
using MCNP v.5 code [21]. Montaño et al. rep-
resented a new bone cement material loaded 
with 153Sm, 166Ho, and 188Re radioisotopes and 
used MCNP v.5 code for a dosimetric compar-
ison [22]. Kaneko et al. evaluated a radiation 
transport modeling method for dose calcula-
tion in a vertebra containing radioactive bone 
cement, using MCNP extended code (MC-
NPX v. 2.5) and EBT radiochromic film [12]. 
The same group also simulated some clinical 
scenarios such as bone cement leakage with 
MCNP v.5 [23]. However, there are insuffi-
cient data for the dose distributions of brachy-
therapy seeds and beta-emitting bone cement 
in the spinal canal. In this study, a dosimetric 

analysis of 125I, 103Pd, and 131Cs brachytherapy 
seeds as well as radioactive bone cement load-
ed by uniformly distributed 32P, 90Y, 166Ho, and 
153Sm radioisotopes, was conducted using Ge-
ant4 Monte Carlo toolkit. The corresponding 
dose distributions in the VB and the SC were 
obtained and compared with each other.

Material and Methods
Geant4.10.6 Monte Carlo toolkit [24] with 

the standard electromagnetic physics model of 
“G4EmStandardPhysics_option3” was used 
in this simulation study. The G4EmStandard-
Physics_option3 physics model includes pho-
toelectric effect, pair production, Compton 
scattering, and Rayleigh scattering data for the 
interactions of photons and bremsstrahlung, 
ionization, fluorescence emission, multiple 
scattering, and positron annihilation data for 
the interactions of electrons and positrons [25]. 
For more accuracy, particle-induced X-ray 
emission and Auger electron from excited at-
oms were manually implemented in the phys-
ics list. The production range cut was set to 0.1 
mm for secondary particles, i.e. the secondary 
particles with a range of 0.1 mm or lower will 
be killed in the simulation. With 300 million 
primary particles, all statistical uncertainties 
were below 1% in the regions of interest (i.e., 
SC and VB). 

Nine computed tomographie (CT) image 
slices, with 6 mm thickness, of a normal spinal 
case (obtained from Imam Hossein Hospital, 
Tehran) were imported in Geant4. One tho-
racic VB was determined as a tumor location. 
The whole VB was considered as the gross 
tumor volume (GTV), which is the palpable 
region of tumor seen on the image according 
to the ICRU Report 50 [26]. In the case of ver-
tebroplasty, a cylindrical volume with a radius 
of 14 mm, and a height of 6 mm, composed 
of PMMA (C5O2H8, density=1.19 g/cm3) 
was simulated in the VB as the bone cement. 
This cylinder was cut with a smaller cylindri-
cal section with a radius of 7 mm to make an 
offset region for the spinal canal as shown in 
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Figure 1a. The bone cement surface was ap-
proximately 3 mm away from the SC. Four 
separate simulations were performed with 32P, 
90Y, 166Ho, and 153Sm uniformly distributed in 
the cement.

For the simulation of brachytherapy, the 
structure of the Amersham model 6711 seed 
was simulated with a full length of 4.6 mm. 
It has a cylindrical silver core with a radius 
of 0.25 mm, and a length of 3 mm, located in-
side a 0.05 mm thickness titanium shield [27]. 
The outer surface of the core was uniformly 
coated by low-energy 125I, 103Pd, or 131Cs radio-
isotopes in this simulation. Thirty seeds were 
placed in the VB in three CT slices with the 8-9 

mm inter-seed spaces on each plane as shown 
in Figure 1b. The distance from the center of 
the closest seed to the spinal canal was nearly 
8 mm. Note that the position of seeds in this 
simulation is based on a typical treatment plan-
ning system that is not optimal for all patients. 
The actual seeds position should be calculated 
based on a treatment plan specialized for each 
patient [28]. Since brachytherapy seeds are 
inserted percutaneously through the pedicles, 
they are tilted inward on either side of the VB 
[29]. Therefore, our simulation of seed posi-
tions seems desirable since the entire VB is 
assumed to be the GTV. Related Nuclear data 
are shown in Table 1. Beta particles, electrons, 
gamma, and X-rays are shown by β-, e-, γ, and 
x symbols, respectively.

The pixel values of CT images represent CT 
numbers or Hounsfield Units. In this scale, 
water is assigned as a value of 0 and other CT 
numbers are computed by equation 1:

HU=1000×(μt-μw)/μw                                 (1)
In which μt and μw are tissue and water linear 

attenuation coefficients, respectively. The ma-
terials defined in the simulation are tabulated 
in Table 2. Data were obtained from the ICRU 
report 46 [31]. A linear interpolation was im-
plemented in Geant4 for the conversion of CT 
numbers to densities.

A cubic mesh with the same resolution of 
the CT images (512×512 pixel2) was defined 
to calculate the deposited dose in the voxels. 
The prescribed dose is usually defined as the 
minimum dose covering 90% [7] or 95% [8] 
of the GTV. In this simulation, the minimum 
dose delivered to 95% of the VB (D95%) was 
determined as the referenced dose for each ra-
dioisotope’s radiation field. The tumor and the 
SC were segmented using MATLAB 2015a 
code and dose-volume histograms (DVHs) 
were obtained.

Results
The normalized isodose contours in the 

central CT slice are shown in Figure 2 for 
low-energy brachytherapy seeds as well as  

Figure 1: The visualization of imported  
phantom (the central slice) in Geant4 
with (a) radioactive bone cement and (b)  
brachytherapy seeds.
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Name Half-life Radiation: Energy (MeV) (intensity %)
32P 14.28 h *β-: 1.71 (100%)
90Y 64.06 h β-: 2.28 (100%)

166Ho 26.8 h

β-: 1.85 (48.8%), 1.77 (49.9%), 0.394 (1%), 0.394 (1%)
γ: 1.38 (1%), 0.080 (6.6%)
e-: 0.029 (72%)
x: 0.056 (9%), 0.049 (8%), 0.007 (8%)

153Sm 46.8 h
β-: 0.810 (20%), 0.710 (49%), 0.640 (30%)
γ: 0.103 (28%), 0.070 (5%)
e-: 0.045 (135%), 0.043 (63%), 0.006 (10%)

125I 60.25 d
γ: 0.035 (7%)
e-: 0.018 (246%)
x: 0.030 (138%)

103Pd 16.96 d
γ: 0.498 (0.011%), 0.362 (0.02%), 0.297 (0.011%)
e-: 0.043 (258%)
x: 0.021 (77%)

131Cs 9.69 d
e-: 0.006 (76%)
x: 0.032 (74%), 0.004 (7%)

*The β- energies refer to the maximum energy in the beta-emission spectrum

Table 1: Nuclear data for seven radioisotopes mentioned above [30].

Name
Density 
(g/cm3)

Components: Element (abundance %)

Air 1.29 e-3 N (70.0%), O (30.0%)

Lung Inhale 0.210
O (74.9%), C (10.5%), H (10.3%), N (3.10%), S (0.30%), K (0.30%), Na (0.20%), P (0.20%), 
Cl (0.20%)

Lung exhale 0.508
O (74.9%), C (10.5%), H (10.3%), N (3.10%), K (0.30%), S (0.30%), Na (0.20%), P (0.20%), 
Cl (0.20%) 

Adipose 0.967 C (59.8%), O (27.8%), H (11.4%), N (0.70%), Cl (0.10%), Na (0.10%), S (0.10%)
Breast 0.990 C (50.6%), O (35.8%), H (10.9%), N (2.30%), Na (0.10%), P (0.10%), S (0.10%), Cl (0.10%)

Soft tissue 1.00 O (76.2%), N (2.60%), C (11.10%), H (10.10%)

Muscle 1.061
O (71.0%), C (14.3%), H (10.20%), N (3.40%), S (0.30%), K (0.30%), P (0.20%), Cl (0.20%), 
Na (0.10%) 

Liver 1.071
O (71.6%), C (13.9%), H (10.2%), N (3.00%), K (0.40%), P (0.30%), S (0.30%), Na (0.20%), 
Cl (0.10%)

Spinal Disc 1.10 O (74.4%), C (9.90%), H (9.60%), N (2.20%), P (2.20%), S (0.90%), Na (0.50%), Cl (0.30%)

Trabecular bone 1.159
C (40.4%), O (36.7%), H (8.50%), N (5.80%), Ca (4.40%), P (3.40%), Cl (0.20%), S (0.20%), 
Na (0.10%), K (0.10%), Fe (0.10%), Mg (0.01%)

Dense Bone 1.575
O (43.4%), C (23.5%), Ca (14.6%), P (7.20%), H (5.60%), N (5.00%), S (0.30%), Na (0.10%), 
Cl (0.10%), K (0.10%), Mg (0.01%)

Table 2: Materials defined in Geant4 to construct the phantom.
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radioactive bone cement. Figures 3 and 4 show 
the VB and the SC DVHs for brachytherapy 
and vertebroplasty, respectively.

According to the DVHs shown in Figures 3 
and 4, 125I seeds and 90Y-loaded cement show 
better VB coverage for brachytherapy and ver-
tebroplasty techniques, respectively. On the 
other hand, 103Pd seeds and 32P-loaded cement 
have the advantage of more SC sparing for 

brachytherapy and vertebroplasty techniques, 
respectively.

The minimum dose covered 95% of the VB 
(VB D95%), the minimum dose of the VB (VB 
Dmin), the minimum dose delivered to 90% of 
the SC (SC D90%), and the maximum dose 
of the SC (SC Dmax), in terms of pico-gray 
per particle are tabulated in Table 3. A repre-
sentative comparison of V150% (the VB vol-

Figure 2: Normalized isodose contours in the central computed tomography slice for (a)  
radioactive bone cement (in the case of vertebroplasty) and (b) radioactive seeds (in the case of 
brachytherapy). The segmented parts are shown in yellow.

Figure 3: The vertebral body (VB) and the spinal cord (SC) dose-volume histograms obtained 
by simulating radioactive bone cement loaded with several radioisotopes to be used in the  
vertebroplasty approach.
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ume received at least 150% of the reference 
dose), and V200% parameters are shown in  
Figure 5. Note that the V100% is 95% for all 
radioisotopes due to the definition of the ref-
erence dose (D95%) in this simulation. One 
should be careful about the occurrence of cold 
spots in dose distribution. As inferred from 
Table 3, the ratio of D95% to D100% of the 
VB reaches up to 161%, 221%, 176%, 353%, 
349%, 303%, and 565% for 125I, 103Pd, 131Cs, 
32P, 166Ho, 90Y, and 153Sm, respectively. From 
another perspective, the minimum “mean” 
dose covered 100% of the VB was 62.0%, 
45.0%, 56.5%, 28.3%, 28.6%, 32.9% and 

17.7% of the reference dose for 125I, 103Pd, 
131Cs, 32P, 166Ho, 90Y, and 153Sm, respectively. 
The term mean is referred to the average of 
two separate simulations performed for each 
radioisotope. Therefore, the occurrence of cold 
spots in the dose distributions of the cement 
mixed with 153Sm is more probable. However, 
the presence of cold spots is not significant for 
125I and 131Cs seeds, provided that a maximum 
inter-seed space of 10 mm is maintained on 
each plane.

Discussion
The main goal was to compare the dose  

Dosemetric Parameters 
(pico-Gy/particle)

Brachytherapy seeds Radioisotope-loaded bone cement
125I 103Pd 131Cs 32P 166Ho 90Y 153Sm

VB D90% 8.49e-2 6.32e-2 4.22e-2 3.11 3.12 5.02 1.23
VB D95% 6.66e-2 5.08e-2 3.45e3.45e-2-2 2.89 2.90 4.61 1.13
VB Dmin 4.13e-2 2.29e-2 1.95e-2 0.818 0.83 1.52 0.20
SC D90% 9.70e-3 4.20e-3 4.97e-3 1.58e-4 2.23e-3 2.51e-3 5.59e-3

SC Dmax 8.05e-2 5.01e-2 3.87e-2 6.48 6.45 10.187 2.53
VB: Vertebral Body, SC: Spinal Cord

Table 3: A comparison of dosimetric parameters obtained for brachytherapy seeds and radioac-
tive bone cement.

Figure 4: The vertebral body (VB) and the spinal cord (SC) dose-volume histograms obtained 
by simulating thirty brachytherapy seeds in the vertebral body to be used in the brachytherapy 
approach.

448



J Biomed Phys Eng 2023; 13(5)

Monte Carlo Simulation for Spinal Tumors

distributions of various radioactive bone ce-
ment with those of low-energy brachytherapy 
seeds. Although the DVHs of 125I and 131Cs 
seeds are nearly the same, 125I seeds show an 
improvement of 9.7% in the tumor coverage. 
The isodose curves shown in Figure 2 dem-
onstrate the high potential of brachytherapy 
seeds for the treatment of large lesions in the 
VB, particularly for tumors that invade more 
than one vertebra. Nevertheless, due to the 
deep penetration of the photons emitted from 
the seeds, sparing of the radiosensitive nearby 
tissues, i.e., SC and nerve roots need more 
attention. It is not serious for beta-emitting 
bone cement since the dose rapidly drops off 
up to 3 mm from the cement surface [12, 22]. 
Therefore, the employment of beta-emitting 
bone cement is more interesting for situations 
in which the tumor is near the spinal canal 
due to its steep dose gradient. However, the 
SC sparing is not concerned with beta-emit-
ting cement, high-energy beta particles of 
90Y should be considered according to the SC 
DVH in Figure 3. Although 166Ho and 153Sm 
are not pure beta-emitting radioisotopes with 
relatively high-energy photons in their decay 
schemes, their utilization may not be limited, 

due to the similarity of their isodose curves to 
those of 32P. The behavior of the 32P isodose 
curve is similar to those obtained by Kaneko 
et al. [22] since the dose decreases by 50% for 
each ~0.5 mm incremental distance from the 
cement surface. The brachytherapy technique 
provides more flexibility in modifying dose 
distributions by changing the arrangement 
and the activity of the seeds that are difficult 
for radioactive bone cement, particularly for 
large and extended tumors. Note that the tu-
mor is an incompressible volume limiting the 
volume of bone cement for injection into the 
VB, and increasing the cement volume results 
in increasing the risk of cement leakage [32]. 
Therefore, tumor ablation techniques should 
be performed before the cement injection. 
The seeds cannot be implanted in the cement, 
therefore we assumed a VB that is completely 
occupied by the tumor in the case of brachy-
therapy. Partial tumor volumes in the VB result 
in different seed arrangements that need more 
investigation in a separate simulation. Only 
tumors located in the VB were considered in 
this simulation, not the epidural tumors, and 
for epidural lesions, brachytherapy seeds can-
not be used due to their vicinity to the spine 

Figure 5: V150% and V200% comparison for brachytherapy seeds and beta-emitting bone  
cements in the case of brachytherapy and vertebroplasty, respectively.
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and its dose tolerance concern.

Conclusion
Using brachytherapy seeds as the more pen-

etrating sources can be used for large tumors 
filling the whole VB, and also for the extended 
tumors in multiple vertebrae. When the tumor 
is located in the posterior part of the VB near 
the SC, beta-emitting bone cement (prefer-
ably 32P) should be employed at least 4 mm 
from the SC. Otherwise, the aim of SC spar-
ing may be achieved by using 103Pd seeds with 
more than 5 mm distance from the SC. From 
a simulation viewpoint, it is recommended 
that 125I (or 131Cs) seeds be implanted in the 
tumor with at least 10 mm distance from the 
SC. However, more clinical studies should be 
conducted to assess the feasibility of such ra-
dioactive sources in various clinical scenarios.
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