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Introduction

Cerebral palsy (CP) with the rate of 2-3 per 1000 live birth is con-
sidered one of the most common causes of motor disability in 
childhood, which may accompany limited functional activity and 

reduce the quality of life [1-3]. An effective long-lasting intervention is 
needed to improve their balance and gait. The most popular treatments 
for children with CP are physical and occupational therapy (OT) in the 
first few years of life or soon after diagnosis [4-6].

In children with CP, the less affected brain hemisphere tries to 
compensate for the weakness of the more affected one due to the  
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ABSTRACT
Background: Since cerebral palsy (CP) is a corollary to brain damage, persistent 
treatment should accompany an alteration in brain functional activity in line with clini-
cal improvements. In this regard, the corpus callosum (CC), as a connecting bridge 
between the two hemispheres, plays an essential role. 
Objective: This study aimed to investigate the therapeutic effects of occupational 
therapy (OT) on CC functional activity and walking capacity in children with cerebral 
palsy.
Material and Methods: In this clinical trial study, 4 children with CP (8.25±1.71 
years) received 45 min OT sessions 3 times weekly for 8 weeks. Functional mag-
netic resonance imaging (fMRI) was acquired while conducting passive motor tasks 
to quantify CC activation. The pre-post activation changes in CC following therapy 
were quantified in terms of activated voxels. Walking capacity was evaluated using 
the timed-up-and-go (TUG), 6-minute walk test (6 MWT), and 10-meter walk test  
(10 MWT) in pre-and post-treatment. 
Results: The number of activated voxels in CC indicated significant improvement 
in participants. Post-treatment activated voxels substantially exceeded pre-treatment 
active voxels. Clinical measures, including TUG, 6 MWT, and 10 MWT are improved 
by 11.9%, 12.6%, and 25.4%, respectively.  
Conclusion: Passive task-based fMRI can detect the effects of OT on CC function-
al activity in children with CP. According to the results, OT improves CC functional 
activity in addition to gait and balance performance.
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relationship between the two hemispheres. 
Therefore, the evaluation of the treatment 
effects on the corpus callosum (CC), which 
connects the left and the right hemispheres, 
is imperative. CC makes up the largest collec-
tion of white matter (WM) tissue found in the 
brain and is critical for tasks that require inter-
hemisphere communication. It is essential to 
gain a thorough understanding of the func-
tional activity between the two hemispheres 
and movement performances in children with 
CP to better investigate treatment effective-
ness [7]. Severe white matter (WM) loss of the 
CC measured by magnetic resonance imaging 
(MRI) is associated with a poor gross motor 
function classification system (GMFCS) [8], 
showing that MRI may not be sensitive enough 
to detect microstructural impairments in WM. 
More advanced neuroimaging methods, such 
as functional magnetic resonance imaging 
(fMRI) and diffusion tensor imaging (DTI) 
provide a more sensitive measure of WM mi-
crostructure and function in CC, respectively 
[9]. A larger corpus callosum size correlated 
with better motor performance in children 
born prematurely or with periventricular leu-
komalacia [10-12]. The communicative role 
of CC between the two hemispheres is particu-
larly important for motor control [13].

In addition, fMRI is a neuroimaging tool em-
ploying MRI to image small changes in blood 
flow occurring with brain activity. In general, 
fMRI helps identify active areas of the brain, 
which are interactive in performing a particu-
lar function [14-17]. 

Task-based fMRI (T-fMRI) is a non-inva-
sive method based on blood oxygen level-
dependent (BOLD) techniques, which is 
widely adopted to identify brain regions that 
are functionally involved in specific task per-
formance during scanning. T-fMRI provides 
many signals, reflecting functional brain activ-
ity, which results from each voxel of the brain 
during scanning [8,18-21]. Some researchers 
reported fMRI activation in WM, particularly 
the CC [22].

Since technical challenges make fMRI of 
the lower extremity difficult [23], few studies 
are conducted on the use of T-fMRI to inves-
tigate neuroplasticity in the rehabilitation of 
lower extremity in children with CP [24,25]. 
T-fMRI is also used to investigate brain plas-
ticity due to body-weight-supported treadmill 
training (BWSTT) [24] and to capture neuro-
plastic changes after intensive rehabilitation in 
children with CP [26]. Furthermore, fMRI re-
quires individuals to remain fixed in a restrict-
ed space for a long time, limiting the success 
rate of fMRI studies in healthy pediatrics. The 
situation is even more complicated in fMRI 
data acquisition for children with CP [27,28].

This study aimed to characterize the thera-
peutic effects of OT training on CC functional 
activity and walking capacity in children with 
CP. It is hypothesized that passive T-fMRI un-
der sedation is an effective tool for detecting 
alterations in CC activity induced by physical 
activities in children with cerebral palsy.

Material and Methods

Subjects
In this clinical trial study, 4 subjects with 

spastic hemiplegia CP (two female and two 
male; 6–10 years old) were included, and in-
clusion criteria were defined as follows: modi-
fied Ashworth scale greater than 1 (MAS>1), 
hemiparetic, no history of surgery during six 
months before training, ability to stand in-
dependently for at least 30 s and walk inde-
pendently despite reduced balance and speed. 
Subjects were excluded if they had received 
botulinum toxin injections within the past 
2 months. Table 1 summarizes participants’ 
characteristics and Figure 1 depicts axial T1 
images of children with CP.

Training Protocol
OT is an essential part of a CP patient’s over-

all treatment plan to promote children’s ability 
to perform daily activities in a way that im-
proves their quality of life with independent 
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engineer who completely flexed the patient’s 
knees and extended back (Figure 2) over the 
range of motion (ROM) 1 time per second (1 
Hz). For fMRI acquisition, a block design was 
used with 24-second motor activity alternating 
with 24-second rest for a total of five cycles.

Participants underwent MRI scans before 
treatment (pre-treatment) and after the 8-week 
treatment program (post-treatment); all chil-
dren were sedated before undergoing MRI. 
The general anesthesia with intravenous Pro-
pofol administered at the lowest dose to keep 
patients asleep was supervised by pediatric 
anesthesiologists. All anesthetic information, 
including the sedation procedure and medica-
tions used for induction and maintenance, was 
documented in the medical record.

Further, fMRI data were acquired from all 4 
children, and the fMRI scans were performed 
on a 3T scanner (GE, IKH hospital complex, 
Imaging Center) in 64 directions. The num-
ber of slices is 80 with a 3 mm slice thickness 

Patient 
Number

Sex
More 

Affected 
Side

Age Weight Height

1 M R 9 30 134
2 F L 6 17 108
3 F L 10 33 140
4 M L 8 29 127

Table 1: Participants’ characteristics

Figure 1: Axial T1 images of children with cerebral palsy (CP)

(matrix=64×64, FOV=220 mm, TR=3000 ms, 
and TE=30 ms). High-resolution structural 
T1 images were attained (matrix=256×256, 
FOV=220 mm, TR=22 ms, TE=10 ms) with 
a 1mm slice thickness. Functional and ana-
tomical images were obtained parallel to 
the anterior/posterior commissure line in an  

Figure 2: Knee passive tasks

living. In this study, OT was conducted by 
an occupational therapist with a focus on gait 
and balance training at the rehabilitation cen-
ter, and OT training was conducted 3 sessions  
(45 min) per week for 8 weeks and mostly 
concentrated on locomotion.

fMRI Instrumentation and Procedure
In addition, fMRI acquisition included a 

passive task applied by a trained biomedical 
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axial direction. The subjects were placed in a  
supine position with padding around their 
head to minimize movement.

fMRI Data Processing
In this study, the fMRI of the brain (FMRIB) 

software library (FSL v6.02) was deployed to 
preprocess the fMRI data and perform statisti-
cal analysis. Standard preprocessing steps, in-
cluding realignment, brain extraction, motion 
correction, spatial smoothing, denoising, and 
filtering were applied to fMRI data. The stan-
dard space (MNI152 atlas) was registered to 
functional data [29]. 

The region of interest (ROI) analysis, in-
cluding the corpus callosum (CC), was select-
ed from the Harvard-Oxford probabilistic at-
las and then transformed into the individual’s  
native space. 

The fMRI images were realigned and  
co-registered to the mean functional image 
from the first session. The FSL procedure was 
followed to produce a non-brain mask for 
brain extraction. The movement parameters 
of the patients were included in the individual 
analysis to reduce motion artifacts. A Gauss-
ian kernel with a 5×5×5 mm3 full width at half 
maximum (FWHM) and a high pass (HP) filter 
of 72 s was used to smooth fMRI images. The 
main goal of spatial smoothing is to suppress 
spatial noise and improve the signal-to-noise 
ratio (SNR). Multivariate exploratory linear 
optimized decomposition into independent 
components (MELODIC) was performed for 
denoising. Independent component analysis 
(ICA) was rerun in each subject’s temporally 
concatenated data for all sessions [30-32].

First-level individual statistical analysis was 
performed to determine the significant brain 
areas, using the general linear model (GLM). 
Second-level models were used to estimate 
brain functional activity for the separate con-
trasts (passive movements > rest). Subse-
quently, a t-test was used to detect the signifi-
cant difference for passive movements > rest 
contrast; all contrasts were reported for clus-

ters comprising at least 10 voxels and the false 
discovery rate (FDR) with a P-value <0.05.

Clinical Evaluation of Gait and 
Balance

The common clinical parameters used in this 
study to evaluate walking capacity included:

• Timed-Up-and-Go (TUG): This simple test 
was used to measure the duration of the re-
quired task, including standing, walking, and 
sitting back to assess balance and mobility 
[33]. TUG was defined as the time for a sub-
ject to rising from a chair, walk 3 meters away, 
turn 180°, walk back to the chair, and sit back 
down while turning 180° [34].

• Six-minute walk test (6 MWT): This test 
was employed to measure the distance an in-
dividual can walk for a total of 6 min on a hard 
and flat surface representing walking endur-
ance and was widely used in clinical practice, 
providing information about functional capac-
ity [35].

• Ten-meter walk test (10 MWT): This test 
was used to measure the duration of a 10-me-
ter walk to measure walking speed in meters/
second and to determine gait, mobility, and 
vestibular function [36].

Results

Corpus Callosum Functional  
Activity

ROI analysis was used to measure the 
changes in brain activity of the CC detected 
by fMRI following the completion of train-
ing in each subject to consider the heteroge-
neity of the size and location of brain lesions 
in CP participants. The results revealed that 
the knee passive motor task successfully ac-
tivated the CC in all subjects. For the knee 
task, CC showed significant enhancement in 
terms of the number of active voxels in most 
participants. ROI analysis in participants 1, 2, 
and 3 showed an enhancement in the number 
of activated voxels in the CC area. Partici-
pant 4 had fewer activated voxels following  
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treatment; the number of active voxels in CC 
is illustrated in Figure 3.

Table 2 explains the pre-and post-treatment 
results of ROI-based activation in the CC  
(P-value <0.05). The local maxima in Mon-
treal neurological institute (MNI) coordinates 
and the most activated clusters were also de-
scribed for each subject. 

The average group results were used to de-
termine the effectiveness of interventions.  

Figure 4 shows the results of significant 
group activation changes for the CC region 
following the completion of the 24 OT ses-
sions. These results revealed significant  
(P-value <0.05) difference in CC activation 
pre-and post-treatment.

Therapeutic Effects on Gait and 
Balance Impairment

Figure 5 and Table 3 describe the results of 

Patient 
Number

z -10 log (P value) Max (x, y, z) # of clusters Main Cluster Size

1 4.75 16 (36,-58,18) 5 296
2 10.2 58.7 (-44,-44,10) 9 2419
3 5.04 12.6 (-32,-60,20) 3 218
4 5.5 12.8 (24,-6,36) 5 233

Table 2: Significant difference in activation between pre-and post-treatment in the corpus  
callosum (P-value <0.05)

Figure 3: Number of active voxels in corpus callosum pre-and post-treatment, at z>3.1

Figure 4: Significant difference activation between pre-and post-treatment in children with  
cerebral palsy, as revealed by the passive movements > rest contrasts. The red to yellow voxel 
clusters represent significantly higher corpus callosum activation at P<0.05 (false discovery rate 
correction was utilized)
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clinical measures of walking capacity, includ-
ing TUG, 6 MWT, and 10 MWT as well as 
their percentage changes following the 8-week 
training sessions for each subject. Balance and 
mobility measured by the TUG test improved 
by 11.9%; walking endurance evaluated by 
the 6 MWT increased by 7.6%; and walking 
speed measured by the 10 MWT enhanced by 
25.4%.

Discussion
In this study, the therapeutic effects of inten-

sive OT are characterized by walking capacity 
and CC reorganization in children with hemi-
plegic CP using passive T-fMRI. Further, the 
current study aimed to determine the impact 
of OT training on brain functional activity in 
children with CP. The passive motor task in-
cludes knee flexion to the extension over the 
ROM, conducted on all patients before and 
after the 24 training sessions, resulting in in-
vestigating therapy-induced CC activation  

alterations. Based on the findings, both CC ac-
tivity and walking capacity are improved fol-
lowing the completion of OT training.

Furthermore, fMRI is highly sensitive to 
motion artifacts [7]. However, the patient was 
sedated with a sedative agent, which minimal-
ly hampered the neurophysiologic effects of 
administered motor and sensory stimulation to 
overcome this issue, this study obtained pas-
sive motion T-fMRI [37,38]. The effects of ex-
tremity movement under sedative conditions 
were already reported in the literature [35,36]. 
Passive motor tasks could activate most of 
the brain regions [39-41], such as the premo-
tor cortex, parietal cortex, and contralateral 
sensorimotor cortex [40]. Additionally, brain 
activation associated with passive movements 
in children with unilateral CP (UCP) was 
evaluated [41]. However, passive T-fMRI was 
investigated in children with CP [41]; to the 
best of our knowledge, no evidence of passive 
T-fMRI is under sedation in this patient popu-
lation. Furthermore, most studies on passive 
movement T-fMRI in healthy children and 
adults, adult stroke patients, and CP children 
were conducted without the use of sedation 
and examined brain activity in the motor cor-
tex rather than the CC [28,41-43].

In this study, ROI analysis was used to iden-
tify the therapeutic effects of OT training on 
CC activation using fMRI in each subject. 
The activation patterns of the knee task for 
all the participants were compared using the 
same data acquisition parameters and analy-

Figure 5: Pre-and post-treatment of clinical characteristics of walking capacity: a) 10-meter walk 
test, b) timed-up-and-go, c) 6-minute walk test

Patient 
Number

10 MWT 
(%)

TUG (%)
6 MWT 

(%)
1 50.5 12.4 4.6
2 12.3 14 -10
3 5.4 2.1 7.1
4 33.5 19.1 28.8

TUG: Timed-Up-and-Go

Table 3: Percentage of clinical characteristics 
improvements
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sis techniques at the FDR corrected level  
(P-value <0.05). Subsequent data analysis and 
comparisons demonstrate that CC activation 
increased in 3 subjects and decreased in 1 sub-
ject after 8 weeks of OT training. Passive mo-
tor tasks used in this study produced consistent 
activation in the CC, which connects the right 
and left cerebral hemispheres. According to  
Figure 3, training-induced activation of the 
CC increased in subjects 1, 2, and 3, but  
decreased in the subject 4. 

Studies that utilized OT, BWST, and Lo-
komat [44] for walking capacity improvement, 
mostly reported clinical enhancement rather 
than the characterization of brain reorganiza-
tion [43-45]. However, few studies have ex-
amined neuroplasticity in gait rehabilitation 
using BWST in children with CP and adults 
with stroke [19,33,46]. The hemodynamic re-
sponse (HR) of the sensorimotor cortices fol-
lowing treatment was reported to decrease in 
some of these studies, while others showed 
that cortical activation increased [41,43]. Fur-
thermore, according to a limited number of 
fMRI investigations in children with UCP, in-
creased contralateral activity may accompany 
functional gains. For instance, cluster-based 
M1–S1 voxel counts increased in three adults 
with UCP after virtual reality therapy [47]. In 
the current study, the results show both a de-
crease and an increase in CC activation after 
therapy.

The group means demonstrated an improve-
ment in TUG, walking endurance, and walking 
speed. The improved clinical characteristics 
along with CC increased activation implies 
that intensive OT training may have the poten-
tial to promote effective brain reorganization, 
which can enhance walking ability in children 
with CP.

However, our findings were promising with 
respect to the investigation of therapy-driven 
enhancement of CC functional activities, the 
present study had a few limitations as follows: 
1) few subjects could complete the required 
training sessions and attend the MRI sessions 

due to the intensive treatment schedule and 
sedative fMRI acquisition and 2) we were suc-
cessful in detecting the changes in brain func-
tional activity following OT, despite the sup-
pressing effects of sedation, showing that the 
changes in brain functional activity following 
OT must be greater than those reported in this 
study.

Conclusion
The quantitative analysis of voxels activity 

can detect the signature of passive task move-
ments in the fMRI and accurately measure the 
effects of treatment on brain functional activity 
in children with CP. Based on the results, the 
8-week OT training has profound therapeutic 
effects on brain activity and walking capac-
ity. Therefore, long and intensive OT training 
is expected to provide persistent therapeutic  
effects and cause neuroplasticity.
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