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Introduction

Low back pain (LBP) is known as one of the most common work-
related musculoskeletal disorders (WMSDs) [1, 2]. In a survey of 
~8000 employees from 20 Iranian industrial settings, Choobineh 

et al. (2016) found that the most common WMSD among the work-
ers was LBP (48.9%) [3]. Previous studies have shown that the signifi-
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ABSTRACT
Background: Low back pain (LBP) is known as one of the most common work-
related musculoskeletal disorders. Spinal cumulative loads (CLs) during manual mate-
rial handling (MMH) tasks are the main risk factors for LBP. However, there is no val-
id and reliable quantitative lifting analysis tool available for quantifying CLs among 
Iranian workers performing MMH tasks. 
Objective: This study aimed to investigate the validity and inter-rater reliability 
of a posture-matching load assessment tool (PLAT) for estimating the L5-S1 static 
cumulative compression (CC) and shear (CS) loads based on predictive regression 
equations.
Material and Methods: This experimental study was conducted among six 
participants performing four lifting tasks, each comprised of five trials during which 
their posture was recorded via a motion capture (Vicon) and simultaneously a three-
camera system located at three different angles (0°, 45°, and 90°) to the sagittal plane. 
Results: There were no significant differences between the two CLs estimated by 
PLAT from the three-camera system and the gold-standard Vicon. In addition, ten rat-
ers estimated CLs of the tasks using PLAT in three sessions. The calculated intra-class 
correlation coefficients for the estimated CLs within each task revealed excellent inter-
rater reliability (> 0.75), except for CS in the first and third tasks, which were good 
(0.6 to 0.75).  
Conclusion: The proposed posture-matching approach provides a valid and reli-
able ergonomic assessment tool suitable for assessing spinal CLs during various lifting 
activities.
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cant risk factors of LBP are activities involv-
ing awkward trunk postures [4, 5], repetitive 
trunk flexion, and lifting [6, 7]. L5-S1 com-
pression and shear peak forces [8, 9], as well 
as cumulative loads (CLs) during manual ma-
terial handling (MMH) tasks [10, 11], also 
play a significant causative role. Some studies 
have attempted to reduce trunk muscle activ-
ity as one way to mitigate the LBP [12, 13]. 
Previous studies assessing the biomechani-
cal risks among Iranian workers performing 
MMH tasks were either qualitative or did not 
quantify CLs such as Salehi et al. [14]. In epi-
demiological studies, such quantitative mea-
sures are essential to developing exposure-re-
sponse links between physical exposures and  
WMSDs [15, 16].

Various objective approaches have been used 
to quantify CLs, such as measuring full-shift 
lumbar electromyography (EMG) as an indi-
cator of cumulative workload [17], examining 
the relationship between heart rate-determined 
physical activity level (HR-PAL) and CLs [18], 
and video analysis [19]. EMG-driven models 
require a complex and time-consuming proce-
dure to collect and process the data [20]. In ad-
dition, these models solely provide estimates 
for cumulative spinal compression (CC) [21]. 
HR-PAL can predict spinal CL, especially CC 
loads (R2=0.817), through a regression model 
[18]. However, controlling the confounding 
factors such as consuming caffeine or ciga-
rettes, altitude, and climate, which influence 
HR [22, 23], is difficult in the workplace 
settings. Due to these limitations, the EMG-
driven and HR-PAL approaches have not been 
used in large-scale studies.

Video analysis is the most common ap-
proach to determining input variables for es-
timating CLs by a static biomechanical model 
[24]. The essential advantage of this approach 
is the use of recorded videos to estimate the 
spinal shear and compression forces as well 
as joint moments. However, one of the main 
disadvantages is the lengthy procedure of 
manually entering the required information 

into software [21]. As a remedy, one may use 
a posture-matching approach [19]. Applying 
an easy-to-use interface would speed up the 
video analysis and help to automate CLs cal-
culation. Once this issue is resolved, the cru-
cial point is selecting a biomechanical model 
to estimate spinal loads accurately [25]. Such 
a model has to consider the main contributing 
factors in low back loads, including the hori-
zontal distance of the hand-load from the body 
[26], its asymmetry angle [27, 28] as well as 
trunk flexion angle [6, 7]. Such an approach 
may potentially decrease the estimation error 
associated with the model [20, 29].

The lack of a valid and reliable quantita-
tive lifting analysis tool available to the Ira-
nian health and safety practitioners (HSPs) for 
quantifying spinal CLs during MMH tasks en-
couraged the authors to develop an interface 
based on the robust regression model devel-
oped by Arjmand et al. [30, 31]. This study 
aims to assess the validity and inter-rater re-
liability of the posture-matching load assess-
ment tool (PLAT) user interface developed to 
estimate spinal CLs during MMH at different 
workplaces for symmetric and asymmetric 
lifting tasks by the Iranian HSPs.

Material and Methods
PLAT is a tool designed and developed dur-

ing this experimental study based on the Pre-
dictive Regression Equations (PRE) [30, 31] 
to estimate CC and CS loads at the L5-S1 disc. 
The outputs obtained from this tool are based 
only on four postural and load-related inputs. 
Therefore, a graphical user interface (GUI) 
was designed based on these input variables 
(Figure 1). The design of the GUI was cen-
tered on the concept of well-defined partition-
ing (Figure 1a-f) to help users perform a pos-
ture-matching task analysis. An operator first 
took the values of input variables by analyzing 
the video frames using the PLAT and subse-
quently entered them manually into the GUI. 
The videos were recorded by three cameras 
placed on the ground. The synchronized Vi-
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con motion (Vicon Motion Systems, Oxford, 
UK) data were then automatically entered into 
the PRE to calculate the corresponding CLs. 
The obtained CLs from the three-camera sys-
tem were compared to those obtained from the 
gold-standard Vicon motion capture system 
for validation purposes. In brief, this study ex-
amined the accuracy of PLAT GUI driven by 
a three-camera system in estimating postures 
and associated L5-S1 loads while also assess-
ing its inter-rater reliability. Details of the ex-
periment are provided below.

Participants
Two groups of students participated in the 

study. The first group was comprised of six 
healthy students (three males and three fe-
males; mean ± SD age: 23.4 ± 1.5 years, mean 
± SD height: 1.68 ± 0.1 m, and mean ± SD 
body mass: 66.6 ± 14.6 kg), who participated 
in performing lifting tasks. The participants 

had no current or previous history of back 
pain or spine surgery, no congenital disorder 
to cause any movement impairment, no his-
tory of injury in the musculoskeletal system, 
and no prior cardiovascular disorders. The 
second group was comprised of ten student 
raters (five males and five females; mean ± SD 
age: 26.7 ± 2 years, and 2.75 ± 0.8 years of 
postgraduate education). Students with differ-
ent majors were selected to prevent familiarity 
with skeletal landmarks and anatomy.

Laboratory simulated lifting tasks
The first group of participants performed 

five consecutive trials for each of the four lift-
ing tasks (Table 1) using a stoop technique that 
workers commonly adopt during lifting ac-
tivities [32]. The protocols performed by each 
participant are shown in Table 1. Each lifting 
trial consisted of four phases synchronized 
with a 6-sec metronome played during the 

Figure 1: PLAT software GUI for analyzing frames of each task and estimating the loads: (a) The 
section for defining the worker’s task and posture; (b) the room for entering input variables; (c) 
binned images to help users estimate trunk flexion angle (T) concerning to the neutral, upright 
posture covering a varied range 0°-120°; every line in each gradient represents 15°; (d) push-
button to calculate compression and shear forces of each frame; (e) results for spinal loads; 
(f) cumulative loading estimation button and (g) task and participant information. Note: PLAT: 
Posture-matching Load Assessment Tool; GUI: Graphical User interface. 
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task. The four phases include normal standing 
to grasping the load (10 kg) on the floor (phase 
1), lifting the load and returning to the upright 
posture (phase 2), lowering the load and plac-
ing it on the platform (phase 3), and ending to 
the same standing position (phase 4).

Participants were required to keep their feet 
at a fixed position marked by a tape (Figure 
2). Two minutes of rest were given between 
each trial to prevent fatigue. The lifting tasks 
were recorded using three Vicon Bonita 720c 
video cameras at the sampling rate of 30 Hz. 
Video recording was carried out simultane-

ously at 0°, 45°, and 90° to the sagittal plane 
(Figure 2) to assess the effect of view angle on 
the estimation accuracy. For the sake of vali-
dation, three-dimensional kinematic data were 
also simultaneously captured using a synchro-
nized 11-camera Vicon motion capture sys-
tem at 120 Hz. Data were collected in the gait 
analysis laboratory of Djavad Mowafaghian 
Research Center for Intelligent Neurorehabili-
tation Technologies (Tehran, Iran).

The biomechanical model 
The biomechanical model used in this study 

Task Description of the task Type of lift
T1 From the floor to the 0.75 m platform

Symmetric
T2 From 0.75 m to 1.45 m platform
T3 From the floor to 0.75 m platform on the right side with 30 degrees trunk rotation angle

Asymmetric
T4 From the floor to 0.75 m platform on the left side with 30 degrees trunk rotation angle

Table 1: Lifting a 10 kg load placed in a plastic crate (0.31 m × 0.31 m × 0.31 m) in four simulated 
stoop postures. The participants faced the 0° camera view angle for the entire duration of lifting 
in T1 and T2. In asymmetric tasks, the 30° of rotation out of the sagittal plane was marked on 
the ground by drawing a line to the predetermined fixed position.

Figure 2: The laboratory setting to capture kinematic input data, the Vicon motion capture 
system, the Vicon Bonita video camera, and two platforms with different heights (top), and a 
sample frame of each task (T1 through T4 from left to right) from a 45° camera view (bottom).
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was based on the Predictive Regression Equa-
tions (PRE) developed and validated by Arj-
mand et al. [30-32]. The Posture-matching 
load assessment tool (PLAT) was developed 
to be available to the Iranian HSPs thus facili-
tating the process of estimating spinal loads in 
lifting tasks using the PRE (Figure 1a). The 
PRE input variables are sagittal trunk flexion 
angle (T varying from 0° to 110° for the up-
right posture), lumbopelvic ratio (L/P varying 
from 0.5 to 3), load mass (M varying from 0 
to 20 kg), and load position (D varying from 
0 to 60 cm) (Figure 1b). The magnitudes of 
parameter D are divided into two distinct vari-
ables; (Dx), which is measured perpendicular 
from the load to the shoulder joint in the sagit-
tal plane, and (Dy), which is measured later-
ally from the same perspective in the frontal 
plane (for asymmetric lifting). Parameter D 
can also is calculated based on the horizon-
tal distance of the hand load center of mass 
to the L5-S1 joint. While both of these mea-
surement approaches are acceptable to PLAT, 
we used the first approach due to relative ease 
in recording the location of the shoulder joint. 
Trunk flexion angle (T) is defined as the sum-
mation of the pelvis (P) and lumbar (L) spine 
rotations, i.e., T = P + L. To estimate T, nine 
sagittal trunk posture categories with the size 
of 15° were accommodated on the bottom of 
the GUI, which covers the ranges of T in the 
PRE from 0° to 120° (Figure 1c). Selecting 
the size of 15° was made based on two as-
sumptions. First, to decrease the error and the 
required analysis time when using PLAT, the 
authors intended to use fewer posture catego-
ries [33-35]. Second, the proposed intervals of 
the range of T in PRE was 10° [30, 31]. The 
corresponding L/P ratio can automatically be 
estimated by clicking each posture category 
that appropriately represents the actual trunk 
posture in the video frame. L/P is considered 
only for symmetric lifting tasks. Predicted val-
ues based on the three-camera video-captured 
frames as well as those from the Vicon were 
entered into the GUI (Figure 1) for subsequent 

comparisons.

Preparation of video and Vicon mo-
tion analysis system 

The sampling rate of the motion capture 
system was decimated to 30 Hz to be equal 
to PLAT inputs. Data were captured based on 
the Plug-in gait marker placement protocol 
(Vicon Motion Systems, Oxford, UK). The 
bony landmarks of the upper/lower limbs and 
the trunk on both anterior and posterior sides 
were palpated. According to the Plug-in gait 
protocol, thirty-nine reflective markers were 
attached to the skin by the same operator using 
double-sided adhesive tape (Figure 2). Four 
additional markers were placed on the upper 
four corners of the crate and one on one of the 
lower corners to detect the height of the crate 
and its horizontal distance from the L5-S1. To 
ensure that the load is rotated by 30° out of the 
sagittal plane, the location of shoulder mark-
ers was monitored in kinematic data, and trials 
were repeated when this criterion was not met. 
The laboratory Cartesian coordinate system 
was set as follows: X-axis to align anteriorly 
in the sagittal plane, Y-axis toward the partici-
pant’s left side, and the Z-axis referring to the 
upward direction. The location of each skin 
marker was processed using Nexus 1.4.1 and 
exported to an Excel sheet (Excel 2016, Mi-
crosoft Corp., USA) for subsequent analyses. 

The three video cameras and motion capture 
systems were automatically synchronized to 
compare the recorded lifting videos directly 
between the PLAT platform and correspond-
ing Vicon frames. To represent the lifting trial 
in videos, each participant started and ended 
the trials when a red light turned on and off. 
Therefore, a lifting trial was considered to be 
the time during which the light was on in the 
video. Simultaneously, the lifting trial in the 
Vicon data was represented by the time T was 
equal to 0° (relaxed upright posture) to the 
frame when again T became equal to 0° (final 
return on subject to upright posture). An in-
house program code identified every 10° in-
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terval (started from the trial’s first frame with 
T equal to 0°) of trunk flexion angles. Once 
the points were identified, the developed al-
gorithm in the program used five points be-
fore and after each point to calculate the mean 
values of the input variables (see section 2.3). 
The videos of three camera view angles were 
transformed to separate clips using a video 
converter [36]. Each video clip has time du-
ration of 5.33-5.66 seconds. Subsequently, all 
360 clips (4 lifts × 3 view angles × 5 repeti-
tions × 6 participants) were converted from 
30 to 3 Hz using the same software [36]. This 
conversion reduced the time required to collect 
and analyze the data [37]. Afterward, all video 
clips were converted to image frames in JPG 
format using Aoao Video to Picture Converter 
[38]. Each clip consisted of 16-17 frames. 

The video frames of each task were import-
ed into the PLAT GUI, and the postures were 
matched frame by frame by an operator to 
estimate L5-S1 compression and shear loads 
(Figures 1d and e). Moreover, the program au-
tomatically extracted mean values of the input 
variables from Vicon kinematic data were en-
tered into PLAT (Figure 1a, b, and c) to calcu-
late the corresponding loads. The CL values 
of the trials were estimated using Eq. (1) after 
analyzing all frames of each trial.

1

0.33
n

t
i

CL F
=

 
= × 
 
∑                                            (1)

where CLt = cumulative loading of the trial 
(N.s), t = trial, n = the total number of frames 
in each trial, i = number of frame, F = the es-
timated compression or shear load (N) of each 
frame and 0.33 = 3 Hz = length of each frame 
(s). Eq. (1) is another form of calculating 
the area under the force-time curve [19, 21]. 
PLAT provides the output results, which can 
be printed or exported to an excel sheet. 

For assessing inter-rater reliability, all the 
raters were asked to analyze the frames of T1, 
T2, and T3 and estimate the corresponding 
CLs values of each task in three separate ses-
sions with PLAT. Here, only trials (recorded 

from 90° view) of one of our participants in 
the validation protocol, who had average an-
thropometry (26 years, 171.5 cm, and 75 kg) 
angle were analyzed (3 lifts × 1 view angle × 
5 repetitions × 1 participant × 16-17 frames). 
Each session was approximately one hour in 
duration. The two first sessions were on two 
consecutive days, and the third session was in 
the next week (all in the morning). The aim of 
the study and how to work with PLAT were 
reviewed for raters at the beginning of each 
session. To minimize the effect of learning, the 
order of frames and the time intervals between 
them were randomly changed in each session. 
Before starting this part of the study, a train-
ing period was considered to ensure that the 
raters properly match postures using PLAT 
GUI (Figure 1) to estimate CLs. The criterion 
was an error of <5% in evaluating 50 sample 
frames by all ten raters. Each sample frame 
was uploaded twice, and the raters were asked 
to evaluate it through GUI (selecting lifting 
and posture type and estimating corresponding 
T and D; Figure 1a-c). Their selections were 
then compared to the correct answers that one 
researcher prepared in advance. If their clas-
sification was wrong, the correct answer was 
shown to them, and the next frame was pre-
sented. This procedure was continued until the 
foregoing criterion was achieved.

Data analysis
Validity: The absolute error (Eq. (2)) and 

the percent error (Eq. (4)) were calculated for 
CC and CS estimates in each task and camera 
view and compared to those obtained from the 
Vicon motion capture system (as the reference 
method) as follows: 

Absolute error PLAT ViconL L= −                       (2)

 
Relative error

Vicon

Absoluteerror
L

=                   (3) 

Percent error = Relative error × 100                   (4)
Where L = estimated CC and CS loads, LPLAT 

represents CL-values (N.s) obtained from 
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analyzing the three-camera video frames us-
ing the PLAT interface, and LVicon shows CL-
values (N.s) obtained from Vicon data inputs.

The three video recording angles’ CC and 
CS relative error differences were evaluated 
using the non-parametric Kruskal-Wallis test 
(p<0.01). ANOVA analysis was used to com-
pare the estimated CC and CS loads from ana-
lyzing video frames (by PLAT) and the values 
obtained from Vicon kinematic data (signifi-
cance level: p<0.01). 

Inter-rater reliability: Intra-class Correla-
tion Coefficients (ICCs) and their 95% confi-
dence intervals were calculated to assess the 
agreement among the raters for the estimation 
of CC and CS in each of the three lifting tasks. 
Since the raters were randomly selected from a 
larger potential population, ICC (2, 1) was ad-
opted [39]. ICCs <0.40, 0.40-0.75, and >0.75 
were considered, respectively, poor, good, and 
excellent [40].

Results
Validity: One-way ANOVA revealed no sig-

nificant difference between CLs obtained from 
the three-camera view angles and Vicon for 
CC (p=0.999) and CS (p=0.969; Table 2). The 
90° camera angle had the closest value to the 
cumulative mean values obtained from Vicon 
data (i.e. 8857 Ns versus 8842 Ns for CC and 
3050 Ns versus 3036 Ns for CS) (Table 2).

There were no significant differences in CC 
and CS mean percent error values across the 
four different tasks (Table 3). These values 
ranged from 5.0% (T1) to 8.9% (T2) for CC 
and from 1.2% (T1) to 2.1% (T3) for CS. The 
mean percent error of these values across all 
four tasks was 6.1% and 1.7% for CC and CS, 
respectively. The mean percent error of cumu-
lative variables averaged across the three cam-
era angles ranged from 7.2% for CC to 6.6% 
for CS (Table 4). These percent error values 
ranged from 3.0% for CS (0° view) to 9.7% 

Variable Vicon 0° 45° 90° P-value
CC 8842 (2170) 8890 (2175) 8875 (2172) 8856 (2172) 0.999
CS 3036 (607) 3080 (611) 3068 (611) 3050 (610) 0.969

CC = Cumulative compression, CS = Cumulative shear

Table 2: The cumulative loading mean values (SD) in Ns for the three-camera view angles and 
the Vicon

Variable T1 T2 T3 T4 Variable mean
CC 5.0 (4.2) 8.9 (8.2) 6.7 (7.2) 5.6 (3.7) 6.1 (2.2)
CS 1.2 (12.2) 1.8 (11.4) 2.1 (10.4) 1.8 (10.2) 1.7 (0.3)

CC = Cumulative compression, CS = Cumulative shear

Table 3: Mean percent error (SD (Standard deviation)) of CC (Cumulative compression) and CS 
(Cumulative shear) for each task across all four tasks

Variable 0° 45° 90° Variable mean
CC 9.7 (9.3) 6.1 (6.4) 5.7 (6.3) 7.2 (2.2)
CS 3.0 (19.8) 8.6 (9.6) 8.3 (9.6) 6.6 (3.1)

CC = Cumulative compression, CS = Cumulative shear

Table 4: Mean percent error (SD (Standard deviation)) of CC (Cumulative compression) and CS 
(Cumulative shear) for each camera view across all three camera angles
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for CC (0° view). Based on Chi-Square test 
statistics, there were no significant differences 
in CC (p=0.021) and CS (p=0.093) relative er-
ror between the three video recording angles 
(Table 5).

Inter-rater Reliability: ICCs for the estimat-
ed CC and CS in each task across the three 
sessions ranged from good (0.40<ICC<0.75) 
for CS in T1 and T3 (i.e., 0.69 (0.11-0.96) and 
0.61 (0.12-0.95), respectively), to excellent 
(ICC>0.75) for both CLs in all tasks (i.e., from 
0.78 (0.36-0.97) to 0.83 (0.52-0.98) in T3 and 
T2, respectively) (Table 6). CC was more reli-
able than CS (ranged from 0.78 in T3 to 0.83 
in T2). T2 had the largest values (0.83 for CC 
and 0.79 for CS), and T3 had the smallest val-
ues (0.78 for CC and 0.61 for CS).

Discussion
A video-based posture-matching assessment 

tool was developed. Its validity and inter-rater 
reliability were evaluated to estimate cumula-
tive compression (CC) and cumulative shear 
(CS) L5-S1 loadings during lifting tasks. In 
Iran, with 12300 HSPs [41], there is an essen-
tial need for a valid and reliable quantitative 
lifting analysis tool corresponding to the Irani-

an workforce. ANOVA results revealed no sig-
nificant differences in the estimated CC and CS 
loads between the Vicon input data and PLAT 
in any of the three camera views (p<0.05). 
Furthermore, throughout all four tasks, PLAT 
showed no significant differences in terms of 
mean percent error when compared to the val-
ues obtained from Vicon inputs. Therefore, 
PLAT was reasonably accurate in predicting 
CLs in all lifting types relative to the reference 
method. The ICCs and the confidence inter-
vals indicated an excellent agreement between 
raters on the estimated CLs during lifting tasks 
using PLAT.

Minor CC and CS loading errors were mea-
sured in T1 (Table 3). This might be due to the 
visibility available to the operator in the sym-
metric task. A pronounced T was observed by 
the operator over the entire T1 in the sagittal 
plane, which resulted in an accurate estimation 
of the CLs compared to the reference method. 
The magnitude of the errors for the CLs across 
all three camera angles was small (Table 4) 
and had no significant effect on the estimation 
accuracy (p<0.01) (Table 5). The highest ac-
curacy was obtained for the 90° camera angle 
(5.7% for CC from the reference method). This 

Variable 0° 45° 90° Chi-square df P-value
CC 201.5 174.3 165.7 7.714 2 0.021
CS 197.0 175.4 169.0 4.747 2 0.093

CC = Cumulative compression, CS = Cumulative shear

Table 5: Kruskal-Wallis test of relative error of CC (Cumulative compression) and CS (Cumulative 
shear) grouped by each camera view angle

Task CC
95% CI

CS
95% CI

Lower Upper Lower Upper
1 0.81 0.46 0.98 0.69 0.11 0.96
2 0.83 0.52 0.98 0.79 0.38 0.97
3 0.78 0.36 0.97 0.61 0.12 0.95

CC = Cumulative compression, CS = Cumulative shear, CI: Confidence interval

Table 6: The intra-class correlation coefficients (ICCs) and their 95% confidence interval (CI) for 
CC (Cumulative compression) and CS (Cumulative shear) across all tasks and three sessions
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can be explained by the fact that this angle, as 
suggested by Norman and McGill [25], gives 
the operator the most accurate viewing angle 
for the sagittal plane, thus resulting in smaller 
errors when estimating input variables.

The ICCs revealed a good to excellent 
agreement between the raters when estimat-
ing L5-S1 CLs across three days (Table 6). 
From an ergonomic standpoint, having higher 
values of ICC for CC compared to CS is im-
portant and considered an advantage for PLAT 
in evaluating lifting tasks. Compression force 
has the strongest relationship with LBP among 
kinetic parameters and is the most commonly 
evaluated parameter in biomechanical risk as-
sessment studies for lifting activities [24, 42]. 
Moreover, the ICC values were higher for T2 
in comparison with T1 and T3 (Table 6). This 
might partially be due to the lesser variability 
in postures adopted by the participant in T2, 
which resulted in smaller inter-rater variabil-
ity in the estimation of T and other input vari-
ables through matching posture via GUI. The 
lower ICCs in T3 might be attributed to the 
task asymmetry, which required estimating Dx 
and Dy in addition to T thus increasing inter-
rater variation, especially when the task was 
observed from the 90° view angle.

Few studies have investigated the inter-rater 
reliability of a biomechanical tool for assess-
ing CLs. The obtained ICCs in the current 
study (ranging from 0.61 to 0.83) were in 
close agreement with those of Sullivan et al. 
[43], who reported the ICCs of 0.61 to 0.96. 
In a field study, Cann et al. [44] determined 
the inter-rater reliability of 3DMatch for pre-
dicting CLs during selected tasks of 30 food 
service workers. The calculated ICCs were 
0.69 and 0.90 for CS and CC spinal loadings, 
respectively.

As recommended by Sutherland et al. [45], 
trunk sagittal posture categories were consid-
ered at the bottom of the PLAT GUI to facili-
tate the estimation of the T more accurately 
(Figure 1c). The considered size of these pos-
ture categories (15°) was smaller than the opti-

mal value (30°) [35]. Van Wyk et al. [35] stat-
ed that selecting a category size smaller than 
the optimal (30°) is associated with a lower 
error magnitude but a higher number of errors 
in posture classification. Training the users of 
PLAT is therefore suggested to improve the 
accuracy and precision of outputs [46]. How-
ever, because of existing human errors when 
using video-based posture assessment meth-
ods, estimation errors persist despite training 
the users.

Computing the spinal loads during lifting 
tasks by only four input variables via a GUI 
enables our tool to be easily used by any HSPs 
remotely thereby decreasing the need to be on 
the site at the workplace physically. This is 
mainly important in pandemic circumstances 
such as COVID-19, in which social distanc-
ing is required to manage the spread of the 
virus. The only value that should be taken di-
rectly on-site for practical applications is D, 
which can easily be measured by using tape 
measures in the workplace. Moreover, unlike 
some previous works that studied the reli-
ability of video-based methods [44, 47, 48], 
in the present study, the raters with different 
backgrounds were recruited to minimize the 
effect of having ergonomics and/or biome-
chanics background on results. To ensure that 
they were qualified to participate in the study, 
a training period was considered regarding 
working with PLAT for matching postures and 
estimating the loads. This ensures the general-
izability of the results. 

Some limitations should also be acknowl-
edged. Similar to the work of Sutherland et 
al. [45] in validating 3DMatch, validation of 
our tool was performed with a relatively small 
sample of six participants repeating the tasks 
only five times. However, considering a sug-
gested average number of 3-6 cycle times for 
each task [49], our designed protocol for lift-
ing tasks (6 participants × 4 tasks × 5 repeti-
tions = 120 repetitions; i.e. 30 repeats for each 
task) yielded meaningful repeatability of the 
results. For statistical analysis, any repeti-
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tion of tasks was considered an independent 
observation. Therefore, 30 observations were 
included in any of the four independent analy-
sis groups (the three camera views and Vicon; 
i.e. 30 × 4 = 120). Assumptions of normality 
and heterogeneity of variances were handled 
by applying the Kruskal-Wallis test as a non-
parametric alternative to one-way ANOVA. 
However, further analyses with more partici-
pants performing more repetitions of tasks are 
required to confidently generalize our findings 
to a normal working day.

While demographic and anthropometric fac-
tors, and muscle morphology of individuals, 
are known to affect the spinal loads [50, 51], 
PRE has been developed based on a generic 
model, thus neglecting the subject-specific 
variabilities. However, similar to the Lifting 
Fatigue Failure Tool (LiFFT; [52]), PLAT also 
represents a faster and computationally less 
expensive tool in MMH processes evaluation 
in the workplace. While our primary goal was 
to examine the CL on the lumbar spine as one 
of the most important risk factors associated 
with LBP [10, 11], we intend to include differ-
ent anthropometric data in our future interface 
by, for instance, adapting anthropometric data 
from winter [53]. Arjmand et al. [30, 31] have 
not recommended the use of PRE for input 
variable levels beyond extreme intervals of 
T, D, and M (see section 2.3) as it may under 
or over-estimate the spinal loads in such sce-
narios. Only one lifting box with one weight 
and size was applied in all simulated condi-
tions. We believe that heavier loads increase 
both compression and shear forces on L5-S1. 
Recent works by Arjmand et al. [30, 31] have 
shown the accuracy of the PRE over a wide 
range of external loads [54]. This assures us 
that restricting our experiments to only one 
load magnitude does not affect the accuracy 
of PLAT. PLAT uses PRE, which is based on 
a 2D and static sagittally-symmetric model for 
trunk posture. Therefore, PLAT is applicable 
for occupational tasks performed symmetri-
cally in the sagittal plane and at a relatively 

slow movement speed. Moreover, it should 
be noted that asymmetric tasks in this study 
(Table 1) had a 30° rotation out of the sagittal 
plane. Analyzing lifting tasks with a rotation 
beyond 30° out of the sagittal plane by these 
equations might underestimate the external 
moment by 20% [31], thus resulting in unre-
alistic spinal loads. 

Although our study assessed specific static 
simulated lifting tasks during stoop with both 
hands on the workload, the PRE model has al-
ready been tested on various lifting tasks [30, 
31, 54]. It may be conceivable that PLAT can 
be used as a practical tool in different work-
place settings, including lifting with one or 
two hands. Furthermore, wearing fitted un-
derwear to the participants and placing the 
markers on their bodies (which is not usual in 
the field) may help the raters to estimate input 
variables more precisely. Thus, is suggested to 
conduct this study in the field and compare the 
results with the present study. 

Inter-rater reliability was determined using 
only video frames captured from a 90° view 
angle. As it was mentioned earlier, this angle 
provides the most accurate viewing angle for 
the sagittal plane [25, 55]. Although 90° is the 
most common view angle in lifting risk as-
sessment or validation studies, further studies 
by different view angles are needed to evalu-
ate how inter-rater reliability would be altered. 
While our primary purpose was to evaluate the 
validity and inter-rater reliability of the pro-
posed tool, comparing the usability of PLAT 
with other video-based tools such as 3DMatch 
[45], which is currently missing, suggests a 
more comprehensive understanding of its ef-
ficiency, ease of use, and required analysis 
time. We believe that automating the process 
of selecting the proper variables based on 
the machine learning algorithm in which the 
corresponding feature is identified in the im-
age and entered into the program should be 
applied to the posture-based biomechanical 
risk assessment methods. This approach may 
help improve the tool’s estimation process, 
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whose accuracy and reliability need to be de-
termined. Therefore, adopting such techniques 
in the PLAT will be the subject of our future 
developments.

Conclusion
This paper presents a valid and reliable 

tool (PLAT) for the Iranian HSPs to assess 
the lifting biomechanical risk. We found no 
significant difference between PLAT and the 
reference gold-standard method, indicating 
the robustness of PLAT in estimating L5-S1 
CC and CS loads. Inter-rater reliability of the 
estimated CLs was found good to excellent 
among the raters. Finally, comparative studies 
between different video-based low back CLs 
analysis tools and PLAT when applied to iden-
tical lifting tasks must be carried out to clarify 
each model’s strengths and limitations thereby 
providing improved guidance to ergonomic 
practitioners.
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