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Introduction

Radiomics, in which many quantitative features are extracted from 
medical images, has become an attractive arena of medical im-
aging research [1,2]. The fundamental hypothesis of radiomics 

is based on the fact that heterogeneity inside medical images is due to 
molecular phenotype and genotype [3-5]. Many studies have demon-
strated the capability of radiomics in glioma grading, determination of 
its molecular phenotype, and genetic classification [6-10]. In addition, 
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ABSTRACT
Background: Radiomics with single Region of Interest (ROI) and single-sequence 
Magnetic Resonance Imaging (MRI) may facilitate the segmentation reproducibility 
and radiomics workflow due to a time-consuming and complicated delineation of that 
in multi-sequence MRI images. 
Objective: This study aimed to evaluate the performance of the radiomics  
approach in grading glioma based on a single-ROI delineation as Gross Tumor Volume 
(GTV) in a single – sequence as contrast-enhanced T1-weighted MRI.
Material and Methods: This retrospective study was conducted on contrast-
enhanced T1 weighted (CE T1W) MRI images of 60 grade II and 60 grade III glio-
ma patients. The GTV regions were manually delineated. Radiomics features were  
extracted per patient. The segmentation reproducibility of the robust features was 
evaluated in several repetitions of GTV delineation. Finally, a linear Support Vector 
Machine (SVM) assessed the classification performance of the robust features. 
Results: Four significant robust features were selected for training the model  
(P-value<0.05). The average Intraclass Correlation Coefficient (ICC) of the four fea-
tures was 0.96 in several repetitions of GTV delineation. The linear SVM model dif-
ferentiated grades II and III of glioma with an Area Under the Curve (AUC) of 0.9 in 
the training group.  
Conclusion: High predicting power for glioma grading can be achieved with  
radiomics analysis by a single-ROI delineated on a single-sequence MRI image (CE 
T1W). In addition, single-ROI segmentation can increase radiomics reproducibility.
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some studies in glioma radiomics have shown 
a remarkable association between morpholog-
ical characteristics extracted from multi-se-
quence Magnetic Resonance Imaging (MRI), 
clinical outcomes, and survival [11,12]. Ma-
lignant glioma is the most common primary 
brain tumor, resulting in heterogeneity [6]. 
However, a biopsy is still invasive and costly, 
it is considered a standard histological and ge-
netic classification method for glioma. Patho-
logical diagnosis may remain inconclusive in 
7–15% of patients [7].

Despite rapid and remarkable progress, there 
are still some drawbacks and challenges in us-
ing radiomics in the clinical workflow. Region 
of Interest (ROI) delineation is one of the most 
critical challenges in radiomics reliability and 
reproducibility [8]. Previous studies have 
warned about the dependency of radiomics 
features on ROI and its segmentation methods 
[4-6,12]. Although several techniques are con-
sidered for segmentation ROI, such as manual, 
semi-automatic, and fully automatic methods, 
manual segmentation is the standard clinical 
routine in quantitative analysis [8,13]. Previ-
ous radiomics studies in malignant glioma 
have often been conducted on multi-sequence 
MRIs with automatic and semi-automatic seg-
mentation and delineation of several ROIs, 
such as enhancing, non-enhancing, necrosis, 
and edema regions [9,14]. However, the defi-
nition of several tumor volumes is often time-
consuming and complicated, and it may cause 
a decline inter-and intra-observer reproduc-
ibility of radiomics. In addition, it can be hard 
to accurately discriminate the real border of 
several juxtaposed ROIs. Accordingly, simple 
and feasible ROI delineation, such as Gross 
Tumor Volume (GTV) in a single MRI se-
quence may improve the segmentation work-
flow and radiomics inter-and intra-observer 
reproducibility. GTV as defined as the gross 
demonstrable extent and location of the tumor 
is required for cancer staging, and changes in 
the GTV during treatment might be predictive 
of treatment outcome [15]. 

This study aimed to evaluate the perfor-
mance of a rapid and reproducible radiomics 
approach to grading glioma based on delin-
eating a single-ROI as GTV on a single-se-
quence MRI image, such as contrast-enhanced 
T1 weighted (CE T1W) MRIs. CE T1W is a 
routine clinical MRI sequence for diagnosing 
glioma. The segmentation reproducibility of 
the extracted radiomics features is evaluated 
in several repetitions of GTV delineation. In 
addition, the classification performance of 
the radiomics features is assessed by machine 
learning methods. We hypothesized that the 
manual segmentation of a simple GTV may 
alleviate the problems associated with the 
complexity of several volume determinations 
and the challenge related to radiomics depen-
dency on ROI.

Material and Methods

Patient selection, image prepro-
cessing, and GTV delineation

This is a retrospective study conducted on 
120 patients with diagnosed glioma (60 with 
grade II and 60 with grade III). CE T1W MRI 
images were used to extract radiomics features 
and train machine learning-based models. The 
data were collected from the Cancer Imaging 
Archive (TCIA) database [16] from 2015 to 
2019, collected from various imaging centers 
worldwide. The inclusion criteria were as fol-
lows: availability of clinical and pathological 
information, histological confirmation of tu-
mor grade, and availability of CE T1W im-
ages. The criteria for exclusion from the study 
were also as follows: low image quality due 
to artifacts, the existence of hemorrhagic le-
sions in images, and the previous history of 
other brain tumors and surgery. According 
to “The Cancer Imaging Archive / The Can-
cer Genome Atlas (TCIA/TCGA) data-usage 
guidelines”, all analyses were carried out [16].

Due to the difference and heterogeneity of 
imaging protocol for the TCGA cohort, all 
images were preprocessed using the ComBat 
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method [17,18]. Each MR image was resam-
pled onto a 256×256 matrix size, registered to 
5 mm slice thickness with no slice gap, and in-
terpolated to the isotropic voxel size of 1×1×5 
mm3. Patients were randomly divided into 
a training group (n=80, 40 with grade II, 40 
with grade III) and an independent test group 
(n=40, 20 with grade II, 20 with grade III) for 
the test evaluations. Figure 1 shows the main 
procedure of this study. 

For each patient, a 2D ROI inside the largest 
cross-sectional area of the tumor was manu-
ally delineated by a 20-year experienced neu-
ro-oncologist as a GTV (Figure 2). The ROIs 
extraction and radiomics feature calculations 
were performed in the free open-source stan-
dardized- IBEX (S-IBEX) software (https://
github.com/abettinelli/SIBEX_Source) [19].

Extraction, selection, and segmen-
tation reproducibility of features

One hundred radiomics features were ex-
tracted per patient. The highly redundant fea-
tures were then removed by a two-step feature 
selection procedure. In the first step, a set of 
radiomics features with high discrimination 
performance between grades II and III of 

glioma was obtained using the nonparametric 
Mann-Whitney U test. A P-value<0.05 was set 
as a statistically significant level [20]. The sec-
ond step eliminated highly correlated features 
using Pearson correlation analysis, with an R 
threshold of 0.75 [21]. To assess the effect of 
manual GTV delineation variations on fea-
tures reproducibility, an ROI was delineated 
thirty times by thirty blinded physicians on 
a specific slice of the images of two patients 
(one with grade II and the other with grade III 
glioma). Next, Intraclass Correlation Coef-
ficient (ICC), calculated based on a two-way 
mixed, consistent, average measurement mod-
el was assessed for the features (ICC>0.9 was 
considered significant). All statistical analyzes 
were performed in SPSS v.26 software.

Model training
The Support Vector Machine (SVM) classi-

fier was implemented to evaluate the perfor-
mance of selected robust radiomics features in 
the differentiation of grade II from grade III 
glioma. SVM is the most common classifier 
for binary classification. After normalizing 
all features to [-1, 1], 10-fold cross-validation 
was employed to avoid overfitting as much as 

Figure 1: The flow chart of the current study.
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possible [22]. A linear SVM model was trained 
and evaluated by computing accuracy, sensi-
tivity, and specificity values. The Area Under 
the Curve (AUC) of the Receiver Operating 
Characteristic (ROC) was also calculated for 
the model. All analyses were performed using 
the machine learning toolbox of MATLAB 
(MathWorks, Inc, Natick, MA) R2016b soft-
ware.

Results
The demographical and clinical information 

of the patients is summarized in Table 1.

Extracted and selected features
One hundred radiomics features were ex-

tracted from the images of each patient in the 
training group, including 22 Gray-level Co-
occurrence Matrix (GLCM), 11 Gray-level 
Run-length Matrix (GLRLM), 49 histograms, 
and 18 shape-based features. After analyzing 
the Mann-Whitney statistical test, 31 of 100 
features remained, showing high discrimina-
tive performance between grades II and III of 
glioma. Four significant features (homoge-
neity, correlation, kurtosis, and surface area 
density) were elicited from the previous 31 

Figure 2: Two-dimensional GTV delineation on CE T1W images; the left columns are original 
images and the rights are the segmented images (a) A 19-year-old female patient with grade II 
astrocytoma, (b) A 39-year-old male patient with grade III oligodendroglioma.
(GTV: Gross tumor volume; CE T1W: Contrast-enhanced T1 weighted) 
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obtained features by Pearson statistical test, 
determined as the robust radiomics features 
for training the model (Figure 3). The means 
and Standard Deviations (SDs) of the four 
robust radiomics features are compared in  
Table 2. Also, Table 3 summarizes the ICC 
values of the four robust features obtained 
from thirty times the repetition of GTV delin-
eation. The average ICC of the features was 
significantly high and obtained at 0.96.

Figure 3: The Pearson correlation coefficient 
heat map of the selected robust features.

Feature  
parameters

Mean±SD
P-value

Grade II Grade III

GLCM
Homogeneity 0.525±0.105 0.439±0.129 0.024
Correlation 0.805±0.071 0.724±0.112 0.021

Intensity Histogram
Kurtosis 10.338±10.34 4.327±3.171 0.005

Shape
Surface Area 

Density 4.581±1.901 3.454±1.046 0.028

SD: Standard Deviation, GLCM: Gray-Level Co-Occurrence 
Matrix

Table 2: The four robust features’ amount in 
association with grades II and III glioma.

Characteristics Grade II Grade III
Patients (N/%) 50% (60/120) 50% (60/120)
Age (mean±SD) 43±2.75 47±2

Gender (N/%)
Male 45% (27/60) 60% (36/60)

Female 55% (33/60) 40% (24/60)

Histologic subtype (N/%)
Astrocytoma 68.4% (41/60) 63.4% (38/60)

Oligodendroglioma 31.6% (19/60) 36.6% (22/60)
SD: Standard Deviation

Table 1: Demographical and clinical information of patients enrolled in this study.

ICC for grade 
II glioma

ICC for grade 
III glioma

Homogeneity 0.99 0.97
Correlation 0.96 0.95

Kurtosis 0.99 0.98
Surface area 

density 0.94 0.94

ICC: Intraclass Correlation Coefficient

Table 3: Intraclass correlation coefficient 
(ICC) values of the four robust features ob-
tained from blinded physicians’ 30 times 
repetition of gross tumor volume (GTV)  
delineation.

31



J Biomed Phys Eng 2025; 15(1)

Yunus Soleymani, et al

Model performance in the training 
and independent test groups

Training group: The linear SVM model 
performance was obtained by considering the 
average of 10-fold cross-validation results. 
The model could discriminate grades II and III 
of glioma with a high-performance accuracy 
(82.5%), sensitivity (80%), specificity (85%), 
and AUC (0.90) (Figure 4).

Test group: All the patient selection pro-
cesses, MRI image preprocessing, GTV delin-
eation, radiomics feature extraction, and fea-
ture selection were applied to the test group, 
similar to the training group. Finally, the data 
were imported into the linear SVM model. 
The model could discriminate grades II and 
III of glioma with accuracy, sensitivity, speci-
ficity, and AUC of 85%, 80%, 85%, and 0.84 
(Figure 5).

Notably, our radiomics model had high 
performance despite the simplicity of the ap-
proach. Table 4 compares the results of the 
current study with some similar recent papers.

Discussion
The purpose of this study was to determine 

the diagnostic performance of the machine-
learning-based radiomics approach to differen-
tiate grades II and III gliomas in a single-ROI 
delineation as well as in a single-sequence CE 
T1W MRI image. A high predictive power of 
AUC of 0.90 was achieved by the GTV areas 
for segmentation, which is much easier to de-
lineate and clinically more feasible. However, 
the current study was conducted on a single-
ROI delineated in a single-sequence MRI 
image, the obtained results were consistence 
with previous multi- ROI delineated in Multi-
sequence MRI images [6,8,10,13,23,25]. We 
also obtained four robust radiomics features, 
which were significantly reproducible against 
slight variations in manual GTVs delineation 
(ICC=0.96), and also had homogeneity and 
correlation of GLCM, kurtosis of intensity 
histogram, and surface area density of shape.

Based on the obtained results, grade II gli-
oma was more homogeneous, showing grade 

Figure 4: The ROC curve of the linear SVM 
model for classification of grades II and III 
glioma in the training group. (ROC: Receiv-
er Operating Characteristic; SVM: Support  
Vector Machine)

Figure 5: The ROC curve of the linear SVM 
model for classification of grades II and III 
glioma in the test group. ROC: Receiver  
Operating Characteristic; SVM: Support  
Vector Machine)
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Reference Main results Limitations The current study’s  
advantages

Togao O et al. 
2016 [23]

Distinguishing high-grade 
and low-grade glioma with 
96% sensitivity and 81% 
specificity

• Low sample size (34)

• Using 3-tesla MRI images is 
not routine in glioma diagnostic  
workflow

• Muli-ROI & Muli-sequences MRI

• Higher sample size (120)

• Using a 1.5-tesla routine system

• Single-ROI & single-sequence MRI

Cho H-h et al. 
2018 [6]

Distinguishing disease 
grades with high efficiency 
(AUC=0.9400) using SVM 
and Random Forest meth-
ods, 

• Manual segmentation of various 
areas of necrosis, and edema 
leads to results subjective and 
less reproducible

• Manual segmentation of GTV  
regions which is routine and simple 
to draw and achieves a comparable 
AUC of 0.90

• High reproducibility of segmenta-
tions (ICC>0.90)

• Single-ROI & single-sequence MRI

Jeong J et al. 
2019 [14]

Distinguishing high grade 
from low using the Random 
Forest method and achieving 
AUC=0.94

• Low sample size (25)

• Failure to validate the results 
on an independent test group of 
patients

• Muli-ROI & Muli-sequences MRI

• Higher sample size (120)

• Manual delineation of GTV regions 
as a clinically reproducible approach 
(ICC>0.90)

• Verification of results on an inde-
pendent test group (accuracy=85%)

• Single-ROI & single-sequence MRI

Zhao S-S et al. 
2020 [24]

Separating grade two and 
three gliomas using Random 
Forest algorithm and T1CE 
sequence along with manual 
segmentation of tumoral ar-
eas with sensitivity of 0.77 
and AUC=0.86

• Low sample size (36)

• Sensitivity<0.80

• AUC<0.90

• Muli-ROI & Muli-sequences MRI

• Higher sample size (120)

• Sensitivity=0.80

• AUC=0.90

• Single-ROI & single-sequence MRI

Kobayashi K  
et al. 2021 [10]

Extracting a shareable set of 
feature vectors that encode 
various parts in tumor imag-
ing phenotypes and predict 
the glioma grade with 90% 
accuracy

• Using complex deep learning 
algorithms for feature extraction 
and model building which may be 
clinically not feasible

• Muli-ROI & Muli-sequences MRI

• Using Manual delineation of GTV 
regions as a simple and clinically  
reproducible approach (ICC>0.90)

• Comparable accuracy of 85% in 
the test group

• Single-ROI & single-sequence MRI

ROI: Region Of Interest, MRI: Magnetic Resonance Imaging, SVM: Support Vector Machine, AUC: Area Under The Curve, GTV: 
Gross Tumor Volume, ICC: Intraclass Correlation Coefficient, T1CE: T1 Contrast-Enhanced

Table 4: Advantages of the current study in comparison with recent papers.
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II glioma is more biologically proliferative, 
which results in more voxels of similar up-
take. Kurtosis measures whether the data on 
the image is heavy-tailed or light-tailed rela-
tive to a normal distribution. According to 
the results, the images of grade II glioma had 
higher kurtosis because tumors with multiple 
voxels of similar uptake are more likely bio-
logically proliferative. Also, a homogeneously 
enhanced lesion (grade II glioma lesions) has 
a higher correlation and surface density com-
pared to a heterogeneously enhanced lesion 
(grade III glioma lesions).

Previous studies were performed using 
multi-sequence MRI images (T1-weighted, 
CE T1W, T2-weighted, and Fluid-attenuated 
Inversion Recovery (FLAIR)), as well as de-
lineation of multiple tumor volumes (enhanc-
ing tumors, non-enhancing tumors, necrosis, 
and edema) [9,12]. Qin et al. [13] in a study 
on 66 glioma patients, showed that three ra-
diomics features extracted from MRI images 
(Cluster Shade, Entropy, and Homogeneity) 
had the best performance in differentiating 
low-grade from high-grade glioma. They also 
used multiple-sequence MRI images, such as 
T2-weighted, FLAIR, CE T1W, and Apparent 
Diffusion Coefficient (ADC) maps to extract 
radiomics features. However, they performed 
a layer-by-layer segmentation on the images 
of all sequences, which was highly time-con-
suming and complicated, they didn’t evaluate 
the predictive power of these features. Further, 
Xie et al. [9] assessed Dynamic Contrast-en-
hanced (DCE)-MRI of 42 patients with glioma 
and reported that entropy with AUC (0.885) 
and Inverse Difference Moment (IDM) with 
AUC (0.901) of GLCM could differentiate 
low- from high-grade glioma. Togao et al. [23] 
achieved a sensitivity of 96% and a specificity 
of 81% by using intra-voxel incoherent mo-
tion imaging to discriminate glioma patients. 
Nevertheless, the clinical use of such time-
consuming and complicated protocols can be 
challenging. Hwan-ho et al. [6] applied three 
classification algorithms of logistic, SVM, 

and random forest in a cohort study with 285 
glioma patients; In their study conducted 
on multimodal sequences T1-weighted, CE 
T1 W, T2-weighted, and FLAIR, the results 
showed an average AUC of 0.94 for training 
sets and 0.903 for test sets. However, their 
segmentations were obtained from the data-
base, which provides multiple sub-regions of 
enhancing tumors, non-enhancing tumors, ne-
crosis, and edema. Zacharaki et al. [25] used 
the SVM-based Recursive Feature Elimina-
tion (SVM-RFE) method with leave-one-out 
cross-validation to differentiate low- and high-
grade glioma and showed an accuracy of 87% 
with an AUC of 0.896. However, applying the 
SVM-RFE in combination with other classi-
fiers may lead to performance degradation be-
cause the SVM-RFE approach is tailored for 
the SVM classifier. Recently, fully automated 
segmentation approaches and convolutional 
neural networks have also been considered 
in glioma radiomics studies, which are highly 
predictive and prognostic [24,26]. Because 
oncologists routinely use manual segmenta-
tion tools for ROI delineation and demand 
with other simple procedures during treatment 
planning of radiotherapy, implementation of 
such intricate algorithms may be clinically not 
feasible. 

There are some limitations to the present 
study as follows: 1) only 2D manual segmen-
tation was used to minimize challenges with 
ROI delineation, 2) CE T1W MRI sequence 
was only used, 3) only Support Vector Ma-
chine (SVM) was used, and 4) some radiomics 
feature groups were not used, such as wavelet-
based features, Gray-Level Size Zone Matrix 
(GLSZM), and Neighboring Gray-tone Differ-
ence matrix (NGTDM).

Conclusion
High predicting power for glioma grading 

can be achieved (AUC=0.9) with radiomics 
analysis by a single-ROI delineated on a 
single-sequence MRI image (CE T1W). Ra-
diomics analysis by only a single-ROI seg-
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mentation can increase radiomics reproduc-
ibility (ICC=0.96).
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